

HCL Informix 4GL Reference Guide

Version 7.51

ii HCL Informix 4GL Reference Guide

Note:
Before using this information and the product it supports, read the information in the appendix
entitled “Notices.”

2 HCL Informix 4GL Reference Guide

Contents
Compiling INFORMIX-4GL Source Files .. 21

1 ... 21
The INFORMIX-4GL Language ... 93

2 ... 93
Data Types and Expressions ... 49

3 ... 49
INFORMIX-4GL Statements ... 101

4 ... 101
Built-In Functions and Operators .. 385

5 ... 385
Screen Forms .. 139

6 ... 139
INFORMIX-4GL Reports .. 93

7 ... 93
List of Appendixes ... 71
The ASCII Character Set ... 73

A .. 73
INFORMIX-4GL Utility Programs .. 75

B ... 75
Using C with INFORMIX-4GL ... 11

C ... 11
Environment Variables .. 45

D .. 45
Developing Applications with Global Language Support.. 73

E ... 73
Modifying termcap and terminfo .. 39

F ... 39
Reserved Words .. 33

G .. 33
The Demonstration Application .. 37

H .. 37
SQL Statements That Can Be Embedded in 4GL Code ... 39

I .. 39
Glossary .. 10

Introduction 3

Index ... 49

2 HCL Informix 4GL Reference Guide

Introduction 5

In This Introduction
This Introduction provides an overview of the information in this guide
and describes the conventions it uses.

About This Guide
This guide is designed to be a day-to-day, keyboard-side companion for 4GL
programmers. It describes the features and syntax of the 4GL language,
including 4GL statements, forms, reports, and the built-in functions and
operators.

Organization of This Guide
This Guide is divided into two volumes and includes the following chapters
and appendixes:

■ Chapter 1, “Compiling INFORMIX-4GL Source Files,” describes the
C Compiler and Rapid Development System implementations of
INFORMIX-4GL. It also explains how to create executable versions of
4GL source files, both from the Programmer’s Environment and from
the command line.

■ Chapter 2, “The INFORMIX-4GL Language,” provides an overview
of 4GL language features and graphical features of the applications
that you can create with INFORMIX-4GL.

■ Chapter 3, “Data Types and Expressions,” describes 4GL data types,
expressions, and other syntax topics that affect several statements.

Organization of This Guide

4 HCL Informix 4GL Reference Guide

■ Chapter 4, “INFORMIX-4GL Statements,” describes the statements
of 4GL in alphabetical order.

■ Chapter 5, “Built-In Functions and Operators,” includes an overview
of the predefined functions and operators of 4GL and describes their
individual syntax, with examples of usage.

■ Chapter 6, “Screen Forms,” provides an overview of 4GL screen
forms and form drivers and describes the syntax of 4GL form speci-
fication files. It also describes how to create forms with the form4gl
form compiler and describes how the upscol utility can set default
attributes.

■ Chapter 7, “INFORMIX-4GL Reports,” offers an overview of 4GL
reports and report drivers, and describes the syntax of 4GL report
definitions. It also describes the syntax of statements and operators
that can appear only in 4GL reports.

■ Appendix A, “The ASCII Character Set,” lists the ASCII characters
and their numeric codes.

■ Appendix B, “INFORMIX-4GL Utility Programs,” describes the
mkmessage and upscol utility programs.

■ Appendix C, “Using C with INFORMIX-4GL,” describes how to call
C functions from 4GL programs, and vice versa, and describes a
function library for conversion between the DECIMAL data type of
4GL and the C data types.

■ Appendix D, “Environment Variables,” describes the environment
variables that are used by 4GL.

■ Appendix E, “Developing Applications with Global Language
Support,” describes the internationalization and localization
features that are provided with 4GL, and shows how to develop 4GL
applications that are world-ready and easy to localize.

■ Appendix F, “Modifying termcap and terminfo,” describes the
modifications you can make to your termcap and terminfo files to
extend function key definitions, to specify characters for window
borders, and to enable 4GL programs to interact with terminals that
support color displays.

■ Appendix G, “Reserved Words,” lists words that you should not
declare as identifiers in 4GL programs. It also lists the ANSI reserved
words of SQL.

Types of Readers

Introduction 5

■ Appendix H, “The Demonstration Application,” lists the code of the

demo4.4ge demonstration application.
■ Appendix I, “SQL Statements That Can Be Embedded in 4GL Code,”

lists SQL syntax that is directly supported in 4GL.
■ A Notices appendix describes HCL products, features, and services.
■ The Glossary defines terms used in the 4GL documentation set.

Types of Readers
This Guide is written for all 4GL developers. You do not need database
management experience nor familiarity with relational database concepts to
use this Guide. A knowledge of SQL (structured query language), however,
and experience using a high-level programming language would be useful.

Software Dependencies
This Guide is written with the assumption that you are using an Informix
database server 14.10.

Informix offers two implementations of the 4GL application development
language:

■ The INFORMIX-4GL C Compiler uses a preprocessor to generate
Informix ESQL/C source code. This code is preprocessed in turn to
produce C source code, which is then compiled and linked as object
code in an executable command file.

■ The INFORMIX-4GL Rapid Development System (RDS) uses a
compiler to produce pseudo-machine code (called p-code) in a single
step. You then invoke a runner to execute the p-code version of your
application.

Both versions of 4GL use the same 4GL statements. Chapter 1, “Compiling
INFORMIX-4GL Source Files,” describes the differences between the two
versions of 4GL and explains how to use both versions.

You can easily use applications developed with an earlier version of 4GL,
such as Version 4.x or 6.x or 7.2, with this version of 4GL. For RDS programs
that use p-code, however, you must first recompile your 4GL source code.

Assumptions About Your Locale

6 HCL Informix 4GL Reference Guide

Assumptions About Your Locale
Informix products can support many languages, cultures, and code sets.
All culture-specific information is brought together in a single environment,
called a GLS (Global Language Support) locale.

Examples in this Guide are written with the assumption that you are using
the default locale, en_us.8859-1. This supports U.S. English format conven-
tions for dates, times, and currency, and the ISO 8859-1 code set. Some
versions of this locale support various non-ASCII 8-bit characters such as é, è,
and ñ. Like all locales that Informix provides with its GLS libraries, however,
the default locale supports the ASCII characters (as listed in Appendix A).

If you plan to use non-ASCII characters in your data or your SQL identifiers,
or if you want nondefault collation of character data, you need to specify the
appropriate nondefault locale. For instructions on how to specify a nonde-
fault locale, additional syntax, and other considerations related to GLS, see
the Informix Guide to GLS Functionality. See also Appendix E, “Developing
Applications with Global Language Support.”

Accessing Databases from Within 4GL

Introduction 7

Accessing Databases from Within 4GL
The 4GL language approximates a superset of the Informix implementation
of the industry-standard SQL language. Because the 4GL compiler does not
recognize some SQL statements, however, three methods are supported for
including SQL statements within the 4GL program:

■ For most SQL syntax that was supported by Informix 4.1 database
servers, you can directly embed SQL statements in 4GL source code.

■ For SQL statements that can be prepared, you can use the PREPARE

feature of SQL to include SQL statements as text in prepared objects.
■ For all SQL statements that can be prepared, you can also use the

SQL ... END SQL delimiters to enclose the SQL statement. Unlike
PREPARE, these can include host variables for input and output.

You must use one of the last two methods for SQL statements that include
syntax that was introduced later than Informix 4.1 database servers. Such
embedded, prepared, or delimited SQL statements are passed on to the
database server for execution, as in the following 4GL program fragment:

DEFINE bugfile, setdeb CHAR(255)
DATABASE stores7 --Directly embedded SQL
LET setdeb = "set debug file to /u/tanya/bugfile"
PREPARE bugfile FROM setdeb --Prepared SQL (post-4.1)
EXECUTE IMMEDIATE bugfile --Directly embedded SQL
SQL SET PDQPRIORITY HIGH --Delimited SQL (post-4.1)
END SQL

Appendix I, “SQL Statements That Can Be Embedded in 4GL Code,” lists the
supported SQL syntax.

If you are uncertain which method is needed, use SQL…END SQL delimiters,
which generally offer wider functionality and greater ease of coding than
PREPARE for SQL statements that cannot be directly embedded.

For additional information on SQL statements, see Informix Guide to SQL:
Syntax.

Enhancements to Version 7.51

8 HCL Informix 4GL Reference Guide

Documentation Conventions
This section describes certain conventions that this Guide uses.

These conventions make it easier to gather information from this and other
volumes in the documentation set. The following conventions are discussed:

■ Typographical conventions
■ Icon conventions
■ Example-code conventions
■ Syntax conventions

Typographical Conventions

Introduction 9

Typographical Conventions
This Guide uses the following conventions to introduce new terms,
illustrate screen displays, describe command syntax, and so forth.

Convention Meaning

KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.

italics
italics
italics

boldface
boldface

monospace
monospace

Within text, new terms and emphasized words appear in italics.
Within syntax diagrams and code examples, identifiers or values
that you are to specify appear in italics.

Names of program entities (such as classes, events, and tables),
environment variables, file and pathnames, and interface
elements (such as icons, menu items, and buttons) appear in
boldface.

Information that the product displays and information that you
enter appear in a monospace typeface.

KEYSTROKE Keys to press appear in uppercase letters in a sans serif font.

Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Icon Conventions

10 HCL Informix 4GL Reference Guide

Icon Conventions
Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Feature, Product, and Platform Icons
Feature, product, and platform icons identify paragraphs that contain
feature-specific, product-specific, or platform-specific information.

Icon Description

Identifies information that relates to the Informix Global
Language Support (GLS) feature.

Identifies information or syntax that is specific to Informix
Dynamic Server.

Identifies information or syntax that is specific to
INFORMIX-SE.

Identifies SQL statements that you must put in an SQL
block or prepare statement.

These icons can apply to a row in a table, one or more paragraphs, or an entire
section. A ♦ symbol indicates the end of the feature-specific, product-
specific, or platform-specific information.

Compliance Icons
Compliance icons indicate paragraphs that provide guidelines for complying
with a standard.

Icon Description

Identifies information that is specific to an ANSI-compliant
database

These icons can apply to a row in a table, one or more paragraphs, or an entire
section. A ♦ symbol indicates the end of the compliance information.

GLS

IDS

SE

SQL

ANSI

Example-Code Conventions

Introduction 11

Example-Code Conventions
Examples of 4GL source code occur in several sections of this Guide. For
readability, 4GL or SQL keywords generally appear in uppercase characters in
code examples, and identifiers usually appear in lowercase or mixed case.

For instance, you might see code as in the following example:

MENU "CUSTOMER"
COMMAND "Query" "Search for a customer"

CALL query_data()
NEXT OPTION "Modify"

...
COMMAND "Modify" "Modify a customer"
...

END MENU

Ellipsis (…) symbols in a code example indicate that more code would be
added in a complete application, but for clarity and simplicity, the example
omits code that is extraneous to the current topic. (In most contexts, a
compile-time or runtime error occurs if literal ellipsis symbols appear in
code, or if you omit code that is necessary to your program logic.) Ellipsis
symbols do not begin or end code examples, however, even if additional code
would be required for a complete program, or for a complete statement.

Most 4GL code examples are fragments of programs, rather than complete
programs that can be compiled and executed. Because most examples are
provided to illustrate some specific topic, the examples sometimes do not
strictly conform to good programming practice. For example, they might not
check to verify that an operation successfully executed without error, or they
might not include the comments that normally should be included to
improve readability and simplify maintenance of your code.

Syntax Conventions

12 HCL Informix 4GL Reference Guide

Syntax Conventions
SQL statement syntax is described in the Informix Guide to SQL: Syntax. The
syntax for 4GL statements is described in Chapter 4 of this Guide. Most
chapters of this book describe the syntax of some aspect of the 4GL language,
such as expressions, form specifications, and reports.

This section describes conventions for syntax diagrams. Each diagram
displays the sequences of required and optional keywords, terms, and
symbols that are valid in a given statement or segment. Figure 1 shows the
syntax diagram of the OPEN FORM statement.

Figure 1
Example of a Simple Syntax Diagram

Each syntax diagram begins at the upper-left corner and ends at the upper-
right corner with a vertical terminator. Between these points, any path that
does not stop or reverse direction describes a possible form of the statement.
(For a few diagrams, however, notes in the text identify path segments that
are mutually exclusive.)

Syntax elements in a path represent terms, keywords, symbols, and segments
that can appear in your statement. The path always approaches elements
from the left and continues to the right, except in the case of separators in
loops. For separators in loops, the path approaches counterclockwise. Unless
otherwise noted, at least one blank character separates syntax elements.

OPEN FORM form FROM "filename"

Syntax Conventions

Introduction 13

Elements That Can Appear on the Path
You might encounter one or more of the following elements on a path.

Element Description

KEYWORD A word in UPPERCASE letters is a keyword. You must
spell the word exactly as shown; you can, however,
use either uppercase or lowercase letters.

(. , ; @ + * - /) Punctuation and other nonalphanumeric characters
are literal symbols that you must enter exactly as
shown.

" " Double quotation marks must be entered as shown. If
you prefer, a pair of double quotation marks can

' ' replace a pair of single quotation marks, but you
cannot mix double and single quotation marks.

variable A word in italics represents a value that you must
supply. A table that follows the diagram explains the
value.

A reference in a box represents a subdiagram. Imagine
that the subdiagram is spliced into the main diagram
at this point. When a page number is not specified, the
subdiagram appears on the same page. The aspect
ratios of boxes are not significant.

A reference to SQL:S in a syntax diagram represents an
SQL statement or segment that is described in the
Informix Guide to SQL: Syntax. Imagine that the
segment were spliced into the diagram at this point.

 SE
An icon is a warning that this path is valid only for
some products, or conditions. The following icons
appear in some syntax diagrams:

 SE

 IDS

This path is valid only for
INFORMIX-SE database servers.

This path is valid only for Informix
Dynamic Server.

(1 of 2)

SELECT Statement
see SQL:S

ATTRIBUTE Clause

ATTRIBUTE
Clause
p. 3-288

Syntax Conventions

14 HCL Informix 4GL Reference Guide

NOT

3

Element Description

 + This path produces a warning (of a
syntax extension to the ANSI/ISO
standard for SQL) if DBANSIWARN is
set, or if the program is compiled with
the -ansi flag.

A shaded option is the default, if you provide no other
specification.

 . . .

IS NULL

NOT FOUND

ERROR

WARNING

 ,

variable

A syntax segment within a pair of arrows is a
subdiagram.

The vertical line terminates the syntax diagram.

A branch below the main path indicates an optional
path. (Any term on the main path is required, unless
a branch can circumvent it.)

A set of multiple branches indicates that a choice
among more than two different paths is available.

A loop indicates a path that you can repeat.
Punctuation along the top of the loop indicates the
separator symbol for list items.
If no symbol appears, a blank space is the separator, or
(as here) the Linefeed that separates successive state-
ments in a source module.

 , A gate () on a path indicates that you can only use
that path the indicated number of times, even if it is

 3 size part of a larger loop. You can specify size no more than
three times within this statement segment.

(2 of 2)

ALL

statement

Syntax Conventions

Introduction 15

How to Read a Syntax Diagram
Figure 2 shows a syntax diagram that uses some of the path elements that the
previous table lists.

Figure 2
Example of a Syntax Diagram

Case III: (display output in a screen form)

, ,

DISPLAY value TO Field Clause

, ATTRIBUTE Clause

BY NAME variable

The Case III label above the diagram implies that this statement can have at
least two other syntax patterns. To use this diagram to construct a statement
start at the top left with the keyword DISPLAY. Then follow the diagram to
the right, proceeding through the options that you want.

Figure 2 illustrates the following steps:

1. Type the keyword DISPLAY.
2. You can display the values of a list of variables to an explicit list of

fields within the current screen form:
■ Type the name of a value. If you want to display several values,

separate successive values by a comma.
■ Type the keyword TO after the name of the last value.
■ Type the name of a field in the current form in which to display

the first value. To find the syntax for specifying field names, go t
the Field Clause segment on the specified page.

3. If you are using a form whose fields have the same names as the
values that you want to display, you can follow the lower path:
■ Type the keywords BY NAME after DISPLAY.
■ Type the name of a variable. If you want to display the values o

several variables, separate successive variables by comma.

Additional Documentation

16 HCL Informix 4GL Reference Guide

4. You can optionally set a screen attribute for the displayed values:
■ Use the syntax of the ATTRIBUTE Clause segment on the

specified page to specify the screen attribute that you desire.
5. Follow the diagram to the terminator.

Your DISPLAY TO or DISPLAY BY NAME statement is now complete.
A restriction on step 2 (that there must be as many fields as variables)
appears in notes that follow the diagram, rather than in the diagram
itself. If 4GL issues an error when you compile a statement that seems
to follow the syntax diagram, it might be a good idea to also read the
usage notes for that statement.

Documentation Included with 4GL

Introduction 17

Documentation Included with 4GL
The INFORMIX-4GL documentation set includes the following additional
Guides:

■ INFORMIX-4GL Installation Guide is a pamphlet that describes how to
install the various 4GL products.

■ INFORMIX-4GL Concepts and Use introduces 4GL and provides the
context needed to understand the other Guides in the documen-
tation set. It covers 4GL goals (what kinds of programming the
language is meant to facilitate), concepts and nomenclature (parts of
a program, ideas of database access, screen form, and report gener-
ation), and methods (how groups of language features are used
together to achieve particular effects).

■ INFORMIX-4GL by Example is a collection of 30 annotated 4GL
programs. Each is introduced with an overview; then the program
source code is shown with line-by-line notes. The program source
files are distributed as text files with the product; scripts that create
the demonstration database and copy the applications are also
included.

■ Documentation notes, which contain additions and corrections to the
Guides, and release notes are located in the directory where the
product is installed. Please examine these files because they contain
vital information about application and performance issues.

If you have also purchased the INFORMIX-4GL Interactive Debugger product
(which requires the INFORMIX-4GL Rapid Development System), your 4GL
documentation also includes the following Guide:

■ Guide to the INFORMIX-4GL Interactive Debugger is both an intro-
duction to the Debugger and a comprehensive reference of Debugger
commands and features. The Debugger allows you view the source
code and to interact with your 4GL programs while they are running.
It helps you to analyze the logic of your 4GL program and to
determine the source of runtime errors within your programs.

On-Line Guides

18 HCL Informix 4GL Reference Guide

On-Line Error Messages
Use the finderr script to display a particular error message or messages on
your screen. The script is located in the $INFORMIXDIR/bin directory.

On-Line Error Messages

Introduction 19

The finderr script has the following syntax.

For example, to display the -359 error message, you can enter either of the
following:

finderr -359

or, equivalently:

finderr 359

The following example demonstrates how to specify a list of error messages.
The example also pipes the output to the UNIX more command to control the
display. You can also direct the output to another file so that you can save or
print the error messages:

finderr 233 107 113 134 143 144 154 | more

A few messages have positive numbers. These messages are used solely
within the application tools. In the unlikely event that you want to display
them, you must precede the message number with the + sign.

The messages numbered -1 to -100 can be platform-dependent. If the message
text for a message in this range does not apply to your platform, check the
operating system documentation for the precise meaning of the message
number.

finderr msg_num

msg_num Indicates the number of the error message to display. Error message
numbers range from -1 to -32000. Specifying the - sign is optional.

Related Reading
The following Informix database server publications provide additional
information about the topics that this Guide discusses:

■ Informix database servers and the SQL language are described in
separate Guides, including Informix Guide to SQL: Tutorial, Informix
Guide to SQL: Syntax, and Informix Guide to SQL: Reference.

■ Information about setting up Informix database servers is provided
in the Administrator’s Guide for your Informix database server.

Informix Press, in partnership with Prentice Hall, publishes books about
Informix products. Authors include experts from Informix user groups,
employees, consultants, and customers. Recent titles about INFORMIX-4GL
include:

■ Advanced INFORMIX-4GL Programming, by Art Taylor, 1995.
■ Programming Informix SQL/4GL: A Step-by-Step Approach, by Cathy

Kipp, 1998.
■ Informix Basics, by Glenn Miller, 1998.

Compiling INFORMIX-4GL
Source Files

In This Chapter ... 1-3

Two Implementations of INFORMIX-4GL ... 1-3
Runtime and Compile-Time Requirements .. 1-4
Differences Between the C Compiler and RDS Versions 1-4

Differences in the Programmer’s Environment 1-4
Differences in Commands .. 1-5
Differences in Filename Extensions ... 1-6

The C Compiler Version .. 1-6
The Five-Phase 4GL Compilation Process .. 1-7
The Programmer’s Environment ... 1-9

The INFORMIX-4GL Menu .. 1-9
The MODULE Design Menu .. 1-10
The FORM Design Menu .. 1-15
The PROGRAM Design Menu ... 1-20
The QUERY LANGUAGE Menu ... 1-27

Creating Programs in the Programmer’s Environment 1-27
Creating a New Source Module .. 1-28
Revising an Existing Module ... 1-28
Compiling a Source Module .. 1-29
Linking Program Modules ... 1-30
Executing a Compiled Program .. 1-33

Creating Programs at the Command Line .. 1-33
Creating or Modifying a 4GL Source File ... 1-35
Compiling a 4GL Module .. 1-35
Compiling and Linking Multiple Source Files 1-35
Using the c4gl Script for Compilation ... 1-36
The -globcurs and -localcurs Options ... 1-40
Shared Libraries .. 1-42
Invoking a Compiled 4GL Program at the Command Line 1-46

Program Filename Extensions .. 1-47

Chapter

1

1-2 HCL Informix 4GL Reference Guide

The Rapid Development System .. 1-49

The Programmer’s Environment ... 1-49
The INFORMIX-4GL Menu ... 1-49
The MODULE Design Menu ... 1-50
The FORM Design Menu ... 1-56
The PROGRAM Design Menu ... 1-61
The QUERY LANGUAGE Menu .. 1-68

Creating Programs in the Programmer’s Environment 1-69
Creating a New Source Module .. 1-69
Revising an Existing Module ... 1-70
Compiling a Source Module .. 1-71
Combining Program Modules ... 1-72
Executing a Compiled RDS Program ... 1-74
Invoking the Debugger .. 1-75

Creating Programs at the Command Line .. 1-75
Creating or Modifying a 4GL Source File ... 1-77
Compiling an RDS Source File .. 1-77
Concatenating Multi-Module Programs .. 1-79
Running RDS Programs ... 1-80
Running Multi-Module Programs .. 1-82
Running Programs with the Interactive Debugger 1-82
RDS Programs That Call C Functions ... 1-83
Editing the fgiusr.c File ... 1-84
Creating a Customized Runner ... 1-87
Running Programs That Call C Functions ... 1-90

Program Filename Extensions .. 1-90

Compiling INFORMIX-4GL Source Files 1-3

In This Chapter
This chapter describes how to create INFORMIX-4GL source-code modules,
and how to produce executable 4GL programs from these modules, both at
the operating system prompt and in the Programmer’s Environment.
Procedures to do this are shown for the INFORMIX-4GL C Compiler, as well as
for the INFORMIX-4GL Rapid Development System. These two implementa-
tions of 4GL differ in how they process 4GL source-code modules. This
chapter begins by identifying differences between the two implementations
of 4GL. It then goes on to describe each implementation of 4GL.

Except as otherwise noted, the other chapters and appendixes of this Guide
describe features that are identical in both the C Compiler and the Rapid
Development System implementations of 4GL.

Two Implementations of INFORMIX-4GL
To write a 4GL program, you must first create an ASCII file of 4GL statements
that perform logical tasks to support your application. This chapter explains
the procedures by which you can transform one or more source-code files of
4GL statements into an executable 4GL program. Informix offers two imple-
mentations of the 4GL application development language:

■ The INFORMIX-4GL C Compiler, whose preprocessor generates
extended ESQL/C source code. This code is further processed in
several steps to produce C source code, which is compiled and linked
as object code in an executable command file.

■ The INFORMIX-4GL Rapid Development System (RDS), which uses a
compiler to produce pseudo-machine code (called p-code) in a single
step. You then invoke a runner to execute the p-code version of your
application. For more details, see “Compiling and Linking Multiple
Source Files” on page 1-35.

Runtime and Compile-Time Requirements

1-4 HCL Informix 4GL Reference Guide

Important: This version of the runner or Debugger cannot interpret programs
compiled to p-code by releases of 4GL earlier than Version 7.30. You must first
recompile your source files and form specifications. Similarly, releases of the 4GL
runner or Debugger earlier than Version 7.30 cannot interpret p-code that this
release produces.

Runtime and Compile-Time Requirements
You must set the UNIX environment variable that specifies the pathname to
the function libraries that 4GL requires to compile and execute the 4GL
program. If you are using the Bourne or Korn shell, specify the following:

LD_LIBRARY_PATH=$INFORMIXDIR/lib:$INFORMIXDIR/lib/esql:$INFORMIXDIR/lib/
tools

export LD_LIBRARY_PATH

If you are using the C shell, use these equivalent commands:

setenv LD_LIBRARY_PATH
$INFORMIXDIR/lib:$INFORMIXDIR/lib/esql:$INFORMIXDIR/lib/tools

Important: On some platforms, LD_LIBRARY_PATH has a different name. Please
see the machine-specific notes that are provided with 4GL for the name of this
environment variable on your platform. Earlier releases of 4GL before Version 7.51
required a different setting.

Differences Between the C Compiler and RDS Versions
Both implementations of 4GL use the same 4GL statements and nearly
identical Programmer’s Environments. Because they use different methods
to compile 4GL source files into executable programs, however, there are a
few differences in the user interfaces, as described in sections that follow.

Differences in the Programmer’s Environment
The Programmer’s Environment is a system of menus that supports the
various steps in the process of developing 4GL application programs. The
Drop option on the PROGRAM design menu of the C Compiler is called
Undefine in the Rapid Development System implementation.

Differences Between the C Compiler and RDS Versions

Compiling INFORMIX-4GL Source Files 1-5

The New and Modify options of the PROGRAM design menu display a
different screen form in the two implementations. Both of these screen forms
are illustrated later in this chapter.

The Rapid Development System includes a Debug option on its MODULE
design menu and PROGRAM design menu. This option does not appear in
the C Compiler. (The Debugger is based on p-code, so it can execute only 4GL
programs and modules that have been compiled by the Rapid Development
System.)

The INFORMIX-4GL Interactive Debugger is available as a separate product.

Differences in Commands
The commands you use to enter the Programmer’s Environments, compile
and execute 4GL programs, and build or restore the stores7 demonstration
database vary between implementations of 4GL.

C Compiler RDS Effect of Command

i4gl r4gl Enter Programmer’s Environment

c4gl sfile.4gl fglpc sfile Compile 4GL source file sfile.4gl

xfile.4ge fglgo xfile Execute compiled 4GL program xfile

i4gldemo r4gldemo Create the demonstration database

The C Compiler requires no equivalent command to the fglgo command,
because its compiled object files are executable without a runner. The Rapid
Development System also contains a command-file script to compile and
execute 4GL programs that call C functions or INFORMIX-ESQL/C functions,
as described in “RDS Programs That Call C Functions” on page 1-83.

The C Compiler Version

1-6 HCL Informix 4GL Reference Guide

Differences in Filename Extensions
The differences in filename extensions are as follows.

C Compiler RDS Significance of Extension

.o .4go Compiled 4GL source-code module

.4ge .4gi Executable (runable) 4GL program file

The backup file extensions .4bo and .4be for compiled modules and
programs have the same names in both implementations. These files are not
interchangeable between the two 4GL implementations, however, because
object code produced by a C compiler is different from p-code.

Other filename extensions that are the same in both the C Compiler and the
Rapid Development System designate interchangeable files, if you use both
implementations of 4GL to process the same 4GL source-code module.

The C Compiler Version
This section describes the following aspects of the C compiler version of 4GL:

■ The five steps of the compilation process
■ All the menu options and screen form fields of the Programmer’s

Environment
■ The steps for compiling and executing 4GL programs from the

Programmer’s Environment
■ The equivalent command-line syntax for compiling and executing

4GL programs
■ The filename extensions of 4GL source-code, object, error, and

backup files

The Five-Phase 4GL Compilation Process

Compiling INFORMIX-4GL Source Files 1-7

The Five-Phase 4GL Compilation Process
Versions of 4GL earlier than 6.0 were built on ESQL/C. To make 4GL more
independent of ESQL/C, the compilation sequence requires one or more extra
processes. Figure 1-1 on page 1-8 shows the five compilation phases in
INFORMIX-4GL 6.0 and subsequent release versions. The five phases are as
follows:

1. The i4glc1 preprocessor converts a 4GL source file with .4gl extension
into a file with .4ec extension. It parses the 4GL language and
generates C code to handle function and report definitions, compu-
tations, and function calls. It generates extended ESQL/C statements
to handle forms, menus, input statements, and display statements,
and pure ESQL/C to handle SQL statements and declarations of
variables. i4glc1 is similar to Version 4.12 and earlier fglc, except that
i4glc1 generates a .4ec file instead of a .ec file.

2. The i4glc2 preprocessor translates the extended form, menu, input,
and display statements to pure C code but leaves variable declara-
tions and SQL statements unchanged. i4glc2 accepts a .4ec file
generated by i4glc1 as input and produces a .ec file containing pure
ESQL/C code.

The Five-Phase 4GL Compilation Process

1-8 HCL Informix 4GL Reference Guide

3. The i4glc3 preprocessor is a copy of the ESQL/C compiler. The i4glc3
preprocessor accepts a .ec file (produced by i4glc2 or written as pure
ESQL/C code), and produces a .c file. The declarations and the SQL
statements are mapped to pure C language code.

Figure 1-1
Five-Phase
Compilation

Process

4. The i4glc4 preprocessor converts C code, which may contain non-

ASCII characters in variable names, into de-internationalized names.
This step ensures that defining a record like table.* or a field like
table.column does not produce C code that contains non-ASCII
character in identifiers (because very few C compilers accept non-
ASCII characters in the names of variables).

5. Informix uses the system C compiler to convert the C code generated
by i4glc3 or i4glc4 into object files (a file with .o extension) and
executable programs (a file with .4ge extension).

file.c
i4glc4

C

file.oor
file.4ge

file.ec file.4gl

i4glc1 file.4ec i4glc2
i4glc3

◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊

file.c

The Programmer’s Environment

Compiling INFORMIX-4GL Source Files 1-9

The Programmer’s Environment
The C Compiler provides a series of nested menus, called the Programmer’s
Environment. These menus support the steps of 4GL program development
and keep track of the components of your application. You can invoke the
Programmer’s Environment by entering i4gl at the system prompt.

The INFORMIX-4GL Menu
The i4gl command briefly displays the INFORMIX-4GL banner. Then a menu
appears, called the INFORMIX-4GL menu.

This is the highest menu, from which you can reach any other menu of the
Programmer’s Environment. You have five options:

■ Module. Work on a 4GL program module.
■ Form. Work on a screen form.
■ Program. Specify components of a multi-module program.
■ Query-language. Use an SQL interactive interface, if you have either

INFORMIX-SQL or DB-Access installed on your system. (See the
documentation of these Informix products for details of their use.)

■ Exit. Terminate i4gl and return to the operating system.

The first three options display new menus that are described in the pages that
follow. (You can also press CONTROL-W at any menu to display an on-line help
message that describes your options.) As at any 4GL menu, you can choose
an option in either of two ways:

■ By typing the first letter of the option
■ By using the SPACEBAR or arrow keys to move the highlight to the

option that you choose, and then pressing RETURN

INFORMIX-4GL: Form Program Query-language Exit
Create, modify, or run individual 4GL program modules.

Press CTRL-W for Help

Module

The Programmer’s Environment

1-10 HCL Informix 4GL Reference Guide

The MODULE Design Menu
You can press RETURN or type m or M to choose the Module option of the
INFORMIX-4GL menu. This displays a new menu, called the MODULE design
menu. Use this menu to work on an individual 4GL source-code module.

Use this menu to create and compile source-code modules of a 4GL appli-
cation. (For information on creating and compiling 4GL screen forms, see
“The FORM Design Menu” on page 1-15. For details of how to create and
compile help messages, see the mkmessage utility in Appendix B,
“INFORMIX-4GL Utility Programs.”)

The MODULE design menu supports the following options:

■ Modify. Change an existing 4GL source-code module.
■ New. Create a new source-code module.
■ Compile. Compile a source-code module.
■ Program_Compile. Compile a 4GL application program.
■ Run. Execute a compiled 4GL program module or a multi-module

application program.
■ Exit. Return to the INFORMIX-4GL menu.

Within the Programmer’s Environment, the Exit option returns control to the
higher menu from which you accessed the current menu (or, when you
choose Exit from the INFORMIX-4GL menu, terminates the 4GL session and
returns to the system prompt).

MODULE: New Compile Program_Compile Run Exit
Change an existing 4GL program module.

Press CTRL-W for Help

Modify

The Programmer’s Environment

Compiling INFORMIX-4GL Source Files 1-11

The Modify Option

Choose this option to edit an existing 4GL source-code module. If you choose
this option, 4GL requests the name of the 4GL source-code file to be modified
and then prompts you to specify a text editor. If you have designated a
default editor with the DBEDIT environment variable (which is described in
Appendix D) or if you specified an editor at the Programmer’s Environment
previously in this session, 4GL invokes that editor. The .4gl source file whose
filename you specified is the current file.

When you leave the editor, 4GL displays the MODIFY MODULE menu, with
the Compile option highlighted.

If you press RETURN or type c or C to choose the Compile option, 4GL displays
the COMPILE MODULE menu:

The Object option creates a compiled file with the .o extension but makes no
attempt to link the file with other files.

MODIFY MODULE: Save-and-exit Discard-and-exit
Compile the 4GL module specification.

Press CTRL-W for Help

Compile

COMPILE MODULE: Runable Exit
Create object file only; no linking to occur.

Press CTRL-W for Help

Object

The Programmer’s Environment

1-12 HCL Informix 4GL Reference Guide

The Runable option creates a compiled file with the .4ge extension. 4GL
assumes that the current module is a complete 4GL program, and that no
other module needs to be linked to it. Choose the Runable option if the
current program module is a stand-alone 4GL program. If this is not the case
(that is, if the file is one of several 4GL source-code modules within a multi-
module program), then you should use the Object option instead, and you
must use the PROGRAM design menu to specify all the component modules.

After you choose Object or Runable, a message near the bottom of the screen
will advise you if 4GL issues a compile-time warning or error. If there are
warnings (but no errors), an object file is produced. Choose the Exit option of
the next menu, and then Save-and-exit at the MODIFY MODULE menu, if you
wish to save the executable file without reading the warnings.

Alternatively, you can examine the warning messages by choosing Correct
at the next menu. When you finish editing the .err file that contains the
warnings, you must choose Compile again from the MODIFY MODULE
menu, because the Correct option deletes the executable file.

If there are compilation errors, the following menu appears.

If you choose to correct the errors, an editing session begins on a copy of your
source module with embedded error messages. You do not need to delete the
error messages because 4GL does this for you. Correct your source file, save
your changes, and exit from the editor. The MODIFY MODULE menu
reappears, prompting you to recompile, save, or discard your changes
without compiling.

If you choose not to correct the errors, you are prompted to Save or Discard
the file.

COMPILE MODULE: Exit
Correct errors in the 4GL module.

Press CTRL-W for Help

Correct

The Programmer’s Environment

Compiling INFORMIX-4GL Source Files 1-13

If there are no compilation errors, the MODIFY MODULE menu appears with
the Save-and-Exit option highlighted. Choose this option to save the current
source-code module as a file with extension .4gl, and create an object file with
the same filename, but with the extension .o. If you specified Runable when
you compiled, the executable version is saved with the extension .4ge. The
Discard-and-Exit option discards any changes that were made to your file
after you chose the Modify option.

The New Option

Choose this option to create a new 4GL source-code module.

This option resembles the Modify option, but NEW MODULE is the menu
title, and you must enter a new module name, rather than choose it from a
list.

The filename of the module must be unique among source-code modules of
the same 4GL program, and can include up to 10 characters, not including the
.4gl file extension. If you have not designated an editor previously in this
session or with DBEDIT, you are prompted for an editor. Then an editing
session begins.

MODULE: Modify Compile Program_Compile Run Exit
Create a new 4GL program module.

Press CTRL-W for Help

New

The Programmer’s Environment

1-14 HCL Informix 4GL Reference Guide

The Compile Option

The Compile option enables you to compile an individual 4GL source-code
module.

After you specify the name of a 4GL source-code module to compile, the
screen displays the COMPILE MODULE menu. Its Object, Runable, and Exit
options were described earlier in the discussion of the Modify option.

The Program_Compile Option

The Program_Compile option of the MODULE design menu is the same as
the Compile option of the PROGRAM design menu. This option can compile
and link modules, as described in the program specification database, taking
into account the time when the modules were last updated.

This option is useful after you modify a single module of a complex program,
and need to test it by compiling and linking it with the other modules.

The Run Option

Choose the Run option to begin execution of a compiled 4GL program.

MODULE: Modify New Program_Compile Run Exit
Compile an existing 4GL program module.

Press CTRL-W for Help

Compile

MODULE: Modify New Compile Program_Compile Exit
Execute an existing 4GL program module or application program.

Press CTRL-W for Help

Run

The Programmer’s Environment

Compiling INFORMIX-4GL Source Files 1-15

The RUN PROGRAM screen lists compiled modules and programs, with the
highlight on the module corresponding to the current file, if any has been
specified. Only compiled programs with extension .4ge are listed. If you
compile a program outside the Programmer’s Environment and you want it
to appear in this list, give it the extension .4ge.

If no compiled programs exist, 4GL displays an error message and returns to
the MODULE design menu. You can exit to the maine INFORMIX-4GL menu,
and select the Program option to create the database.

The Exit Option

Choose this option to exit from the MODULE design menu and display the
INFORMIX-4GL menu.

The FORM Design Menu
You can type f or F at the INFORMIX-4GL menu to choose the Form option.
This option displays a menu, called the FORM design menu.

MODULE: Modify New Compile Program_Compile Run
Returns to the INFORMIX-4GL menu.

Press CTRL-W for Help

Exit

FORM: Modify Generate New Compile Exit
Change an existing form specification.

Press CTRL-W for Help

The Programmer’s Environment

1-16 HCL Informix 4GL Reference Guide

You can use this menu to create, modify, and compile screen form specifica-
tions. These define visual displays that 4GL applications can use to query and
modify the information in a database. 4GL form specification files are ASCII
files that are described in Chapter 6, “Screen Forms.”

The FORM design menu supports the following options:

■ Modify. Change an existing 4GL screen form specification.
■ Generate. Create a default 4GL screen form specification.
■ New. Create a new 4GL screen form specification.
■ Compile. Compile an existing 4GL screen form specification.
■ Exit. Return to the INFORMIX-4GL menu.

Readers familiar with INFORMIX-SQL may notice that this resembles the
menu displayed by the Form option of the INFORMIX-SQL main menu.

The Modify Option

The Modify option of the FORM design menu enables you to edit an existing
form specification file. It resembles the Modify option in the MODULE design
menu, because both options are used to edit program modules.

If you choose this option, you are prompted to choose the name of a form
specification file to modify. Source files created at the FORM design menu
have the file extension .per. (If you use a text editor outside of the
Programmer’s Environment to create form specification files, you must give
them the extension .per before you can compile them with the FORM4GL
screen form facility.)

FORM: Generate New Compile Exit
Change an existing form specification.

Press CTRL-W for Help

Modify

The Programmer’s Environment

Compiling INFORMIX-4GL Source Files 1-17

If you have not already designated a text editor in this 4GL session or with
DBEDIT, you are prompted for the name of an editor. Then an editing session
begins, with the form specification source-code file that you specified as the
current file. When you leave the editor, 4GL displays the MODIFY FORM
menu with the Compile option highlighted. Now you can press RETURN to
compile the revised form specification file.

If there are compilation errors, 4GL displays the COMPILE FORM menu.

Press RETURN to choose Correct as your option. An editing session begins
on a copy of the current form, with diagnostic error messages embedded
where the compiler detected syntax errors. 4GL automatically deletes these
messages when you save the file and exit from the editor. After you have
corrected the errors, the MODIFY FORM menu appears again, with the
Compile option highlighted. Press RETURN to recompile. Repeat these steps
until the compiler reports no errors. (If you choose Exit instead of Correct,
you are prompted to Save or Discard the file.)

If there are no compilation errors, you are prompted to save the modified
form specification file and the compiled form, or to discard the changes.
(Discarding the changes restores the version of your form specifications from
before you chose the Modify option.)

MODIFY FORM: Save-and-exit Discard-and-exit
Compile the form specification.

Press CTRL-W for Help

Compile

COMPILE FORM: Exit
Correct errors in the form specification.

Press CTRL-W for Help

Correct

The Programmer’s Environment

1-18 HCL Informix 4GL Reference Guide

The Generate Option

You can type g or G to choose the Generate option. This option creates a
simple default screen form that you can use directly in your program, or that
you can later edit by choosing the Modify option.

When you choose this option, 4GL prompts you to select a database, to choose
a filename for the form specification, and to identify the tables that the form
will access. After you provide this information, 4GL creates and compiles a
form specification file. (This is equivalent to running the -d (default) option
of the form4gl command, as described in “Compiling a Form at the
Command Line” on page 6-87.)

The New Option

The New option of the FORM design menu enables you to create a new screen
form specification.

After prompting you for the name of your form specification file, 4GL places
you in the editor where you can create a form specification file. When you
leave the editor, 4GL transfers you to the NEW FORM menu that is like the
MODIFY FORM menu. You can compile your form and correct it in the same
way.

FORM: Modify New Compile Exit
Generate and compile a default form specification.

Press CTRL-W for Help

Generate

FORM: Modify Generate Compile Exit
Create a new form specification.

Press CTRL-W for Help

New

The Programmer’s Environment

Compiling INFORMIX-4GL Source Files 1-19

The Compile Option

The Compile option enables you to compile an existing form specification
file without going through the Modify option.

4GL compiles the form specification file whose name you specify. If the
compilation fails, 4GL displays the COMPILE FORM menu with the Correct
option highlighted.

The Exit Option

The Exit option restores the INFORMIX-4GL menu.

FORM: Modify Generate New Exit
Compile an existing form specification.

Press CTRL-W for Help

Compile

FORM: Modify Generate New Compile
Returns to the INFORMIX-4GL menu.

Press CTRL-W for Help

Exit

The Programmer’s Environment

1-20 HCL Informix 4GL Reference Guide

The PROGRAM Design Menu
A 4GL program can be a single source-code module that you create and
compile at the MODULE design menu. For applications of greater complexity,
however, it is often easier to create separate 4GL modules. The
INFORMIX-4GL menu includes the Program option to create multi-module
programs. If you choose this option, 4GL searches your DBPATH directories
for the program design database, which stores the names of the objects that are
used to create programs and their build dependencies. (For more information
on the DBPATH environment variable, see Appendix D.)

This program design database describes the component modules and
function libraries of your 4GL program. By default, its name is syspgm4gl,
but you can use the PROGRAM_DESIGN_DBS environment variable to
specify some other name. (For more information on the
PROGRAM_DESIGN_DBS environment variable, see Appendix D.)

If 4GL cannot find this database, you are asked if you want one created. If you
enter y in response, 4GL creates the syspgm4gl database, grants CONNECT
privileges to PUBLIC, and displays the PROGRAM design menu. As database
administrator of syspgm4gl, you can later restrict the access of other users.

If syspgm4gl already exists, the PROGRAM design menu appears.

You can use this menu to create or modify a multi-module 4GL program
specification, to compile and link a program, or to execute a program.

PROGRAM: New Compile Planned Compile Run Drop Exit
Change the compilation definition of a 4GL application program.

Press CTRL-W for Help

Modify

The Programmer’s Environment

Compiling INFORMIX-4GL Source Files 1-21

The PROGRAM design menu supports the following options:

■ Modify. Change an existing program specification.
■ New. Create a new program specification.
■ Compile. Compile an existing program.
■ Planned_Compile. List the steps necessary to compile and link an

existing program.
■ Run. Execute an existing program.
■ Drop. Delete an existing program specification.
■ Exit. Return to the INFORMIX-4GL menu.

You must first use the MODULE design menu and the FORM design menu to
enter and edit the 4GL statements within the component source-code
modules of a 4GL program. Then you can use the PROGRAM design menu to
identify which modules are part of the same application program, and to link
all the modules as an executable command file.

The Modify Option

The Modify option enables you to modify the specification of an existing 4GL
program. (This option is not valid unless at least one program has already
been specified. If none has, you can create a program specification by
choosing the New option from the same menu.)

4GL prompts you for the name of the program specification to be modified. It
then displays a menu and form that you can use to update the information in
the program specification database, as shown in Figure 1-2.

The Programmer’s Environment

1-22 HCL Informix 4GL Reference Guide

MODIFY PROGRAM: 4GL Other Libraries Compile_Options Rename Exit
Edit the 4GL sources list.

Press CTRL-W for Help

Figure 1-2

Example of a Program Specification Entry

Program
[myprog]

4gl Source
[main]

4gl Source Path
[/u/john/appl/4GL

]

[funct] [/u/john/appl/4GL]
[rept] [/u/john/appl/4GL]
[] []
[] []

Other Source
[cfunc]

Ext
[c]

Other Source Path
[/u/john/appl/C

]

[] [] []
[] [] []
[] [] []

Libraries [m] Compile Options []
[] []

The name of the program appears in the Program field. In Figure 1-2 the
name is myprog. You can change this name by choosing the Rename option.
4GL assigns the program name, with the extension .4ge, to the executable
program produced by compiling and linking all the source files and libraries.
(Compiling and linking occurs when you choose the Compile_Options
option, as described later in this section.) In this example, the resulting
executable program would have the name myprog.4ge.

Use the 4GL option to update the entries for the 4gl Source fields and the 4gl
Source Path fields on the form. The five rows of fields under these labels form
a screen array. When you choose the 4GL option, 4GL executes an INPUT
ARRAY statement so you can move and scroll through the array. See the
INPUT ARRAY statement in Chapter 4, “INFORMIX-4GL Statements,” for
information about how to use your function keys to scroll, delete rows, and
insert new rows. (You cannot redefine the function keys, however, as you can
with a 4GL program.)

The Programmer’s Environment

Compiling INFORMIX-4GL Source Files 1-23

The 4GL source program that appears in Figure 1-2 on page 1-22 contains
three modules:

■ One module contains the main program (main.4gl).
■ One module contains functions (funct.4gl).
■ One module contains REPORT statements (rept.4gl).

Each module is located in the directory /u/john/appl/4GL.

If your program includes a module containing only global variables (for
example, global.4gl), you must also list that module in this section.

Use the Other option to include non-4GL source modules or object-code
modules in your program. Enter this information into the three-column
screen array with the headings Other Source, Ext, and Other Source Path.
Enter the filename and location of each non-4GL source-code or object-code
module in these fields. Enter the name of the module in the Other Source
field, the filename extension of the module (for example, ec for an
INFORMIX-ESQL/C module, or c for a C module) in the Ext field, and the full
directory path of the module in the Other Source Path field. The example in
Figure 1-2 includes a file containing C function source-code (cfunc.c) located
in /u/john/appl/C. You can list up to 100 files in this array.

The Libraries option enables you to indicate the names of up to ten special
libraries to link with your program. 4GL calls the C compiler to do the linking
and adds the appropriate -l prefix, so you should enter only what follows the
prefix. The example displayed in Figure 1-2 calls only the standard C math
library.

Use the Compile_Options option to indicate up to ten C compiler options.
Enter this information in the Compile Options field. Do not, however,
specify the -e or -a options of c4gl in this field, because they will cause the
compilation to fail. (See “Creating Programs at the Command Line” on
page 1-33 for more information about the options of the c4gl command.)

The Exit option exits from the MODIFY PROGRAM menu and displays the
PROGRAM design menu.

The Programmer’s Environment

1-24 HCL Informix 4GL Reference Guide

The New Option

Use the New option on the PROGRAM design menu to create a new
specification of the program modules and libraries that make up an
application program. You can also specify any necessary compiler or loader
options.

The submenu screen forms displayed by the New and the Modify options of
the PROGRAM design menu are identical, except that you must first supply
a name for your program when you choose the New option. (4GL displays a
blank form in the NEW PROGRAM menu.) The NEW PROGRAM menu has
the same options as the MODIFY PROGRAM menu, as illustrated earlier.

The Compile Option

The Compile option performs the compilation and linking described in the
program specification database, taking into account the time when each file
was last updated. It compiles only those files that have not been compiled
since they were last modified.

4GL lists each step of the preprocessing and compilation as it occurs. An
example of these messages appears in the illustration of the
Planned_Compile option, next.

PROGRAM: Modify Compile Planned Compile Run Drop Exit
Add the compilation definition of a 4GL application program.

Press CTRL-W for Help

New

PROGRAM: Modify New Planned Compile Run Drop Exit
Compile a 4GL application program.

Press CTRL-W for Help

Compile

The Programmer’s Environment

Compiling INFORMIX-4GL Source Files 1-25

The Planned_Compile Option

Taking into account the time when the various files in the dependency
relationships last changed, the Planned_Compile option prompts for a
program name and displays a summary of the steps that will be executed if
you choose the Compile option. No compilation actually takes place.

PROGRAM: Modify New Compile Planned_Compile Run Drop Exit
Show the planned compile actions of a 4GL application program.

Press CTRL-W for Help

Compiling INFORMIX-4GL sources:
/u/john/appl/4GL/main.4gl
/u/john/appl/4GL/funct.4gl
/u/john/appl/4GL/rept.4gl

Compiling Embedded SQL sources:
Compiling with options:
Linking with libraries:

m
Compiling/Linking other sources:

/u/john/appl/C/cfunc.c

In this instance, changes were made to all the components of the 4GL
program that were listed in Figure 1-2 on page 1-22. This display indicates
that no source-code module has been compiled after the program was
changed.

The Programmer’s Environment

1-26 HCL Informix 4GL Reference Guide

The Run Option

The Run option of the PROGRAM design menu is the same as the Run option
of the MODULE design menu. It displays a list of any compiled programs
(files with the extension .4ge) and highlights the current program, if a
program has been specified. 4GL then executes the program that you choose.

The Drop Option

The Drop option of the PROGRAM design menu prompts you for a program
name and removes the compilation and linking definition of that program
from the syspgm4gl database. This action removes the definition only. Your
program and 4GL modules are not removed.

The Exit Option

The Exit option clears the PROGRAM design menu and restores the
INFORMIX-4GL menu.

PROGRAM: Modify New Compile Planned_Compile
Execute a 4GL application program.

Drop Exit

Press CTRL-W for Help

Run

PROGRAM: Modify New Compile Planned Compile Run Exit
Drop the compilation definition of a 4GL application program.

Press CTRL-W for Help

Drop

Creating Programs in the Programmer’s Environment

Compiling INFORMIX-4GL Source Files 1-27

The QUERY LANGUAGE Menu
The SQL interactive interface is identical to the interactive SQL interface of
INFORMIX-SQL. If you do not have INFORMIX-SQL, 4GL uses the DB-Access
utility. The Query-language option is placed at the top-level menu so you can
test SQL statements without leaving the 4GL Programmer’s Environment.
You can also use this option to create, execute, and save SQL scripts.

Creating Programs in the Programmer’s Environment
To invoke the C Compiler version of the Programmer’s Environment, enter
the following command at the system prompt:

i4gl

After a sign-on message is displayed, the INFORMIX-4GL menu appears.

To create a 4GL application with the C Compiler version of 4GL

1. Create a new source module or revising an existing source module
2. Compile the source module
3. Link the program modules
4. Execute the compiled program

This process is described in the sections that follow.

Creating Programs in the Programmer’s Environment

1-28 HCL Informix 4GL Reference Guide

Creating a New Source Module
This section outlines the procedure for creating a new source module. If your
source module already exists, see “Revising an Existing Module,” next.

To create a source module

1. Choose the Module option of the INFORMIX-4GL menu.
The MODULE design menu is displayed.

2. If you are creating a new .4gl source module, choose the New option
of the MODULE design menu.

3. Enter a name for the new module.
The name must begin with a letter and can include letters, numbers,
and underscores. No more than 10 characters are allowed in this
name, which must be unique among the files in the same directory,
and among any other modules of the same program. 4GL attaches the
extension .4gl to this filename of your new module.

4. Press RETURN.

Revising an Existing Module
If you are revising an existing 4GL source file, use the following procedure.

To modify a source file

1. Choose the Modify option of the MODULE design menu.
The screen lists the names of all the .4gl source modules in the cur-
rent directory and prompts you to choose a source file to edit.

2. Use the arrow keys to highlight the name of a source module and
press RETURN, or enter a filename (with no extension).
If you specified the name of an editor with the DBEDIT environment
variable, an editing session with that editor begins automatically.
Otherwise, the screen prompts you to specify a text editor.
Specify a text editor, or press RETURN for vi, the default editor. Now
you can begin an editing session by entering 4GL statements.

3. When you have finished entering or editing your 4GL code, use an
appropriate editor command to save your source file and end the text
editing session.

Creating Programs in the Programmer’s Environment

Compiling INFORMIX-4GL Source Files 1-29

Compiling a Source Module
The .4gl source file module that you create or modify is an ASCII file that must
be compiled before it can be executed.

To compile a module

1. Choose the Compile option from the MODULE design menu.
2. Choose the type of module that you are compiling, either Runable or

Object.
If the module is a complete 4GL program that requires no other mod-
ules, choose Runable.
If the module is one module of a multi-module 4GL program, choose
Object. This option creates a compiled object file module, with the
same filename, but with extension .o. See also the next section, “Link-
ing Program Modules.”

3. If the compiler detects errors, no compiled file is created, and you are
prompted to fix the problem.
Choose Correct to resume the previous text editing session, with the
same 4GL source code, but with error messages in the file. Edit the file
to correct the error, and choose Compile again. If an error message
appears, repeat this process until the module compiles without error.

4. After the module compiles successfully, choose Save-and-exit from
the menu to save the compiled program.
The MODULE design menu appears again on your screen.

5. If your program requires screen forms, choose Form from the
INFORMIX-4GL menu.
The FORM design menu appears. For information about designing
and creating screen forms, see Chapter 6.

6. If your program displays help messages, you must create and
compile a help file.
Use the mkmessage utility to compile the help file. For more infor-
mation on this utility, see Appendix B.

Creating Programs in the Programmer’s Environment

1-30 HCL Informix 4GL Reference Guide

Linking Program Modules
If your new or modified module is part of a multi-module 4GL program, you
must link all of the modules into a single program file before you can run the
program. If the module that you compiled is the only module in your
program, you are now ready to run your program. (See “Executing a
Compiled Program” on page 1-33.)

To link modules

1. Choose the Program option from the INFORMIX-4GL menu.
The PROGRAM design menu appears.

2. If you are creating a new multi-module 4GL program, choose the
New option; if you are modifying an existing one, choose Modify.
In either case, the screen prompts you for the name of a program.

Creating Programs in the Programmer’s Environment

Compiling INFORMIX-4GL Source Files 1-31

MODIFY PROGRAM: Other Libraries Compile_Options Rename Exit
Edit the 4GL sources list.

Press CTRL-W for Help
Program
[]

4gl Source
[
[
[
[
[

4gl Source Path
] [
]
]
]
]

[
[
[
[

]
]
]
]
]

Other Source
[]
[]
[]
[]

Ext Other Source Path
[] [
[] [
[] [
[] [

]
]
]
]

4GL

3. Enter the name (without a file extension) of the program that you are
modifying, or the name to be assigned to a new program.
Names must begin with a letter, and can include letters, underscores
(_), and numbers. After you enter a valid name, the PROGRAM
screen appears, with your program name in the first field.
If you chose Modify, the names and pathnames of the source-code
modules are also displayed. In that case, the PROGRAM screen
appears below the MODIFY PROGRAM menu, rather than below the
NEW PROGRAM menu. (Both menus list the same options.)

Libraries [] Compile Options []

[] []

Creating Programs in the Programmer’s Environment

1-32 HCL Informix 4GL Reference Guide

4. Identify the files that make up your program:

■ To specify new 4GL modules or edit the list of 4GL modules,
choose the 4GL option.
You can enter or edit the name of a module, without the .4gl file
extension. Repeat this step for every module. If the module is not
in the current directory or in a directory specified by the DBPATH
environment variable, enter the pathname to the directory where
the module resides.

■ To include any modules in your program that are not 4GL source
files, choose the Other option.
This option enables you to specify each filename in the Other
Source field, the filename extension in the Ext field, and the
pathname in the Other Source Path field.
These fields are part of an array that can specify up to 100 other
modules, such as C language source files or object files. If you
have INFORMIX-ESQL/C installed on your system, you can also
specify ESQL/C source modules (with extension .ec) here.

■ To specify any function libraries that should be linked to your
program (besides the 4GL library that is described in Chapter 5,
“Built-In Functions and Operators”), choose the Libraries
option. This option enables you to enter or edit the list of library
names in the Libraries fields.

■ To specify compiler flags, choose the Compile_Options option.
These flags can be entered or edited in the Compile Options
fields.

5. After you have correctly listed all of the modules of your program,
choose the Exit option to return to the PROGRAM design menu.

6. Choose the Compile option of the PROGRAM design menu.
This option produces an executable file that contains all your 4GL
program modules. Its filename is the program name that you speci-
fied, with extension .4ge. The screen lists the names of your .4gl
source modules, and displays the PROGRAM design menu with the
Run option highlighted.

Creating Programs at the Command Line

Compiling INFORMIX-4GL Source Files 1-33

Executing a Compiled Program
After compiling and linking your program modules, you can execute your
program. To do so, choose the Run option from the MODULE or PROGRAM
design menu. This option begins execution of the compiled 4GL program.

Your program can display menus, screen forms, windows, or other screen
output, according to your program logic and any keyboard interaction of the
user with the program.

Creating Programs at the Command Line
You can also create .4gl source files and compiled .o and .4ge files in makefiles
or at the operating system prompt. Figure 1-3 shows the process of creating,
compiling, linking, and running a 4GL program from the command line.

Figure 1-3
Creating and
Running a 4GL

Program

Text
editor

.4gl
source
files

.c, .ec
fIles

.o
object
files

.err
error
file

Preprocessor
and compiler

c4gl

.4ge
compiled
program

file

Creating Programs at the Command Line

1-34 HCL Informix 4GL Reference Guide

In Figure 1-3 the rectangles represent processes controlled by specific
commands, and the circles represent files. Arrows indicate whether a file can
serve as input or output (or both) for a process. This diagram is simplified
and ignores the similar processes by which forms, help messages, and other
components of 4GL applications are compiled, linked, and executed. The
diagram outlines the following process:

■ The cycle begins in the upper-left corner with a text editor, such as vi,
to produce a 4GL source module.

■ A multi-module program can include additional 4GL source files
(.4gl), ESQL/C source files (.ec), C language source files (.c), and
object files (.o).

■ The program module can then be compiled by invoking the c4gl
preprocessor and compiler command. (If error messages result, find
them in the .err file and edit the source file to correct the errors. Then
recompile the corrected source module.)
The resulting compiled .4ge program file is an executable command
file that you can run by entering its name at the system prompt:

filename.4ge

Here filename.4ge specifies your compiled 4GL file.

The following table shows the correspondence between commands and
menu options.

Menu Option Invokes Command

Module New/Modify UNIX System Editor vi

Compile 4GL Preprocessor/C Compiler c4gl

Run 4GL Application filename.4ge

Creating Programs at the Command Line

Compiling INFORMIX-4GL Source Files 1-35

Creating or Modifying a 4GL Source File
Use your system editor or another text editing program to create a .4gl source
file or to modify an existing file. For information on the statements that you
can include in a 4GL program, see Chapter 4, “INFORMIX-4GL Statements.”

Compiling a 4GL Module
You can compile a 4GL source file by entering a command of the form:

c4gl source.4gl -o filename.4ge

The c4gl command compiles your 4GL source-code module (here called
source.4gl) and produces an executable program called filename.4ge. The
complete syntax of the c4gl command appears in the next section.

Compiling and Linking Multiple Source Files
A 4GL program can include several source-code modules. You cannot execute
a 4GL program until you have preprocessed and compiled all the source
modules and linked them with any function libraries that they reference.

You can do all this in a single step at the system prompt by using the c4gl
command, which performs the following processing steps:

1. Invokes the i4glc1 preprocessor, which reads your 4GL source-code
files (extension .4gl) and preprocesses them to produce extended
ESQL/C code (extension .4ec).

2. Invokes the i4glc2 preprocessor, which reads the extended ESQL/C
code and preprocesses it to produce ESQL/C code (extension .ec).

3. Invokes the i4glc3 preprocessor, which reads the ESQL/C code and
preprocesses it to produce C code (extension .c).

4. Invokes the i4glc4 preprocessor, which reads the C code and
compiles it to produce an object file (extension .o).

5. Links the object file to the ESQL/C libraries and to any additional
libraries that you specify in the command line.

You must assign the filename extension .4gl to 4GL source-code modules that
you compile. The resulting .4ge file is an executable version of your program.

Creating Programs at the Command Line

1-36 HCL Informix 4GL Reference Guide

Tip: The ESQL/C source files (with extension .ec), C source files (with extension .c),
and C object files (with extension .o) are intermediate steps in producing an
executable 4GL program. Besides .4gl source files, you can also include files of any
or all of these types when you specify a c4gl command to compile and link the
component modules of a 4GL program.

Using the c4gl Script for Compilation
For compatibility with Informix database servers, releases of INFORMIX-4GL
must take into account that the database, table, and column names might
contain non-ASCII characters. Most C compilers do not accept these in
variable names, but the i4glc4 process now maps the locale-dependent
characters so that C compilers will accept them.

The Programmer’s Environment invokes c4gl to do the compilation, using
the -phase option described in the next section. The Programmer’s
Environment now runs c4gl -phase 12 (i4glc1 and i4glc2) as its own phase 1,
followed by c4gl -phase 34 (i4glc3 and i4glc4) as its own phase 2, and finally
it runs c4gl -phase 5 (the C compiler) as its own phase 3. Because the c4gl
script is now used for the compilations, however, you can also use the
C4GLFLAGS environment variable (see Appendix D) with the Programmer’s
Environment. (This is equivalent to the -a option at the command line.)

c4gl Command

Compiling INFORMIX-4GL Source Files 1-37

c4gl Command
The c4gl command is a shell script that supports the following syntax.

c4gl

Element Description
-args are other arguments for your C compiler.
esql.ec is an ESQL/C source file to compile and link.
obj.o is an object file to link with your 4GL program.
outfile is a name that you assign to the compiled 4GL program.
source.4gl is the name of a 4GL source module and its .4gl extension.
src.c is a C language source file to compile and link.
yourlib is a function library other than the 4GL or ESQL/C libraries.

-ansi

-linenos

-nolinenos -a -anyerr

-nokeep

-keep

-static

-shared -z

-localcurs

-globcurs

esqlc.ec

src.c

obj.o

yourlib

-c

-phase

-e 1 2 3 4 5

-o outfile

-args source.4gl

-V

c4gl Command

1-38 HCL Informix 4GL Reference Guide

The c4gl command passes all C compiler arguments (args) and other C source
and object files (src.c, obj.o) directly to the C compiler (typically cc).

If you omit the -o outfile option, the default filename is a.out.

c4gl Command

Compiling INFORMIX-4GL Source Files 1-39

You can compile 4GL modules separately from your MAIN program block. If
there is no MAIN program block in source.4gl, your code is compiled to
source.o but is not linked with other modules or libraries. You can use c4gl to
link your code with a module that includes the MAIN program block at
another time. (For more information, see “MAIN” on page 4-245.) If you
typically compile with the same options, you can set the C4GLFLAGS
environment variable to supply those options implicitly. See the section
“C4GLFLAGS” on page D-10 for details of this feature.

To display the release version number of your SQL software, use the -V
option. If you specify the -V option, all other arguments are ignored, and no
output files are produced.

The -phase Option
The c4gl compilation command recognizes the five phases of compilation
and can specify which phases to perform. To perform only the preprocessor
steps, with no compilation or linking, include the -e option.

More generally, the -phase option takes an argument, separated from -phase
by one or more blank spaces. This argument can contain any contiguous
sequence of the positive integers in the range from 1 to 5 (that is, 1, 2, 3, 4, 5,
12, 23, 34, 45, 123, 234, 345, 1234, 2345, 12345). These digits specify which
phases of compilation to perform. The -c option implies -phase 12345, and
the -e option implies -phase 1234,.

ANSI Compliance
To instruct the compiler to check all SQL statements for compliance with the
ANSI/ISO standard for SQL syntax, include the -ansi option. If you specify the
-ansi option, it must appear first in your list of c4gl command arguments. The
-ansi option asks for compile-time and runtime warning messages if your
source code includes Informix extensions to the ANSI/ISO standard for SQL.
Compiler warnings and error messages are saved in a file called source.err.

ANSI C compilers generate a warning if line numbers generated from the
compilation are greater than 32767. Line numbers greater than 32767 can
occur in compiled 4GL when the underlying ESQL/C compiler works on a
large program. You can suppress these warnings with the -nolinenos option
of c4gl. You can also explicitly set the default ANSI warnings with the
-linenos option.

c4gl Command

1-40 HCL Informix 4GL Reference Guide

Array Bounds
To have your compiled program check array bounds at runtime, include the
-a option, which must appear on the command line before the source.4gl
filename. The -a option requires additional runtime processing, so you might
prefer to use this option only during development to debug your program.

Error Scope
If you specify the -anyerr option, 4GL sets the status variable after evaluating
expressions. The -anyerr option overrides any WHENEVER ERROR state-
ments in your program.

Intermediate Files
When the compilation completes successfully, c4gl automatically removes
the intermediate files with extensions .c, .ec, and .4ec, which are generated
during the first four phases of compilation. (Some earlier versions of 4GL did
not delete these files.) If the compilation fails or is interrupted, however, all
the intermediate files are left intact.

The -keep option explicitly specifies that the intermediate files be retained.
The default is the -nokeep option, which specifies that the intermediate files
be removed. The .o file is retained if you specify the -c flag, but if an
executable is produced, whether the .o file is kept or removed depends on the
C compiler in use. Some compilers keep the .o file, and others remove it
depending on what else you specify on the command line. If you direct c4gl
to do -phase 1234, the .c file is no longer an intermediate file and it is retained.
Similarly, if you request -phase 1, the .4ec files are no longer intermediate
files, and so they are kept.

c4gl Command

Compiling INFORMIX-4GL Source Files 1-41

Informal Functions
The -z option enables c4gl to compile a program that invokes a single
function with a variable number of arguments without i4glc1 giving an error
at compile time.

Although fglc supports the -z option, some earlier releases of c4gl ignore the
option, so it is not possible to use the standard script to compile programs
that include such functions. (Most developers should not use this option,
because it suppresses error messages for all functions with variable numbers
of arguments.)

The -globcurs and -localcurs Options
In ESQL/C releases prior to Version 5.00, the scope of reference of names of
cursors and prepared statements is local to a single source code module; the
same name can be reused without conflict in different modules. All 4.1x
versions of 4GL used a 4.1x version of ESQL/C. In Version 5.00 and later of
ESQL/C, all cursor and prepared statement names are global by default. Thus
the cursor c_query in filea.ec is the same as the cursor c_query in fileb.ec.

To preserve the legacy behavior, the compiler mangles all cursor and
prepared statement names using the same algorithm in both compilers. See
“CURSOR_NAME()” on page 5-53 for the mangling algorithm. (Contact
Informix Technical Support if any pairs of cursor or prepared statement
names are mangled to the same value. The workaround for mangled-name
conflicts is to change one of the affected cursor or statement names.)

The -globcurs option makes the names of cursors and of prepared objects
global to the entire program. The compilers still require you to declare the
cursor before using it for any other purpose in the module, so this option is
seldom useful. This option might help in debugging, however, because the
cursor names are not modified.

The -localcurs option can override the -globcurs option if that was set in the
C4GLFLAGS environment variable. The -localcurs option makes the names of
cursors and prepared objects local to the module in which they were
declared.

c4gl Command

1-42 HCL Informix 4GL Reference Guide

Using Source Code Debuggers with 4GL Programs
The primary conversion of i4glc4 ensures that the generated C code will
compile when you use 4GL with an NLS or GLS database. In such databases,
the table and column names can contain non-ASCII characters ranging from
128 to 255. You can define variables using the RECORD LIKE table.* to refer to
these names, but C compilers do not normally allow variable names to
contain such characters. To avoid compilation problems with the C compiler,
i4glc4 adjusts the code.

To make the variable names safe, Informix replaces any non-ASCII characters
that occur outside quoted strings (which only happens in variable or function
names) with a mapped value. For values in the range 0xA0 to 0xFF, Informix
uses the hexadecimal value, printed in uppercase, for the character. The
system maps characters in the range 0x80 to 0x8F, to G0 to GF, and values in
the range 0x90 to 0x9F, to H0 to HF. The system converts all ordinary 4GL
identifier names to lowercase to avoid a naming conflict. By the time this
translation occurs, the names of tables and columns in SQL statements are not
altered; quotation marks protect the names passed to the database server. The
i4glc4 compiler does one other translation, and that only inside strings. It
converts y-umlaut (hex 0xFF) into the escape sequence \377, because some C
compilers are not fully internationalized and read this character as end-of-file.

Using the ESQL/C compiler for phase 3 introduces yet another complication
to the compilation process. 4GL uses a different view of the SQLCA record
from ESQL/C. The warning flags are a series of single characters in ESQL/C,
but 4GL code treats them as a string. The ESQL/C compiler automatically
includes the sqlca.h header ahead of any user-defined code such as the 4GL
declaration of the SQLCA record. This process would lead to two discrepant
definitions of the SQLCA record, and the compilations would fail, unless the
C4GL script handled this. To overcome this problem, i4glc1 emits a line that
starts #define I4GL_SQLCA just before the declaration of the SQLCA record.
The i4glc2 and i4glc3 compilers pass this through. If the .c file to be processed
by i4glc2 contains this definition but does not contain the line #define
SQLCA_INCL, C4GL passes an extra flag to i4glc4 and adds the line #define
SQLCA_INCL in front of the C file it translates. The C preprocessor handles this
so that the contents of the sqlca.h header are ignored, leaving just the 4GL
version of the SQLCA record visible to the C compiler.

c4gl Command

Compiling INFORMIX-4GL Source Files 1-43

You can use i4glc4 on its own. It takes the following arguments:

-V prints version information (does not process any files).

-D emits #define SQLCA_INCL as the first line of output.

-s ext creates backup file with the extension .ext.

-o overwrites input files.

By default, i4glc4 writes the converted file or files to standard output, but you
can overwrite the original file using the -o option; you can back up the
original file with any extension you choose; there is no default file extension.
The i4glc4 compiler automatically inserts a period (.) between the name and
the extension. The -o and -s options are mutually exclusive and require a
filename argument. Otherwise, i4glc4 processes any files specified, or
processes standard input if no filenames are provided.

Shared Libraries
Effective with INFORMIX-4GL C Compiler Version 6.0, Informix provides a
shared-library implementation of the 4GL program libraries on many
platforms. The shared library provides reduced memory consumption, faster
program start-up, and substantially reduced program file sizes (thereby
saving file system space).

Shared-library support exists for compiled 4GL only. RDS runners (fglgo or
customized runners) are inherently shared because all active users run the
same executable file. This feature is most useful for those installations that
have a variety of compiled 4GL applications. The 4GL library code exists in
only one place in memory and does not have to be added to each 4GL
executable file. On a system with a large number of 4GL programs, the disk
space and memory savings can be substantial.

Informix does not provide a shared-library implementation on all platforms.
On some platforms, shared libraries are not available and on others the
operating system implementation of shared libraries is not compatible with
the Informix code stream.

c4gl Command

1-44 HCL Informix 4GL Reference Guide

To determine if your platform has a shared-library implementation of 4GL,
look at the C4GL help messages. You can display these messages by running
c4gl with no arguments. A help line for the shared option contains one of
these messages:

-shared Use dynamic linking and shared libraries

or:

-shared (Not available on this platform)

If the former message is the one given for your platform, a 4GL shared-library
implementation is provided, and the -shared option is available for your use.

You can demonstrate the memory and file-size savings for your platform by
compiling the 4GL demonstration program (demo4) with and without the
-shared flag, and comparing the outputs of ls and size for each of the
following programs:

■ i4gldemo
■ c4gl -shared d4_*.4gl -o demo4.shared
■ c4gl d4_*.c -o demo4
■ ls -l demo4*
■ size demo4*

Some platforms provide commands that show the dependencies of a
compiled program on the shared libraries. For instance, on current Sun
platforms, the command is ldd.

For more technical information about shared-library concepts, refer to your
operating system documentation. If your system has man pages (on-line
Guides), the man page for ld might direct you to the appropriate area of
your system documentation.

c4gl Command

Compiling INFORMIX-4GL Source Files 1-45

Using the Shared-Library Facility

To compile a 4GL program for shared-library execution, add the -shared
parameter to your C4GL command line:

c4gl -shared d4_*.4gl -o demo4.shared

You must set the -shared parameter explicitly, because the default is -static,
specifying not to use shared libraries. If you attempt to use the -shared option
on a platform for which no shared-library support exists, a warning message
is displayed to standard error, and compilation continues with the normal
static libraries.

Many platforms require that dynamically linked (shared-library) programs
be compiled with position-independent code production from the C
compiler. The c4gl script automatically takes care of this for you.

Mixing normal and position-independent code can produce errors. When
you compile with the -shared flag, be sure to recompile all modules from the
.4gl source if you had previously compiled any without the -shared flag.

Consider the following example:

c4gl myprog.4gl myutil1.4gl myutil2.4gl -o myprog
c4gl -shared myprog.o myutil1.o myutil2.o -o myprog.shared

Executing this code can produce errors because the objects have not been
compiled with the position-independent option. Alternatively, the following
code is perfectly acceptable, as the myutil objects have been compiled with
position-independent code (if applicable to your platform):

c4gl -shared myprog.4gl myutil1.4gl myutil2.4gl -o myprog.shared
<change myprog.4gl>
c4gl -shared myprog.4gl myutil1.o myutil2.o -o myprog.shared

Important: For some platforms, the system linker (ld) enforces much stricter name-
collision constraints when you use shared libraries. If you have multiple functions in
your program with the same name, you might get errors when compiling with shared
libraries even if the program links successfully with the static libraries. In such a case,
to eliminate the name collision you need to rename one of the functions.

c4gl Command

1-46 HCL Informix 4GL Reference Guide

Technical Details

The name and location of the 4GL shared library varies depending on the
version of 4GL you are using, the naming convention for shared libraries on
your platform, and the ability of the linker on your platform to locate shared
libraries in nonstandard directories. The name of the shared library begins
with lib4gsh and continues with a three-digit version indicator (for example,
604 for the 6.04 release). The suffix is platform dependent; common values
are .so and .a.

In most cases, the 4GL shared library resides with the other 4GL libraries in
the $INFORMIXDIR/lib/tools directory. If your platform does not allow
shared libraries in nonstandard directories, your system administrator might
have to copy the library to a standard system directory such as /lib or /usr/lib.
Look in the machine-specific notes for your platform to see if this is
necessary. Most, if not all, platforms require that any programs that change
their user ID dynamically while running (often referred to as setuid programs)
and use shared libraries can only access those shared libraries in standard
system directories. Therefore, if you have a setuid 4GL program that uses the
4GL shared library, your system administrator must copy or link the 4GL
shared library to a standard directory.

Runtime Requirements

Unlike static-linked 4GL programs, 4GL programs that use the shared library
must have access to that library at runtime. Most platforms provide an
environment variable that instructs the linking program loader of the
operating system to add one or more nonstandard directories to its shared-
library search list. Common examples of names for this variable are
LD_LIBRARY_PATH, LPATH, or SHLIB_PATH. The machine-specific notes
provided with 4GL contain the appropriate variable name for your platform.
To run your shared-library 4GL applications, you must have this variable set
properly in its shell environments. See the following examples.

Shell Command

Bourne or Korn LD_LIBRARY_PATH=$INFORMIXDIR/lib:
$INFORMIXDIR/lib/esql:$INFORMIXDIR/lib/tools

export LD_LIBRARY_PATH

C variants setenv LD_LIBRARY_PATH ${INFORMIXDIR}/lib/tools

c4gl Command

Compiling INFORMIX-4GL Source Files 1-47

Releases of 4GL earlier than Version 7.51 required a different setting. Be sure
that all potential users set their environments accordingly or update global
environment scripts as applicable for their site.

If you develop 4GL applications that are sent out to other systems, the shared
library must be available to those systems also. All platforms that have 4GL
shared-library support also have the 4GL shared library included in corre-
sponding runtime versions of 4GL. Be sure to notify your remote users and
runtime customers of these environment variable needs.

Compiling with c4gl
The simplest case is to compile a single-module 4GL program. The following
command produces an executable program called single.4ge:

c4gl single.4gl -o single.4ge

In the next example, the object files mod1.o, mod2.o, and mod3.o are
previously compiled 4GL modules, and mod4.4gl is a source-code module.
Suppose that you wish to compile and link mod4.4gl with the three object
modules to create an executable program called myappl.4ge. To do so, enter
the following command line:

c4gl mod1.o mod2.o mod3.o mod4.4gl -o myappl.4ge

Invoking a Compiled 4GL Program at the Command Line
As noted in the previous section, a valid c4gl command line produces a .4ge
file (or whatever you specify after the -o argument) that is an executable
command file. To execute your compiled 4GL application program, enter the
executable filename at the system prompt.

For example, to run myappl.4ge (the program in the previous example),
enter the following command:

myappl.4ge

Some 4GL programs might require additional command-line arguments,
such as arguments or filenames, depending on the logic of your application.
See the descriptions of the built-in functions “ARG_VAL()” on page 5-18 and
“NUM_ARGS()” on page 5-99, which can return individual command-line
arguments (and the number of command-line arguments) to a calling context
within the 4GL application.

Program Filename Extensions

Compiling INFORMIX-4GL Source Files 1-47

No special procedures are needed to create, compile, or execute programs
that call C or ESQL/C functions when you use the C Compiler implemen-
tation of 4GL. For more information, see Appendix C, “Using C with
INFORMIX-4GL.”

Program Filename Extensions
Source, executable, error, and backup files generated by 4GL are stored in the
current directory and are labeled with a filename extension. The following
list shows the file extensions for the source, runable, and error files. These
files are produced during the normal course of using the C Compiler.

File Description

file.4gl 4GL source file.

file.o 4GL object file.

file.4ge 4GL executable (runable) file.

file.per FORM4GL source file.

file.frm FORM4GL object file.

file.err FORM4GL source error file.

The last three files do not exist unless you create or modify a screen form
specification file, as described in Chapter 6, “Screen Forms.”

Under normal conditions, 4GL also creates certain backup files and
intermediate files as necessary and deletes them when a compilation is
successful. If something interrupts a compilation, however, you
might find one or more of these backup or intermediate files in your
current directory. For more information, see “Intermediate Files” on
page 1-39.

Warning: INFORMIX-4GL is not designed to support two or more programmers
working concurrently in the same directory. If several developers are working on the
same 4GL application, make sure that they do their work in different directories.

Program Filename Extensions

1-48 HCL Informix 4GL Reference Guide

The following table identifies some backup and intermediate files that can be
produced when you compile 4GL code to C code from the Programmer’s
Environment.

File Description

file.4bl 4GL source backup file, created during modification and compilation of
.4gl program modules

file.4bo Object backup file, created during compilation of .o program modules

file.4be Object backup file, created during compilation of .4ge program modules

file.err 4GL source error file, created when an attempt to compile a module fails.
The file contains 4GL source code, as well as any compiler syntax error
or warning messages.

file.ec Intermediate source file, created during the normal course of compiling
a 4GL module.

file.c Intermediate C file, created during the normal course of compiling a
4GL module.

file.erc 4GL object error file, created when an attempt to compile or to link a
non-4GL source-code or object module fails. The file contains 4GL
source code and annotated compiler errors.

file.4ec Intermediate output of the i4glc1 preprocessor, containing extended
ESQL/C statements as input for the i4glc2 preprocessor.

file.pbr FORM4GL source backup file

file.fbm FORM4GL object backup file

During the compilation process, 4GL stores a backup copy of the file.4gl
source file in file.4bl. The time stamp is modified on the (original) file.4gl
source file, but not on the backup file.4bl file. In the event of a system crash,
you might need to replace the modified file.4gl file with the backup copy
contained in the file.4bl file.

The Programmer’s Environment does not allow you to begin modifying a
.4gl or .per source file if the corresponding backup file already exists in the
same directory. After an editing session terminates abnormally, for example,
you must delete or rename any backup file before you can resume editing
your 4GL module or form from the Programmer’s Environment.

The Rapid Development System

Compiling INFORMIX-4GL Source Files 1-49

The Rapid Development System
This section describes the following aspects of the Rapid Development
System version of 4GL:

■ All the menu options and screen form fields of the RDS
Programmer’s Environment

■ The steps for compiling and executing 4GL programs from the menus
of the Programmer’s Environment

■ The equivalent command-line syntax
■ The filename extensions of 4GL source-code, object, error, and

backup files

The Programmer’s Environment
The Rapid Development System provides a series of menus called the
Programmer’s Environment. These menus support the steps of 4GL program
development and keep track of the components of your application. You can
invoke the Programmer’s Environment by entering r4gl at the system
prompt.

The INFORMIX-4GL Menu
The r4gl command briefly displays the INFORMIX-4GL banner and sign-on
message. The INFORMIX-4GL menu appears.

INFORMIX-4GL: Form Program Query-language Exit
Create, modify or run individual 4GL program modules.

Press CTRL-W for Help

Module

The Programmer’s Environment

1-50 HCL Informix 4GL Reference Guide

This is the highest menu, from which you can reach any other menu of the
Programmer’s Environment. You have five options:

■ Module. Work on an INFORMIX-4GL program module.
■ Form. Work on a screen form.
■ Program. Specify components of a multi-module program.
■ Query-language. Use an SQL interactive interface, if you have either

INFORMIX-SQL or DB-Access installed on your system. (See the
documentation of these Informix products for details of their use.)

■ Exit. Return to the operating system.

The first three options display new menus that are described in the pages that
follow. (You can also press CONTROL-W at any menu to display an on-line help
message that describes your options.) As at any 4GL menu, you can choose
an option in either of two ways:

■ By typing the first letter of the option.
■ By using the SPACEBAR or arrow keys to move the highlight to the

option that you choose, and then pressing RETURN.

The MODULE Design Menu
You can press RETURN or type m or M to choose the Module option of the
INFORMIX-4GL menu. This option displays a new menu, called the MODULE
design menu. Use this menu to work on an individual 4GL source-code file.

MODULE: New Compile Program Compile Run Debug Exit
Change an existing 4GL program module.

Press CTRL-W for Help

Modify

The Programmer’s Environment

Compiling INFORMIX-4GL Source Files 1-51

The MODULE design menu supports the following options:

■ Modify. Change an existing 4GL source-code module.
■ New. Create a new 4GL source-code module.
■ Compile. Compile an existing 4GL source-code module.
■ Program_Compile. Compile a 4GL application program.
■ Run. Execute a compiled 4GL module or multi-module application

program.
■ Debug. Invoke the INFORMIX-4GL Interactive Debugger to examine

an existing 4GL program module or application program (if you have
the Debugger product installed on your system).

■ Exit. Return to the INFORMIX-4GL menu.

As in all of the menus of the Programmer’s Environment except for the
INFORMIX-4GL menu, the Exit option returns control to the higher menu
from which you accessed the current menu (or, when you choose Exit from
the INFORMIX-4GL menu, terminates the 4GL session and returns to the
system prompt).

You can use these options to create and compile source-code modules of a
4GL application. (For information on creating 4GL screen forms, see “The
FORM Design Menu” on page 1-56. For information on creating and
compiling programmer-defined help messages for a 4GL application, see the
description of the mkmessage utility in Appendix B.)

The Modify Option

Choose this option to edit an existing 4GL source-code module. You are
prompted for the name of the 4GL source-code file to modify and the text
editor to use. If you have designated a default editor with the DBEDIT
environment variable (see Appendix D, “Environment Variables”) or named
an editor previously in this session at the Programmer’s Environment, 4GL
invokes that editor. The .4gl source file whose filename you specified is the
current file.

The Programmer’s Environment

1-52 HCL Informix 4GL Reference Guide

When you leave the editor, 4GL displays the MODIFY MODULE menu, with
the Compile option highlighted.

If you press RETURN or type c or C to choose the Compile option, 4GL displays
the COMPILE MODULE menu.

The Object option creates a file with a .4go extension. The Runable option
creates a file with a .4gi extension. Choose the Runable option if the current
program module is a stand-alone 4GL program. If this is not the case (that is,
if the file is one of several 4GL source-code modules within a multi-module
program), you should use the Object option instead, and you must use the
PROGRAM design menu to specify all the component modules.

After you choose Object or Runable, a message near the bottom of the screen
advises you if 4GL issues a compile-time warning or error. If there are
warnings (but no errors), a p-code file is produced. Choose the Exit option of
the next menu, and then Save-and-exit at the MODIFY MODULE menu, if you
prefer to save the p-code file without reading the warnings.

Alternatively, you can examine the warning messages by choosing Correct at
the next menu. When you finish editing the .err file that contains the
warnings, you must choose Compile again from the MODIFY MODULE
menu, because the Correct option deletes the p-code file.

MODIFY MODULE: Save-and-exit Discard-and-exit
Compile the 4GL module specification.

Press CTRL-W for Help

Compile

COMPILE MODULE: Runable Exit
Create object file (.4go suffix).

Press CTRL-W for Help

Object

The Programmer’s Environment

Compiling INFORMIX-4GL Source Files 1-53

If there are compilation errors, the following menu appears.

If you choose to correct the errors, an editing session begins on a copy of your
source module with embedded error messages. (You do not need to delete
error messages, because 4GL does this for you.) Correct your source file, save
your changes, and exit from the editor. The MODIFY MODULE menu
reappears, prompting you to recompile, save, or discard your changes
without compiling.

If there are no compilation errors, the MODIFY MODULE menu appears with
the Save-and-Exit option highlighted. If you choose this option, 4GL saves
the current source-code module as a disk file with the filename extension .4gl,
and saves the compiled version as a file with the same filename, but with the
extension .4go or .4gi. If you choose the Discard-and-Exit option, 4GL
discards any changes that were made to your file after you chose the Modify
option.

The New Option

Choose this option to create a new 4GL source-code module.

COMPILE MODULE: Exit
Correct errors in the 4GL module.

Press CTRL-W for Help

Correct

MODULE: Modify Compile Program Compile Run Debug Exit
Create a new 4GL program module.

Press CTRL-W for Help

New

The Programmer’s Environment

1-54 HCL Informix 4GL Reference Guide

The New option resembles the Modify option, but NEW MODULE is the
menu title, and you must enter a new module name, rather than choose it
from a list. If you have not designated an editor previously in this session or
with DBEDIT, you are prompted for the name of an editor. Then an editing
session begins.

The Compile Option

The Compile option enables you to compile an individual 4GL source-code
module without first choosing the Modify option.

After you specify the name of a 4GL source-code module to compile, the
screen displays the COMPILE MODULE menu. For information on the
COMPILE MODULE menu options, see “The Modify Option” on page 1-51.

The Program_Compile Option

The Program_Compile option of the MODULE design menu is the same as
the Compile option of the PROGRAM design menu (see “The Compile
Option” on page 1-66). The Program_Compile option enables you to compile
and combine modules as described in the program specification database,
taking into account the time when the modules were last updated. This
option is useful when you have just modified a single module of a complex
program and wish to test it by compiling it with the other modules.

MODULE: Modify New Program Compile Run Debug Exit
Compile an existing 4GL program module.

Press CTRL-W for Help

Compile

The Programmer’s Environment

Compiling INFORMIX-4GL Source Files 1-55

The Run Option

Choose this option to begin execution of a compiled program.

The RUN PROGRAM screen presents a list of compiled modules and
programs, with the highlight on the module corresponding to the current file,
if any has been specified. Compiled programs must have the extension .4gi
to be included in the list. If you compile a module with the extension .4go,
you can run it by typing the filename and extension at the prompt. If no
compiled programs exist, 4GL displays an error message and restores the
MODULE design menu.

The Debug Option

Choose this option to use the Debugger to analyze a program. This option is
implemented only if you have separately purchased and installed the
Debugger on your system.

If you have the Debugger product, refer to the Guide to the INFORMIX-4GL
Interactive Debugger for more information about this option.

MODULE: Modify New Compile Program Compile Debug Exit
Execute an existing 4GL program module or application program.

Press CTRL-W for Help

Run

MODULE: Modify New Compile Program_Compile Run
Returns to the INFORMIX-4GL menu.

Exit

Press CTRL-W for Help

Debug

The Programmer’s Environment

1-56 HCL Informix 4GL Reference Guide

The Exit Option

Choose this option to exit from the MODULE design menu and display the
INFORMIX-4GL menu.

The FORM Design Menu
You can type f or F at the INFORMIX-4GL menu to choose the Form option.
This option replaces the INFORMIX-4GL menu with a new menu, called the
FORM design menu.

You can use this menu to create, modify, and compile screen form specifica-
tions. These specifications define visual displays that 4GL applications can
use to query and modify the information in a database. 4GL screen form
specifications are ASCII files that are described in Chapter 6.

MODULE: Modify New Compile Program_Compile Run Debug
Returns to the INFORMIX-4GL menu.

Press CTRL-W for Help

Exit

FORM: Generate New Compile Exit
Change an existing form specification.

Press CTRL-W for Help

Modify

The Programmer’s Environment

Compiling INFORMIX-4GL Source Files 1-57

The FORM design menu supports the following options:

■ Modify. Change an existing 4GL screen form specification.
■ Generate. Create a default 4GL screen form specification.
■ New. Create a new 4GL screen form specification.
■ Compile. Compile an existing 4GL screen form specification.
■ Exit. Return to the INFORMIX-4GL menu.

If you are familiar with the menu system of INFORMIX-SQL, you might notice
that this menu resembles the menu displayed by the Form option of the
INFORMIX-SQL main menu.

For descriptions of the usage and statement syntax of 4GL screen form
specifications, see Chapter 6.

The Modify Option

The Modify option of the FORM design menu enables you to edit an existing
form specification file. It resembles the Modify option in the MODULE design
menu because both options are used to edit program modules.

If you choose this option, you are prompted to choose the name of a form
specification file to modify. Source files created at the FORM design menu (or
at the command line by the form4gl screen form facility) have the file
extension .per.

FORM: Generate New Compile Exit
Change an existing form specification.

Press CTRL-W for Help

Modify

The Programmer’s Environment

1-58 HCL Informix 4GL Reference Guide

If you have not already designated a text editor in this 4GL session or with
DBEDIT, you are prompted for the name of an editor. Then an editing session
begins, with the form specification source-code file that you specified as the
current file. When you leave the editor, 4GL displays the MODIFY FORM
menu with the Compile option highlighted.

Now you can press RETURN to compile the revised form specification file. If
the compiler finds errors, the COMPILE FORM menu appears.

Press RETURN to choose Correct as your option. An editing session begins on
a copy of the current form, with diagnostic error messages embedded where
the compiler detected errors. 4GL deletes these messages when you save the
edited file and exit from the editor. After you correct the errors, the MODIFY
FORM menu appears again, with the Compile option highlighted. Press
RETURN to recompile.

If there are no compilation errors, you are prompted to either save the
modified form specification file and the compiled form, or discard the
changes. (Discarding the changes restores the version of your form
specifications from immediately before you chose the Modify option.)

MODIFY FORM: Save-and-exit Discard-and-exit
Compile the form specification.

Press CTRL-W for Help

Compile

COMPILE FORM: Exit
Correct errors in the form specification.

Press CTRL-W for Help

Correct

The Programmer’s Environment

Compiling INFORMIX-4GL Source Files 1-59

The Generate Option

You can type g or G to choose the Generate option. This option creates a
simple default screen form for use directly in your 4GL program, or for you to
edit later by choosing the Modify option.

When you choose this option, 4GL prompts you to choose a database, to
choose a filename for the form specification, and to identify the tables that the
form will access. After you provide this information, 4GL creates and
compiles a form specification file. This process is equivalent to running the -d
(default) option of the form4gl command, as described in “Compiling a Form
at the Command Line” on page 6-87.

The New Option

The New option of the FORM design menu enables you to create a new screen
form specification.

After prompting you for the name of your form specification file, 4GL places
you in the editor where you can create a form specification file. When you
leave the editor, 4GL transfers you to the NEW FORM menu that is like the
MODIFY FORM menu. You can compile your form and correct it in the same
way.

FORM: Modify New Compile Exit
Generate and compile a default form specification.

Press CTRL-W for Help

Generate

FORM: Modify Generate New Compile Exit
Create a new form specification.

Press CTRL-W for Help

The Programmer’s Environment

1-60 HCL Informix 4GL Reference Guide

The Compile Option

The Compile option enables you to compile an existing form specification
file without going through the Modify option.

4GL prompts you for the name of the form specification file and then
performs the compilation. If the compilation is not successful, 4GL displays
the COMPILE FORM menu with the Correct option highlighted.

The Exit Option

The Exit option clears the FORM design menu from the screen.

FORM: Modify Generate New Exit
Compile an existing form specification.

Press CTRL-W for Help

Compile

FORM: Modify Generate New Compile
Returns to the INFORMIX-4GL menu.

Press CTRL-W for Help

Exit

The Programmer’s Environment

Compiling INFORMIX-4GL Source Files 1-61

Choosing this option restores the INFORMIX-4GL menu.

The PROGRAM Design Menu
A 4GL program can be a single source-code module that you create and
compile at the MODULE design menu. For applications of greater complexity,
however, it is often easier to develop and maintain a 4GL program that
includes several modules. The INFORMIX-4GL menu includes the Program
option so that you can create multiple-module programs. When you choose
this option, 4GL searches your DBPATH directories (as described in
Appendix D) for the program design database, called syspgm4gl. This
database stores the names of objects that are used to create 4GL programs,
and their build dependencies.

If 4GL cannot find this database, you are asked if you want one created. If you
enter y in response, 4GL creates the syspgm4gl database, grants CONNECT
privileges to PUBLIC, and displays the PROGRAM design menu. As Database
Administrator of syspgm4gl, you can later restrict the access of other users.

If syspgm4gl already exists, the PROGRAM design menu appears.

You can use this menu to create or modify a multi-module 4GL program
specification, or to compile, execute, or analyze a program.

INFORMIX-4GL: Form Program Query-language Exit
Create, modify or run individual 4GL program modules.

Press CTRL-W for Help

Module

PROGRAM:
Exit

New Compile Planned Compile Run Debug Undefine

Change the compilation definition of a 4GL application program.

Press CTRL-W for Help

Modify

The Programmer’s Environment

1-62 HCL Informix 4GL Reference Guide

The PROGRAM design menu supports the following eight options:

■ Modify. Change an existing program specification.
■ New. Create a new program specification.
■ Compile. Compile an existing program.
■ Planned_Compile. Display the steps to compile an existing

program.
■ Run. Execute an existing program.
■ Debug. Invoke the Debugger.
■ Undefine. Delete an existing program specification.
■ Exit. Return to the INFORMIX-4GL menu.

You must first use the MODULE design menu and FORM design menu to
enter and edit the 4GL statements within the component source-code
modules of a 4GL program. Then you can use the PROGRAM design menu to
identify which modules are part of the same application program, and to
combine all the 4GL modules in an executable program.

The Programmer’s Environment

Compiling INFORMIX-4GL Source Files 1-63

MODIFY PROGRAM: Globals Other Program Runner Rename Exit
Edit the 4GL sources list.

Press CTRL-W for Help
Program [myprog]
Runner [fglgo] Runner Path [
Debugger [fgldb] Debugger Path [

]
]

4GL

The Modify Option

The Modify option enables you to modify the specification of an existing 4GL
program. (This option is not valid unless at least one program has already
been specified. If none has, you can create a program specification by
choosing the New option from the same menu.) 4GL prompts you for the
name of the program specification that you wish to modify. It then displays
a screen and menu that you can use to update the information in the program
specification database, as shown in Figure 1-4.

Figure 1-4
Example of a

Program
Specification Entry

4gl Source 4gl Source Path

[main] [/u/john/appl/4GL]
[funct] [/u/john/appl/4GL]
[rept] [/u/john/appl/4GL]
[] []
[] []

Global Source Global Source Path

[] []
[] []

Other .4go
[obj

]

Other .4go Path
[

]

[] []

The name of the program appears in the Program field. In Figure 1-4 this
name is myprog. You can change the name by choosing the Rename option.
The program name, with extension .4gi, is assigned to the program produced
by compiling and combining all the source files. (Compiling and combining
occurs when you choose the Compile option, as described in “The Compile
Option” on page 1-66, or the Program_Compile option of the MODULE
design menu.) In this case, the runable program would have the name
myprog.4gi.

The Programmer’s Environment

1-64 HCL Informix 4GL Reference Guide

The 4GL option enables you to update the entries for the 4gl Source and 4gl
Source Path fields. The five rows of fields under these labels form a screen
array. If you choose the 4GL option, 4GL executes an INPUT ARRAY statement
so that you can move through the array and scroll for up to a maximum of
100 entries.

The INPUT ARRAY statement description in Chapter 4 explains how to use
function keys to scroll, delete rows, and insert new rows. (You cannot
redefine function keys, however, as you can with a 4GL program.)

In the example shown in Figure 1-4, the 4GL source program has been broken
into three modules:

■ One module contains the main program (main.4gl).
■ One module contains functions (funct.4gl).
■ One module contains REPORT statements (rept.4gl).

These modules are all located in the directory /u/john/appl/4GL. If a module
contains only global variables, you can list it here or in the Global Source
array.

The Globals option enables you to update the Global Source array. If you use
the Global Source array to store a globals module, any modification of the
globals module file causes all 4GL modules to be recompiled when you
choose the Compile option.

The Other option enables you to update the entries for the Other .4go and
Other .4go Path fields. This is where you specify the name and location of
other 4GL object files (.4go files) to include in your program. Do not specify
the filename extensions. You can list up to 100 files in this array.

The Program_Runner option enables you to specify the name and location of
the p-code runner to execute your program. You can run 4GL programs with
fglgo (the default) or with a customized p-code runner. A customized p-code
runner is an executable program that you create to run 4GL programs that call
C functions. (See “RDS Programs That Call C Functions” on page 1-83.) If you
do not modify the Runner field, your program is executed by fglgo when
you choose the Run option from the PROGRAM design menu.

The Programmer’s Environment

Compiling INFORMIX-4GL Source Files 1-65

The MODIFY PROGRAM screen form contains two additional fields labeled
Debugger and Debugger Path. If you have the Debugger, you can also use
the Program_Runner option to enter the name of a customized debugger. See
“RDS Programs That Call C Functions” on page 1-83 for information about
the use of a customized debugger. For the procedures to create a customized
debugger, refer to Appendix C of the Guide to the INFORMIX-4GL Interactive
Debugger, which includes an example.

The Exit option of the MODIFY PROGRAM menu returns you to the
PROGRAM design menu.

The New Option

The New option of the PROGRAM design menu enables you to create a new
specification of the program modules and libraries that make up the desired
application program.

The filename of the module must be unique among source-code modules of
the same 4GL program, and can include up to ten characters, not including
the .4gl file extension. The New option is identical to the Modify option,
except that you must first supply a name for your program. 4GL then displays
a blank form with a NEW PROGRAM menu that has the same options as the
MODIFY PROGRAM menu.

PROGRAM: Modify Compile Planned Compile Run Debug Undefine Exit
Add the compilation definition of a 4GL application program.

Press CTRL-W for Help

New

The Programmer’s Environment

1-66 HCL Informix 4GL Reference Guide

Planned Compile

The Compile Option

The Compile option compiles and combines the modules listed in the
program specification database, taking into account the time when files were
last updated. 4GL compiles only those files that have been modified after they
were last compiled, except in the case where you have modified a module
listed in the Global Source array. In that case, all files are recompiled.

The Compile option produces a runable p-code file with a .4gi extension. 4GL
lists each step of the compilation as it occurs.

The Planned_Compile Option

Taking into account the time of last change for the various files in the
dependency relationships, the Planned_Compile option prompts for a
program name and displays a summary of the steps that will be executed if
you choose Compile. No compilation actually takes place.

PROGRAM: Modify New Compile Run Debug Undefine Exit
Show the planned compile actions of a 4GL application program.

Press CTRL-W for Help

Compiling INFORMIX-4GL sources:
/u/john/appl/4GL/main.4gl
/u/john/appl/4GL/funct.4gl
/u/john/appl/4GL/rept.4gl

Linking other objects:
/u/john/appl/Com/obj.4go

If you have made changes in all the components of the program listed in
Figure 1-4 on page 1-63 since the last time that they were compiled, 4GL
displays the previous screen.

PROGRAM: Modify New Planned Compile Run Debug Undefine Exit
Compile a 4GL application program.

Press CTRL-W for Help

Compile

The Programmer’s Environment

Compiling INFORMIX-4GL Source Files 1-67

The Run Option

Choose the Run option to execute a compiled program.

The screen lists any compiled programs (files with the extension .4gi) and
highlights the current program, if one has been specified. This option
resembles the Run option of the MODULE design menu.

Although .4go files are not displayed, you can also enter the name and
extension of a .4go file. Whatever compiled program you choose is executed
by fglgo or by the runner that you specified in the Runner field of the
Program Specification screen. This screen was illustrated earlier, in the
description of the MODIFY PROGRAM menu.

The Debug Option

The Debug option works like the Run option but enables you to examine a
4GL program with the Debugger. This option is not implemented unless you
have purchased the Debugger.

PROGRAM: Modify New Compile Planned_Compile
Execute a 4GL application program

Debug Undefine Exit

Press CTRL-W for Help

Run

PROGRAM: Modify New Compile Planned_Compile Run Undefine Exit
Drop the compilation definition of a 4GL application program.

Press CTRL-W for Help

Debug

The Programmer’s Environment

1-68 HCL Informix 4GL Reference Guide

The Undefine Option

The Undefine option of the PROGRAM design menu prompts you for a
program name and removes the compilation definition of that program from
the syspgm4gl database. This action removes the definition only. Your
program and 4GL modules are not removed.

The Exit Option

The Exit option clears the PROGRAM design menu from the screen and
restores the INFORMIX-4GL menu.

The QUERY LANGUAGE Menu
The SQL interactive interface is identical to the interactive SQL interface
of INFORMIX-SQL, if you have separately purchased and installed the
INFORMIX-SQL product on your system. If you have not, this option invokes
the DB-Access utility, which is provided with some Informix databases, if 4GL
can locate the executable DB-Access file.

The Query-language option is placed at the top-level menu so that you can
test SQL statements without leaving the Programmer’s Environment. You can
also use this option to create, execute, and save SQL scripts.

PROGRAM: Modify New Compile Planned_Compile Run Debug
Drop the compilation definition of a 4GL application program.

Exit

Press CTRL-W for Help

Undefine

Creating Programs in the Programmer’s Environment

Compiling INFORMIX-4GL Source Files 1-69

Creating Programs in the Programmer’s Environment
Enter the following command at the system prompt to invoke the
Programmer’s Environment:

r4gl

After a sign-on message, the INFORMIX-4GL menu appears.

Creating a 4GL application with the Rapid Development System requires the
following steps:

1. Creating a new source module or revising an existing source module
2. Compiling the source module
3. Linking the program modules
4. Executing the compiled program

This process is described in the sections that follow.

Creating a New Source Module
This section outlines the procedure for creating a new module. If your source
module already exists but needs to be modified, skip ahead to the next
section, “Revising an Existing Module.”

To create a source module

1. Choose the Module option of the INFORMIX-4GL menu by pressing
M or by pressing RETURN.
The MODULE design menu is displayed.

2. If you are creating a new .4gl source module, press N to choose the
New option of the MODULE design menu.

3. Enter a name for the new module.
The name must begin with a letter, and can include letters, numbers,
and underscores. The name must be unique among the files in the
same directory, and among the other program modules, if it will be
part of a multi-module program. 4GL attaches the extension .4gl to
this identifier, as the filename of your new source module.

4. Press RETURN.

Creating Programs in the Programmer’s Environment

1-70 HCL Informix 4GL Reference Guide

Revising an Existing Module
If you are revising an existing 4GL source file, use the following procedure.

To modify a source file

1. Choose the Modify option of the MODULE design menu.
The screen lists the names of all the .4gl source modules in the cur-
rent directory and prompts you to choose a source file to edit.

2. Use the arrow keys to highlight the name of a source module and
press RETURN, or enter a filename (with no extension).
If you specified a default editor with the DBEDIT environment vari-
able, an editing session begins automatically. Otherwise, the screen
prompts you to specify a text editor.
Specify the name of a text editor, or press RETURN for vi, the default
editor. Now you can begin an editing session by entering 4GL state-
ments. (Chapters that follow describe 4GL statements and
expressions, as well as built-in functions and operators.)

3. When you have finished entering or editing your 4GL code, use an
appropriate editor command to save your source file and end the text
editing session.

Creating Programs in the Programmer’s Environment

Compiling INFORMIX-4GL Source Files 1-71

Compiling a Source Module
The .4gl source file module that you create or modify is an ASCII file that must
be compiled before it can be executed.

To compile a module

1. Choose the Compile option from the MODULE design menu.
2. Select the type of module that you are compiling, either Object or

Runable.
If the module is a complete 4GL program that requires no other mod-
ules, choose Runable. This option creates a compiled p-code version
of your program module, with the same filename, but with the exten-
sion .4gi.
If the module is one module of a multi-module 4GL program, choose
Object. This creates a compiled p-code version of your program
module, with the same filename, but with the extension .4go. For
more information, see “Combining Program Modules” on page 1-72.

3. If the compiler detects errors, no compiled file is created, and you are
prompted to fix the problem.
Choose Correct to resume the previous text editing session, with the
same 4GL source code, but with error messages in the file. Edit the file
to correct the error, and choose Compile again. If an error message
appears, repeat this process until the module compiles without error.

4. After the module compiles successfully, choose Save-and-exit from
the menu to save the compiled program.
The MODULE design menu appears again on your screen.

5. If your program requires screen forms, choose Form from the
INFORMIX-4GL menu to display the FORM design menu. For infor-
mation about designing and creating screen forms, see Chapter 6.

6. If your program displays help messages, you must create and
compile a help file.
Use the mkmessage utility to compile the file. For more information
about this utility, see Appendix B.

Creating Programs in the Programmer’s Environment

1-72 HCL Informix 4GL Reference Guide

Important: This version of the runner or Debugger cannot interpret programs
compiled to p-code by releases of 4GL earlier than Version 7.30. You must first
recompile your source files and form specifications. Similarly, releases of the 4GL
runner or Debugger earlier than Version 7.30 cannot interpret p-code that this
release produces.

Combining Program Modules
If your new or modified module is part of a multi-module 4GL program, you
must combine all of the modules into a single program file before you can run
the program. If the module that you compiled is the only module in your
program, you are now ready to run your program. (For more information, see
“Executing a Compiled RDS Program” on page 1-74.)

Creating Programs in the Programmer’s Environment

Compiling INFORMIX-4GL Source Files 1-73

NEW PROGRAM: 4GL Globals Other Program_Runner Rename Exit
Edit the 4GL sources list.

Press CTRL-W for Help
Program [
Runner [fglgo

]
Debugger[fgldb

]

]
] Runner Path [

] Debugger Path [

4gl Source 4gl Source Path

Global Source Global Source Path

To combine modules

1. Choose the Program option from the INFORMIX-4GL menu.
The PROGRAM design menu appears.

2. If you are creating a new multi-module 4GL program, choose the
New option; if you are modifying an existing one, choose Modify.
In either case, the screen prompts you for the name of a program.

3. Enter the name (without a file extension) of the program that you are
modifying, or the name to be assigned to a new program.
Names must begin with a letter, and can include letters, underscores
(_) symbols, and numbers. After you enter a valid name, the PRO-
GRAM screen appears, with your program name in the first field.
If you chose Modify, the names and pathnames of the source-code
modules are also displayed. The PROGRAM screen appears below the
MODIFY PROGRAM menu, rather than below the NEW PROGRAM
menu. (Both menus list the same options.)

[] []
[] []
[] []
[] []
[] []

[] []
[] []

Other .4go
[

Other .4go Path
] [

]

[] []

Creating Programs in the Programmer’s Environment

1-74 HCL Informix 4GL Reference Guide

4. Identify the files that make up your program:

■ To specify new 4GL modules or edit the list of 4GL modules,
choose the 4GL option.
You can enter or edit the name of a module under the heading
4GL Source; the .4gl file extension is optional. Repeat this step for
every module. If the module is not in the current directory or in
a directory specified by the DBPATH environment variable, enter
the pathname to the directory where the module resides.
The name of the runner (and of the Debugger, if you have the
Debugger) are usually as illustrated in the PROGRAM screen,
unless your 4GL program calls C functions. For information on
calling C functions, see “RDS Programs That Call C Functions”
on page 1-83.

■ To enter or edit the name or pathname of a Globals module,
choose the Globals option and provide the corresponding
information.

■ To enter or edit the file or pathname of any .4go modules that
you have already compiled, choose the Other option.

5. After you correctly list all of the modules of your 4GL program,
choose the Exit option to return to the PROGRAM design menu.

6. Choose the Compile option of the PROGRAM design menu.
This option produces a file that combines all of your .4gl source files
into an executable program. Its filename is the program name that
you specified, with extension .4gi. The screen lists the names of your
.4gl source modules and displays the PROGRAM design menu with
the Run option highlighted.

Executing a Compiled RDS Program
After compiling your program modules, you can execute your program. To
do so, choose the Run option from the MODULE design menu. This option
executes the compiled 4GL program.

Menus, screen forms, windows, or other screen output are displayed,
according to your program logic and the keyboard interaction of the user
with the program.

Creating Programs at the Command Line

Compiling INFORMIX-4GL Source Files 1-75

Invoking the Debugger
If you are developing or modifying a 4GL program, you have much greater
control over program execution by first invoking the Debugger. If you have
purchased the Debugger, you can invoke it from the MODULE design menu
or PROGRAM design menu of the Programmer’s Environment by choosing
the Debug option. For information on using the Debugger, see the Guide to
the INFORMIX-4GL Interactive Debugger.

Creating Programs at the Command Line
You can also create .4gl source files and compiled .4go and .4gi p-code files at
the operating system prompt. Figure 1-5 shows the commands for creating,
compiling, and running or debugging a single-module program.

Figure 1-5
Creating and Running a
Single-Module Program

In Figure 1-5, the rectangles represent processes controlled by specific
commands, and the circles represent files. Arrows indicate whether a file
serves as input or output for a process.

(For the sequence of operating system commands to create multi-module 4GL
programs, see Figure 1-6 on page 1-79.)

Text
editor

.4gl
source

file

P-code
compiler
fglpc

.4go
compiled
p-code

file
P-code
runner
fglgo

Debugger
fgldb

Creating Programs at the Command Line

1-76 HCL Informix 4GL Reference Guide

This diagram is simplified and ignores the similar processes by which forms,
help messages, and any other components of 4GL applications are compiled
and executed. The diagram outlines the following process:

■ The cycle begins in the upper-left corner with a text editor, such as vi,
to produce a 4GL source module.

■ The program module can then be compiled, using the fglpc p-code
compiler. (If error messages are produced by the compiler, find them
in the .err file, and edit the .4gl file to correct the errors. Then
recompile the corrected .4gl file.)

■ The following command line invokes the p-code runner:
fglgo filename

where filename specifies a compiled 4GL file to be executed.

Executing a program that is undergoing development or modification
sometimes reveals the existence of runtime errors. If you have licensed the
Debugger, you can invoke it to analyze and identify runtime errors in your
program by entering the command:

fgldb filename

where filename specifies your compiled 4GL file. You can then recompile and
retest the program. When it is ready for use by others, they can use the fglgo
runner to execute the compiled program.

A correspondence between commands and menu options of the RDS
Programmer’s Environment is summarized by the following list.

Command Invokes Menu Option

vi UNIX System Editor Module New/Modify

fglpc 4GL P-Code Compiler Compile

fglgo 4GL P-Code Runner Run

fgldb 4GL Interactive Debugger Debug

Subsequent sections of this chapter describe how to use the Rapid Devel-
opment System to compile and execute 4GL programs that call C functions.
(This requires a C language compiler and linker, which are unnecessary for
4GL applications in p-code that do not call programmer-defined C functions.)

Creating Programs at the Command Line

Compiling INFORMIX-4GL Source Files 1-77

Creating or Modifying a 4GL Source File
Use your system editor or another text-editing program to create a .4gl source
file, or to modify an existing file. For information on the statements that you
can include in a 4GL program, see Chapter 4.

Compiling an RDS Source File
You cannot execute a 4GL program until you compile each source module
into a .4go file. Do this at the system prompt by entering the fglpc command,
which compiles your 4GL source code and generates a file containing tables
of information and blocks of p-code. You can then run this compiled code by
using the 4GL p-code runner (or the Debugger if you have it). The 4GL source-
code module to be compiled should have the file extension .4gl.

fglpc Command

The fglpc command supports the following syntax.

fglpc -localcurs source

-ansi -a -anyerr -globcurs .4gl

-p pathname

-V

Element Description
pathname is the pathname of a directory to hold object and error files.
source is the name of a 4GL source module. The .4gl extension is optional.

The fglpc command reads source.4gl files and creates a compiled version of
each, with the filename source.4go. You can specify any number of source
files, in any order, with or without their .4gl filename extensions.

Creating Programs at the Command Line

1-78 HCL Informix 4GL Reference Guide

To instruct the compiler to check all SQL statements for compliance with the
ANSI/ISO standard for SQL, use the -ansi option. If you specify the -ansi
option, it must appear first among fglpc command arguments. Including the
-ansi option asks for compile-time and runtime warning messages if your
source code includes Informix extensions to the ANSI/ISO standard for SQL.

If an error or warning occurs during compilation, 4GL creates a file called
source.err. Look in source.err to find where the error or warning occurred in
your code.

If you specify the -anyerr option, 4GL sets the status variable after evaluating
expressions (in addition to setting it after each SQL statement executes, and
after errors in 4GL screen I/O or validation statements. The -anyerr option
overrides any WHENEVER ERROR directives in your program.

You can use the -p pathname option to specify a nondefault directory for the
object (.4go) and error (.err) files. Otherwise, any files produced by fglpc are
stored in your current working directory.

To have your compiled program check array bounds at runtime, specify the
-a option. The -a option requires additional processing, so you might prefer
to use this option only for debugging during development.

If you typically compile with the same options, you can set the FGLPCFLAGS
environment variable to supply those options implicitly. See the section
“FGLPCFLAGS” on page D-43 for details of this feature.

The -globcurs option lets you make the names of cursors and of prepared
objects global to the entire program. The compilers still require you to declare
the cursor before using it for any other purpose in the module, so this option
is seldom useful. This option might help in debugging, however, because the
cursor names are not modified. See the section “The -globcurs and -localcurs
Options” on page 1-40 for more information about the scope of cursor names.

The -localcurs option can override the -globcurs option if that was set in the
C4GLFLAGS environment variable, and makes the names of cursors and
prepared objects local to the module in which they were declared.

To display the version number of the software, specify the -V option. The
version number of your SQL and p-code compiler software appears on the
screen. Any other command options are ignored. After displaying this infor-
mation, the program terminates without compiling.

Creating Programs at the Command Line

Compiling INFORMIX-4GL Source Files 1-79

Examples

The following command compiles a 4GL source file single.4gl, and creates a
file called single.4go in the current directory:

fglpc single.4gl

The next command line compiles two 4GL source files:

fglpc -p /u/ken fileone filetwo

This command generates two compiled files, fileone.4go and filetwo.4go,
and stores them in subdirectory /u/ken. Any compiler error messages are
saved in file fileone.err or filetwo.err in the same directory.

Concatenating Multi-Module Programs
If a program has several modules, the compiled modules must all be
concatenated into a single file, as represented in Figure 1-6.

Figure 1-6
Creating and Running a
Multi-Module Program

Text
editor

.4gl
source

file

P-code
compiler
fglpc

.4go
p-code
object
files

Concatenation
utility

.4gi
p-code

executable
files

P-code
runner
fglgo

Creating Programs at the Command Line

1-80 HCL Informix 4GL Reference Guide

The UNIX cat command combines the listed files into the file specified after
the redirect (>) symbol. For example, the following command combines a list
of .4go files into a new file called new.4gi:

cat file1.4go file2.4go ... fileN.4go new.4gi

The new filename of the combined file must have either a .4go or a .4gi
extension. The extension .4gi designates runable files that have been
compiled (and concatenated, if several source modules make up the
program). You might wish to follow this convention in naming files, because
only .4gi files are displayed from within the Programmer’s Environment.
This convention is also a convenient way to distinguish complete program
files from object files that are individual modules of a multi-module program.

If your 4GL program calls C functions or ESQL/C functions, you must follow
the procedures described in “RDS Programs That Call C Functions” on
page 1-83 before you can run your application.

Running RDS Programs
To execute a compiled 4GL program from the command line, you can invoke
the p-code runner, fglgo.

fglgo Command

The fglgo command supports the following syntax.

fglgo filename argument

-anyerr .4go

.4gi
-V

filename is the name of a compiled 4GL file. The filename must have a .4go or
.4gi extension. You do not need to enter this extension.

argument are any arguments required by your 4GL program.

Description Element

Creating Programs at the Command Line

Compiling INFORMIX-4GL Source Files 1-81

If you do not specify a filename extension, fglgo looks first for the filename
with a .4gi extension, and then for the filename with a .4go extension.

Unlike fglpc, the fglgo command needs no -a option to check array bounds
at runtime, because array bounds are always checked.

If you specify the -anyerr option, 4GL sets the status variable after evaluating
expressions. This option overrides any WHENEVER ERROR statements.

To display the version number of the software, specify the -V option. The
version number of your SQL and p-code software appears on the screen. Any
other command options are ignored. After displaying this information, the
program terminates without invoking the p-code runner. 4GL runners earlier
than Version 7.3 cannot run programs that use 7.3 or later compilers, and you
must recompile programs compiled with earlier versions of the 4GL compiler
before a 7.3 or later runner can interpret them.

Important: To run a 4GL program that calls programmer-defined C functions, you
cannot use fglgo. You must instead use a customized p-code runner. “RDS
Programs That Call C Functions” on page 1-83 describes how to create a customized
runner.

Examples

To run a compiled program named myprog.4go, enter the following
command line at the operating system prompt:

fglgo myprog

or:

fglgo myprog.4go

Creating Programs at the Command Line

1-82 HCL Informix 4GL Reference Guide

Running Multi-Module Programs
To run a program with multiple modules, you must compile each module
and then combine them by using an operating system concatenation utility,
as described in an earlier section. For example, if mod1.4go, mod2.4go, and
mod3.4go are compiled 4GL modules that you wish to run as one program,
you must first combine them as in the following example:

cat mod1.4go mod2.4go mod3.4go > mods.4gi

You can then run the mods.4gi program by using the command line:

fglgo mods

or:

fglgo mods.4gi

Running Programs with the Interactive Debugger
You can also run compiled 4GL programs with the Debugger. This 4GL
source-code debugger is a p-code runner with a rich command set for
analyzing 4GL programs. You can use the Debugger to locate logical and
runtime errors in your 4GL programs and to become more familiar with 4GL
programs. The Debugger must be purchased separately.

If you have the Debugger, you can invoke it at the system prompt with a
command line of the form:

fgldb filename

where filename is any runable 4GL file that you produced by an fglpc
command.

For the complete syntax of the fgldb command, see the Guide to the
INFORMIX-4GL Interactive Debugger.

Creating Programs at the Command Line

Compiling INFORMIX-4GL Source Files 1-83

RDS Programs That Call C Functions
If your Rapid Development System program calls programmer-defined
C functions, you must create a customized runner to execute the program.

To create a customized runner

1. Edit a structure definition file to contain information about your
C functions.
This file is named fgiusr.c and is supplied with 4GL.

2. Compile and link the fgiusr.c file with the files that contain your
C functions.
To do this, use the cfglgo command.

You can then use the runner produced by the cfglgo command to run the 4GL
program that calls your C functions. Both the fgiusr.c file and the cfglgo
command are described in the sections that follow.

For an example of how to call C functions from a 4GL program, see
INFORMIX-4GL by Example.

Important: To create a customized runner, you must have a C compiler installed on
your system. If the only functions that your Rapid Development System program
calls are 4GL or ESQL/C library functions, or functions written in the 4GL language,
you do not need a C compiler and you do not need to follow the procedures described
in this section.

Creating Programs at the Command Line

1-84 HCL Informix 4GL Reference Guide

Editing the fgiusr.c File
The fgiusr.c file is located in the /etc subdirectory of the directory in which
you installed 4GL (that is, in $INFORMIXDIR/etc). The following listing
shows the fgiusr.c file in its unedited form:

/**
* *
* INFORMIX SOFTWARE, INC. *
* *
* Title: fgiusr.c *
* Sccsid: @(#)fgiusr.c 4.2 8/26/87 10:48:37 *
* Description: *
* definition of user C functions *
* *

*/

/***
* This table is for user-defined C functions.
*
* Each initializer has the form:
*
* "name", name, nargs
*
* Variable # of arguments:
*
* set nargs to -(maximum # args)
*
* Be sure to declare name before the table and to leave the
* line of 0’s at the end of the table.
*
* Example:
*
* You want to call your C function named "mycfunc" and it expects
* 2 arguments. You must declare it:
*
* int mycfunc();
*
* and then insert an initializer for it in the table:
*
* "mycfunc", mycfunc, 2

*/

#include "fgicfunc.h"

cfunc_t usrcfuncs[] =
{
0, 0, 0
};

Creating Programs at the Command Line

Compiling INFORMIX-4GL Source Files 1-85

The fgiusr.c file is a C language file that you can edit to declare any number
of programmer-defined C functions.

To edit fgiusr.c, you can copy the file to any directory. (Unless this is your
working directory at compile time, you must specify the full pathname of the
edited fgiusr.c file when you compile.) Edit fgiusr.c to specify the following:

■ A declaration for each function:
int function-name(int nargs);

■ Three initializers for each function:
" function-name ", function-n a m e ,[-] integer,

In the declaration of the function, the parenthesis symbols () must follow
the function-name.

The first initializer is the function name between double quotation marks and
is a character pointer.

The second initializer is the function name (without quotation marks) and is
a function pointer. It cannot include a parentheses.

The third initializer is an integer representing the number of arguments
expected by the function. If the number of arguments expected by the
function can vary, you must make the third argument the maximum number
of arguments, prefixed with a minus (-) sign.

You must use a comma (,) symbol to separate each of the three initializers.
Insert a set of initializers for each C function that you declare. A line of three
zeroes indicates the end of the structure.

Here is an example of an edited fgiusr.c file:

#include "fgicfunc.h"

int function-name();

cfunc_t usrcfuncs[] =
{

{"function-name",function-name,1},
{ 0,0,0 }

};

Here the 4GL program will be able to call a single C function called
function-name that has one argument.

Creating Programs at the Command Line

1-86 HCL Informix 4GL Reference Guide

If you have several 4GL programs that call C functions, you can use fgiusr.c
in either of two ways:

■ You can create one customized p-code runner.
In this case, you can edit fgiusr.c to specify all the C functions called
from all your 4GL programs. After you create one comprehensive
runner, you can use it to execute all your 4GL applications.

■ You can create several application-specific runners.
In this case, you can either make a copy of the fgiusr.c file (with a
new name) for each customized runner, or you can re-edit fgiusr.c to
contain information on the C functions for a specific application
before you compile and link. If you create several runners, you must
know which customized runner to use with each 4GL application.

In some situations the first method is more convenient, because users do not
need to keep track of which runner supports each 4GL application.

Creating Programs at the Command Line

Compiling INFORMIX-4GL Source Files 1-87

Creating a Customized Runner
You can use the cfglgo command to create a customized runner. You can use
cfglgo to compile C modules and ESQL/C modules that contain functions
declared in an edited fgiusr.c file. The customized runner can also run 4GL
programs that do not call C functions.

cfglgo Command

The cfglgo command supports the following syntax.

You need the ESQL/C product to compile .ec files with cfglgo.

The cfglgo command compiles and links the edited fgiusr.c file with your
C program files into an executable program that can run your 4GL appli-
cation. Here fgiusr.c is the name of the file that you edited to declare C or
ESQL/C functions. If the fgiusr.c file to be linked is not in the current
directory, you must specify a full pathname. You can also rename the fgiusr.c
file.

You can specify any number of uncompiled or compiled C or ESQL/C files in
a cfglgo command line. When you create a customized runner with cfglgo,
however, you cannot include among the cfile.o object files any file that was
compiled from a 4GL program. (The cfglgo script has no syntax for linking
the 4GL libraries that would be required in this context.)

cfglgo fgiusr.c cfile .ec -o newfglgo

.c

.o

-V

cfile is the name of a source file containing ESQL/C or C functions to be
compiled and linked with the new runner, or the name of an object file
previously compiled from a .c or .ec file.

newfglgo specifies the name of the customized runner.

Description Element

Creating Programs at the Command Line

1-88 HCL Informix 4GL Reference Guide

If you do not specify the -o newfglgo option, the new runner is given the
default name a.out.

To display the version number of the software, specify the -V option. The
version number of your SQL and p-code software appears on the screen. Any
other command options are ignored. After displaying this information, the
program terminates without creating a customized p-code runner.

Examples

The following example 4GL program calls the C function prdate():

prog.4gl:

main
. . .
call prdate()
. . .
end main

The function prdate() is defined in file cfunc.c, as shown here:

cfunc.c:

#include <errno.h>
#include <stdio.h>
#include <time.h>

int prdate(int nargs)
{
/* This program timestamps file FileX */

long cur_date;
FILE *fptr;

time(&cur_date);
fptr = fopen("time_file","a");
fprintf(fptr,"FileX was accessed %s", ctime(&cur_date));
fclose(fptr);
return(0);

}

Creating Programs at the Command Line

Compiling INFORMIX-4GL Source Files 1-89

The C function is declared and initialized in the following fgiusr.c file:

fgiusr.c:

1 #include "fgicfunc.h"
2
3 int prdate();
4 cfunc_t usrcfuncs[] =
5 {
6 { "prdate", prdate, 0 },
7 { 0, 0, 0 }
8 };

An explanation of this example of an fgiusr.c file follows.

Line Description

1 The file fgicfunc.h is always included. This line already exists in the unedited
fgiusr.c file.

3 This is the declaration of the function prdate(). You must add this line to the
file.

4 This line already exists in the unedited file. It declares the structure array
usrcfuncs.

6 This line contains the initializers for function prdate(). Because it expects no
arguments, the third value is zero.

7 The line of three zeros indicates that no more functions are to be included.

In this example, you can use the following commands to compile the 4GL
program, to compile the new runner, and to run the program:

■ To compile the example 4GL program:
fglpc prog.4gl

■ To compile the new runner:
cfglgo fgiusr.c cfunc.c -o newfglgo

■ To run the 4GL program:
newfglgo prog.4go

Program Filename Extensions

1-90 HCL Informix 4GL Reference Guide

Running Programs That Call C Functions
After you create a customized runner, you can use it to execute any 4GL
program whose C functions you correctly specified in the edited fgiusr.c file.
The syntax of a customized runner (apart from its name) is the same as the
syntax of fglgo, as described in “Running RDS Programs” on page 1-80.

You can also create a customized Debugger to run a 4GL program that calls
C functions. See the Guide to the INFORMIX-4GL Interactive Debugger for details
and an example of how to create a customized debugger.

Important: You cannot create a customized runner or debugger from within the
Programmer’s Environment. You must work from the system prompt and follow the
procedures described in “Creating Programs at the Command Line” on page 1-75 if
you are developing a 4GL program that calls user-defined C functions. Then you can
return to the Programmer’s Environment and use the Program_Runner option of
the MODIFY PROGRAM menu or the NEW PROGRAM menu to specify the name
of a customized runner or debugger.

Program Filename Extensions
Source, runable, error, and backup files generated by 4GL are stored in the
current directory and are labeled with the appropriate filename extensions,
as described in the following table. These files are produced during the
normal course of using the Rapid Development System.

File Description

file.4gl 4GL source file

file.4go 4GL file that has been compiled to p-code

file.4gi 4GL file that has been compiled to p-code

file.err 4GL source error file, created when an attempt to compile a module fails
or produces a warning. (The file contains the 4GL source code plus
compiler syntax warnings or error messages.)

file.erc 4GL object error file, created when an attempt to compile or link a
non-4GL source-code or object module fails (The file contains 4GL
source code and annotated compiler errors.)

(1 of 2)

Program Filename Extensions

Compiling INFORMIX-4GL Source Files 1-91

File Description

file.per FORM4GL source file

file.frm FORM4GL object file

file.err FORM4GL source error file

(2 of 2)

The last three files do not exist unless you create or modify a screen form
specification file, as described in Chapter 6.

The following table lists backup files that are produced when you use 4GL
from the Programmer’s Environment.

File Description

file.4bl 4GL source backup file, created during the modification and compi-
lation of a .4gl program module

file.4bo Object backup file, created during the compilation of a .4go program
module

file.4be Object backup file, created during the compilation of a .4gi program
module

file.pbr FORM4GL source backup file

file.fbm FORM4GL object backup file

Under normal conditions, 4GL creates the backup files and intermediate
files as necessary, and deletes them when a compilation is successful. If you
interrupt a compilation, you might find one or more of the files in your
current directory.

If you compile with a fglpc command line that includes the p pathname
option, 4GL creates the .4gi, .4go, .err, and corresponding backup files in the
directory specified by pathname, rather than in your current directory.

During the compilation process, 4GL stores a backup copy of the file.4gl
source file in file.4bl. The time stamp is modified on the (original) file.4gl
source file, but not on the backup file.4bl file. In the event of a system crash,
you might need to replace the modified file.4gl file with the backup copy
contained in the file.4bl file.

Program Filename Extensions

1-92 HCL Informix 4GL Reference Guide

The Programmer’s Environment does not allow you to begin modifying a
.4gl or .per source file if the corresponding backup file already exists in the
same directory. After an editing session terminates abnormally, for example,
you must delete or rename any backup file before you can resume editing
your 4GL module or form specification from the Programmer’s Environment.

Warning: INFORMIX-4GL is not designed to support two or more programmers
working concurrently in the same directory. If several developers are working on the
same 4GL application, make sure that they do their work in different directories.

The INFORMIX-4GL Language

In This Chapter ... 2-3

Language Features ... 2-3
Lettercase Insensitivity .. 2-3
Whitespace, Quotation Marks, Escape Symbols, and Delimiters 2-4
Character Set... 2-5
4GL Statements .. 2-5
Comments... 2-8

Comment Indicators ... 2-8
Restrictions on Comments ... 2-8
Conditional Comments .. 2-9

Source-Code Modules and Program Blocks .. 2-10
Statement Blocks .. 2-12
Statement Segments ... 2-13
4GL Identifiers.. 2-14

Naming Rules for 4GL Identifiers ... 2-14
Naming Rules for SQL Identifiers ... 2-15
Scope of Reference of 4GL Identifiers ... 2-17
Scope and Visibility of SQL Identifiers ... 2-19
Visibility of Identical Identifiers .. 2-19

Interacting with Users .. 2-22
Ring Menus .. 2-23

Selecting Menu Options ... 2-24
Ambiguous Keyboard Selections .. 2-24
Hidden Options and Invisible Options .. 2-24
Disabled Menus ... 2-25
Reserved Lines for Menus .. 2-25

Chapter

2

2 -2 HCL Informix 4GL Reference

Screen Forms .. 2-25

Visual Cursors ... 2-26
Field Attributes ... 2-27
Reserved Lines .. 2-27

4GL Windows .. 2-28
The Current Window ... 2-28

On-Line Help ... 2-29
The Help Key and the Message Compiler ... 2-30
The Help Window .. 2-30

Nested and Recursive Statements ... 2-31
Early Exits from Nested and Recursive Operations 2-36

Exception Handling ... 2-40
Compile-Time Errors and Warnings ... 2-40
Runtime Errors and Warnings ... 2-40

Normal and AnyError Scope ... 2-41
A Taxonomy of Runtime Errors .. 2-42
Default Error Behavior and ANSI Compliance 2-43

Changes to 4GL Error Handling .. 2-44
Error Handling with SQLCA .. 2-45

The INFORMIX-4GL Language 2-3

In This Chapter
An INFORMIX-4GL program consists of at least one source file that contains a
series of English-like statements. These obey a well-defined syntax that this
book describes.

This chapter presents a brief overview of the 4GL language. Its theory, appli-
cation, constructs, and semantics are described in detail in INFORMIX-4GL
Concepts and Use, a companion volume to this Guide.

This Guide assumes that you are using Informix Dynamic Server as your
database server. Features specific to INFORMIX-SE are noted.

Language Features
4GL is an English-like C or COBOL-replacement programming language that
Informix Software, Inc., introduced in 1986 as a tool for creating relational
database applications. Its statement set (see Chapter 4, “INFORMIX-4GL
Statements”) includes the industry-standard SQL language for accessing and
manipulating a relational database. The 4GL development environment
provides a complete environment for writing 4GL programs.

Lettercase Insensitivity
4GL is case insensitive, making no distinction between uppercase and
lowercase letters, except within quoted strings. Use pairs of double (") or
single (') quotation marks in 4GL code to preserve the lettercase of character
literals, filenames, and names of database entities, such as cursor names.

You can mix uppercase and lowercase letters in the identifiers that you assign
to 4GL entities, but any uppercase letters in 4GL identifiers are automatically
shifted to lowercase during compilation.

Whitespace, Quotation Marks, Escape Symbols, and Delimiters

2-4 HCL Informix 4GL Reference Guide

Whitespace, Quotation Marks, Escape Symbols,
and Delimiters
4GL is free-form, like C or Pascal, and generally ignores TAB characters,
LINEFEED characters, comments, and extra blank spaces between statements
or statement elements. You can freely use these whitespace characters to
make your 4GL source code easier to read.

Blank (ASCII 32) characters act as delimiters in some contexts. Blank spaces
must separate successive keywords or identifiers, but cannot appear within
a keyword or identifier. Pairs of double (") or single (') quotation marks
must delimit any character string that contains a blank (ASCII 32) or other
whitespace character, such as LINEFEED or RETURN.

Do not mix double and single quotation marks as delimiters of the same
string. For example, the following is not a valid character string:

'Not A valid character string"

If you are using Informix DRDA software to access a non-Informix relational
database, such as a DB2 database from HCL, double quotation marks might
not be recognized as delimiters by the non-Informix database.

Similarly, most 4GL statements require single quotation marks if the database
supports delimited SQL identifiers, and in this special case cannot use double
quotation marks in most contexts, because when the DELIMIDENT
environment variable is set, double quotation marks are reserved for SQL
identifiers.

To include literal quotation marks within a quoted string, precede each literal
quotation mark with the backslash (\), or else enclose the string between a
pair of the opposite type of quotation marks:

DISPLAY "Type 'Y' if you want to reformat your disk."
DISPLAY 'Type "Y" if you want to reformat your disk.'
DISPLAY 'Type \'Y\' if you want to reformat your disk.'

The 4GL compiler treats a backslash as the default escape symbol, and treats
the immediately following symbol as a literal, rather than as having special
significance. To specify anything that includes a literal backslash, enter
double (\\) backslashes wherever a single backslash is required. Similarly,
use \\\\ to represent a literal double backslash.

Character Set

The INFORMIX-4GL Language 2-5

Except in some PREPARE and PRINT statements, and the END SQL keywords
in SQL blocks, 4GL requires no statement terminators, but you can use the
semicolon (;) as a statement terminator.

Statements of the SQL language, however, that include syntax later than what
Informix 4.10 database servers support require SQL…END SQL delimiters,
unless the post-4.10 SQL statement appears as text in a PREPARE statement.

Character Set
4GL requires the ASCII character set, but also supports characters from the
client locale in data values, identifiers, form specifications, and reports. For
more information, see “Naming Rules for 4GL Identifiers” on page 2-14.

4GL Statements
4GL source-code modules can contain statements and comments:

■ A statement is a logical unit of code within 4GL programs. See
Chapter 4 for a list of the statements in the 4GL statement set.

■ A comment is a specification that 4GL disregards. For more infor-
mation, see “Comment Indicators” on page 2-8.

A compilation error occurs if a program (or one of its modules or statement
blocks) includes part of a statement but not all of the required elements.

Statements of 4GL can contain identifiers, keywords, literal values, constants,
operators, parentheses, and expressions. These terms are described in subse-
quent sections of this chapter, and in Chapter 4.

For the purposes of this Guide, 4GL supports two types of statements:

■ SQL (Structured Query Language) statements
■ Other 4GL language statements

This distinction among statements reflects whether they provide instructions
to the database server (SQL statements) or instructions to the client appli-
cation (other 4GL statements). INFORMIX-4GL Concepts and Use describes the
process architecture of 4GL applications. See the documentation of your
Informix database server for the syntax of SQL statements. Chapter 4 of this
Guide describes the syntax of 4GL statements that are not SQL statements.

4GL Statements

2-6 HCL Informix 4GL Reference Guide

Where a given statement can appear within a 4GL program, how the Inter-
active Debugger treats it, and whether the statement has its effect at compile
time or at runtime all depend on whether the statement is executable.

The following statements of 4GL are non-executable. They define program
blocks, declare 4GL identifiers, or act as compiler directives.

DEFER
DEFINE

FUNCTION
GLOBALS

LABEL
MAIN

REPORT
WHENEVER

The following statements of 4GL are executable.

CALL FOREACH OPTIONS
CASE FREE OUTPUT TO REPORT
CLEAR GOTO PAUSE
CLOSE FORM IF PRINT
CLOSE WINDOW INITIALIZE PROMPT
CONSTRUCT INPUT RETURN
CONTINUE INPUT ARRAY RUN
CURRENT WINDOW LET SCROLL
DISPLAY LOAD SKIP
DISPLAY ARRAY LOCATE SLEEP
DISPLAY FORM MENU START REPORT
ERROR MESSAGE TERMINATE REPORT
EXIT NEED UNLOAD
FINISH REPORT OPEN FORM VALIDATE
FOR OPEN WINDOW WHILE

4GL statements (individually described in Chapter 4) begin with keywords.
Some statements can include delimiters (as described earlier in this section)
and expressions (as described in Chapter 3, “Data Types and Expressions”).

4GL Statements

The INFORMIX-4GL Language 2-7

Within the broad division into SQL statements and other statements, the 4GL
statement set can be further classified into functional categories, whose
component statements are listed in “The 4GL Statement Set” on page 4-9.

Types of SQL Statements Other Types of 4GL Statements

Data definition statements
Data manipulation statements
Cursor manipulation statements
Dynamic management statements
Query optimization statements
Data access statements
Data integrity statements
Stored procedure statements
Optical statements

Definition and declaration statements
Program flow control statements
Compiler directives
Storage manipulation statements
Screen interaction statements
Report execution statements

“The 4GL Statement Set” on page 4-9 identifies the SQL statements and other
4GL statements that make up these functional categories.

Some statements, called compound statements (described in “Statement
Blocks” on page 2-12), can contain other 4GL statements. A set of nested state-
ments within a compound statement is called a statement block. When
necessary, 4GL uses END (with another keyword to indicate a specific
statement) to terminate a compound statement.

Except in a few special cases, like multiple-statement prepared entities, 4GL
requires no statement terminators, but you can use the semicolon as a
statement terminator. If you have difficulty interpreting a compilation error,
you might want to insert semicolons to separate the statements that precede
the error message, to indicate to the 4GL compiler where each statement ends.
(The PRINT statement in 4GL reports can use semicolons to control the format
of output from a report by suppressing LINEFEED.)

Screen forms of 4GL are manipulated by form drivers but are defined in form
specification files. These ASCII files use a syntax that is distinct from the
syntax of other 4GL features. See Chapter 6, “Screen Forms,” for details of the
syntax of 4GL form specification files.

Comments

2-8 HCL Informix 4GL Reference Guide

Comments
A comment is text in 4GL source code to assist human readers, but which 4GL
ignores. (This meaning of comment is unrelated to the COMMENTS attribute
in a form, or to the OPTIONS…COMMENT LINE statement, both of which
control on-screen text displays to assist users of the 4GL application.)

Comment Indicators
You can indicate comments in any of several ways:

■ A comment can begin with the left-brace ({) and end with the right-
brace (}) symbol. These can be on the same line or on different lines.

■ The pound (#) symbol (sometimes called the “sharp symbol”) can
begin a comment that terminates at the end of the same line.

■ You can use a pair of hyphens or minus signs (--) to begin a
comment that terminates at the end of the current line. (This
comment indicator conforms to the ANSI standard for SQL.)

4GL ignores all text between braces (or from the # or -- comment indicator
to the end of the same line).

For clarity and to simplify program maintenance, it is recommended that you
document your 4GL code by including comments in your source files. You
can also use comment indicators during program development to disable
statements without deleting them from your source-code modules.

Restrictions on Comments
When using comments, keep the following restrictions in mind:

■ Within a quoted string, 4GL interprets comment indicators as literal
characters, rather than as comment indicators.

■ Comments cannot appear in the SCREEN section of a form specifi-
cation file.

■ The # symbol cannot indicate comments in a form specification, in an
SQL statement block, nor in the text of a prepared statement.

■ You cannot use braces ({ }) to nest comments within comments.

Comments

The INFORMIX-4GL Language 2-9

■ You cannot specify consecutive minus signs (--) in arithmetic
expressions, because 4GL interprets what follows as a comment.
Instead, use a blank space or parentheses to separate consecutive
arithmetic minus signs. For example:

LET x = y --3 # Now variable x evaluates as y
because 4GL ignores text after --

LET x = y -(-3) # Now variable x evaluates as (y + 3).

■ The symbol that immediately follows the -- comment indicator
must not be the sharp (#) or at (@) symbols, unless you intend to
compile the same 4GL source file with the Dynamic 4GL product. For
details of the special significance of the # or @ symbol after the --
symbols, see the next section, “Conditional Comments” on page 2-9.

Conditional Comments
Another Informix product, Informix Dynamic 4GL, treats the --# characters
as a whitespace character, rather than as the beginning of a comment. This
feature provides backward compatibility for source-code modules that begin
lines containing Dynamic 4GL extensions to 4GL syntax with those symbols.
When compiled by Dynamic 4GL, lines so marked are treated as statements
in a graphical user interface (GUI) environment. 4GL, however, interprets --#
as a comment symbol so that Dynamic 4GL syntax extensions (or anything
else) that follow in the same line are ignored.

Conversely, the --@ symbols act as a conditional comment indicator. The 4GL
compiler interprets this indicator as a single whitespace character and reads
the rest of the line. In contrast, the Dynamic 4GL compiler interprets this as a
comment and ignores the rest of the line.

These symbols are called conditional comment indicators because their inter-
pretation depends on which compiler you use. Together, these features
enable the same source file to support different features, depending on
whether you compile with Dynamic 4GL or with 4GL.

Conditional comments are supported both in source (.4gl) files, in form speci-
fication (.per) files, and in INFORMIX-SQL report (.ace) files.

For example, you could use conditional comments to specify a Help file:

--# OPTIONS HELP FILE "d4gl_help.42h" --Line is ignored by I-4GL
--@ OPTIONS HELP FILE "i4gl_help.iem" --Line is ignored by D-4GL

Source-Code Modules and Program Blocks

2-10 HCL Informix 4GL Reference Guide

The following example shows a fragment of a form specification:

ATTRIBUTES

f0 = FORMONLY.name, --#char_var ;

--@REVERSE ;

Conditional comments are also valid within SQL statement blocks, but not
within the text of a PREPARE statement.

Do not put both forms of conditional comments in the same line.

Source-Code Modules and Program Blocks
When you create a 4GL program, enter statements and comments into one or
more source code files, called modules, whose filenames can have no more
than 10 characters, excluding any file extensions.

Because 4GL is a structured language, executable statements are organized
into larger units, called program blocks (sometimes called routines, sections, or
functions). 4GL modules can include three different kinds of program blocks:
MAIN, FUNCTION, and REPORT.

Each block begins with the keyword after which it is named, and ends with
the corresponding END statement keywords (END MAIN, END FUNCTION, or
END REPORT). Program blocks can support 4GL applications in several ways:

■ As part of a complete 4GL program (one that includes a MAIN block)
■ As a FUNCTION or REPORT block that is invoked by a 4GL program
■ As a 4GL FUNCTION block called by a C or ESQL/C program

(INFORMIX-ESQL/C requires a separate license.)

FUNCTION Statement
p. 4-140

MAIN Statement
p. 4-245 REPORT Statement

p. 4-332

Source-Code Modules and Program Blocks

The INFORMIX-4GL Language 2-11

The following rules apply to 4GL program blocks:

■ Every 4GL program must contain exactly one MAIN block. This must
be the first program block of the module in which it appears.

■ Except for certain declarations (DATABASE, DEFINE, GLOBALS), no
4GL statement can appear outside a program block.

■ Variables that you declare within a program block have a scope of
reference (described in “Scope of Reference of 4GL Identifiers” on
page 2-17) that is local to the same program block. They cannot be
referenced from other program blocks. (Variables that you declare
outside any program block have a scope of reference extending from
their declaration until the end of the same source module.)

■ The GO TO or GOTO keywords cannot reference a statement label in
a different program block. (For more information about statement
labels, see the GOTO and LABEL statements in Chapter 4.)

■ Program blocks cannot be nested; neither can any program block be
divided among more than one source-code module.

■ The DATABASE statement (described in Chapter 4) has a compile-
time effect when it appears before the first program block of a source
module. Within a program block, it has a runtime effect.

■ The scope of the WHENEVER statement extends from its occurrence
to the next WHENEVER statement that specifies the same exceptional
condition, or to the end of the same module (whichever comes first),
but WHENEVER cannot occur outside a program block.

CALL, RETURN, EXIT REPORT, START REPORT, OUTPUT TO REPORT, FINISH
REPORT, and TERMINATE REPORT statements, and any 4GL expression that
includes a programmer-defined function as an operand, can transfer control
of program execution between program blocks. These statements are all
described in Chapter 4, “INFORMIX-4GL Statements”; expressions of 4GL
are described in Chapter 3, “Data Types and Expressions.”.

Chapter 5, “Built-In Functions and Operators,” describes FUNCTION blocks,
and Chapter 7, “INFORMIX-4GL Reports,” describes REPORT blocks. (See
Chapter 1, “Compiling INFORMIX-4GL Source Files,” for details of how
source-code modules are compiled and linked to create applications, and for
details about the naming conventions for filenames and for file extensions of
4GL modules.)

Statement Blocks

2-12 HCL Informix 4GL Reference Guide

Statement Blocks
The MAIN, FUNCTION, and REPORT statements are special cases of compound
statements, the 4GL statements that can contain other statements.

CASE FOREACH INPUT PROMPT
CONSTRUCT FUNCTION INPUT ARRAY REPORT
DISPLAY ARRAY GLOBALS MAIN SQL
FOR IF MENU WHILE

Every compound statement of 4GL supports the END keyword to mark the
end of the compound statement construct within the source-code module.
Most compound statements also support the EXIT statement keywords, to
transfer control of execution to the statement that follows the END statement
keywords, where statement is the name of the compound statement.

By definition, every compound statement can contain at least one statement
block, a group of one or more consecutive SQL statements or other 4GL state-
ments. In the syntax diagram of a compound statement, a statement block
always includes this element.

(Some contexts permit or require semicolon (;) delimiters. Any SQL
statement that is not prepared but includes syntax later than what Informix
4.10 database servers support must be enclosed between SQL and END SQL
keywords.)

These are examples of statement blocks within compound 4GL statements:

■ The WHEN, OTHERWISE, THEN, or ELSE blocks of CASE and IF
statements

■ Statements within FOR, FOREACH, or WHILE loops
■ CONSTRUCT, DISPLAY ARRAY, INPUT, or INPUT ARRAY control

blocks
■ Statements following the COMMAND clauses of MENU statements
■ Statements within the ON KEY blocks of PROMPT statements
■ FORMAT section control blocks of REPORT statements
■ All the statements in MAIN, FUNCTION, or REPORT program blocks

statement

Statement Segments

The INFORMIX-4GL Language 2-13

4GL permits any statement block to be empty, even if it appears as a required
element in its syntax diagram. This feature enables you to compile and
execute applications that contain empty (or dummy) functions or reports, to
test the behavior of a not-yet-complete program.

Unlike program blocks, which cannot be nested, 4GL statement blocks can
contain other statement blocks. This recursion can be static, as when a
function includes a FOREACH loop that contains an IF statement. Blocks can
also be recursive in a dynamic sense, as when a CALL statement invokes a
function only if some specified condition occurs.

Although most 4GL statements can appear within statement blocks, and most
compound statements can be nested, some restrictions apply. In some cases,
you can circumvent these restrictions by invoking a function to execute a
statement that cannot appear directly within a given compound statement.

The GLOBALS filename statement can incorporate statement blocks indirectly
by referencing a file. The statements in the specified file are incorporated into
the current module during compilation.

Statement Segments
Any subset of a 4GL statement, including the entire statement, is called a
statement segment. For clarity, many syntax diagrams in this book use
rectangles to represent statement segments (for example, MAIN, FUNCTION,
and REPORT in “Source-Code Modules and Program Blocks” on page 2-10).
These are expanded into syntax diagrams on the page referenced in the
rectangle, or elsewhere on the same page, if the rectangle indicates no page
number. For your convenience, the diagrams of a few important segments are
repeated on different pages.

Chapter 4 describes certain statement segments that can appear as elements
of various 4GL statements.

4GL Identifiers

2-14 HCL Informix 4GL Reference Guide

4GL Identifiers
Statements and form specifications can reference some 4GL program entities
by name. To create a named program entity, you must declare a 4GL identifier.
When you create any of the following program entities, you must follow the
guidelines in “Naming Rules for 4GL Identifiers” on page 2-14 and adhere to
the declaration procedures of 4GL to declare a valid identifier.

Named Program Entity How Name Is Declared

4GL function or its argument FUNCTION statement
4GL program variable DEFINE and GLOBAL statements
4GL report or its argument REPORT statement
4GL screen array ATTRIBUTES section of form specification
4GL screen form OPEN FORM statement
4GL screen record INSTRUCTIONS section of form specification
4GL statement label LABEL statement
4GL table alias TABLES section of form specification
4GL window OPEN WINDOW statement

This list excludes columns, constraints, cursors, databases, indexes, prepared
statements, stored procedures, synonyms, tables, triggers, views, and other
database objects, because those are SQL entities, not 4GL entities. It also omits
filenames, pathnames, and user names, which must conform to the naming
rules of your operating system or network.

Naming Rules for 4GL Identifiers
A 4GL identifier is a character string that is declared as the name of a program
entity. In the default (U.S. English) locale, every 4GL identifier must conform
to the following rules:

■ It must include at least one character, but no more than 128.
■ Only ASCII letters, digits, and underscore (_) symbols are valid.

Blanks, hyphens, and other non-alphanumerics are not allowed.
■ The initial character must be a letter or an underscore.
■ 4GL identifiers are not case sensitive, so my_Var and MY_vaR both

denote the same identifier.

4GL Identifiers

The INFORMIX-4GL Language 2-15

Within non-English locales, however, 4GL identifiers can include non-ASCII
characters in identifiers, if those characters are defined in the code set of the
locale that CLIENT_LOCALE specifies. In multibyte East Asian locales that
support languages whose written form is not alphabet-based, such as
Chinese, Japanese, or Korean, a 4GL identifier need not begin with a letter, but
the storage length of a 4GL identifier cannot exceed 128 bytes. ♦

Important: You might get unexpected results if you declare as an identifier certain
keywords of SQL, the C and C++ languages, or your operating system or network.
(Appendix G, “Reserved Words,” lists some keywords and predefined identifiers of
4GL that should not be declared as identifiers of programmer-defined entities.) If you
receive an error message that seems unrelated to the SQL or other 4GL statement that
elicits the error, see if the statement references a reserved word as an identifier.

In releases of 4GL earlier than 7.3, the total length of all names of functions,
reports, and variables in an 4GL program that was compiled to p-code could
not exceed 65,535 bytes. This release is not subject to that restriction; the
upper limit on what is called your global string space is now two gigabytes
(unless some smaller limit is imposed by the memory capacity of the system
on which the 4GL program is running).

If you are using the C Compiler version of 4GL, your C compiler might only
recognize the first 31 characters (or the first 69) of a 4GL identifier. In this case,
or if your application must be portable to all C compilers, keep the first 31
characters unique among similar program entities that have the same scope
of reference. (Scope of reference is explained later in this section.)

Naming Rules for SQL Identifiers
The rules for SQL identifiers resemble those of 4GL, with these exceptions:

■ For most Informix database servers, SQL identifiers are limited to no
more than 18 characters. (But database names might be limited to 8,
10, or 14 characters, depending on the database server and operating
system environment.)

■ Informix 9.2 and later databases can have a limit of 128-bytes.
■ SQL identifiers within quoted strings are case-sensitive.
■ You can use reserved words as SQL identifiers (but such usage might

require qualifiers, and can make your code difficult to maintain).

GLS

4GL Identifiers

2-16 HCL Informix 4GL Reference Guide

The 4GL identifiers can be the same as SQL identifiers, but this might require
special attention within the scope of the 4GL identifier. For more information,
see “Scope and Visibility of SQL Identifiers” on page 2-19.

If your 4GL application is the client of an Informix database server on which
the IFX_LONGID environment variable has been set to 1, then 4GL code can
reference database objects with SQL identifiers up to 128 bytes in length.

If the database and its connectivity software accept non-ASCII characters, 4GL
can recognize characters valid for the locale in these SQL identifiers.

Column name Index name Synonym
Connection name Log file name Table name
Constraint name Role name Trigger name
Database name Stored procedure name View name

For INFORMIX-SE database servers, whether non-English characters are
permitted in the names of databases, tables, or log files depends on whether
the operating system permits such characters in filenames. What characters
are valid in SQL identifiers depends on the database locale. See the Informix
Guide to GLS Functionality for additional details of SQL identifiers.

When the client locale and the database locale are different, 4GL does not
support use of the LIKE keyword in declarations of 4GL records that assign
default names to record members, if LIKE references a table or column whose
name includes any characters outside the code set of the client locale. ♦

Warning: Informix database servers (Version 7.0 and later) support DELIMIDENT,
an environment variable that can extend the character set of SQL. 4GL cannot,
however, reference database objects whose names include any non-alphanumeric
characters (such as blank spaces) outside the character set of 4GL identifiers.

The ANSI standard for SQL requires that all identifiers, including user names,
be in uppercase letters. Before passing to the database server a user name that
includes any lowercase letters, 4GL converts the name to uppercase letters, if
the compile-time database is ANSI/ISO-compliant, or if the DBANSIWARN
variable is set, or if the -ansi compilation flag is used.

GLS

ANSI

4GL Identifiers

The INFORMIX-4GL Language 2-17

To specify a user name that is all lowercase or a combination of uppercase
and lowercase letters, you must enclose the name in quotation marks. 4GL
passes to the database server any user name enclosed in quotation marks
with the case of the letters intact. When a user specifies this name, quotation
marks must be placed around the name. The only situations in which 4GL
does not convert an unquoted, lowercase user name to uppercase is when the
user name is informix or public.

The following example specifies the name james as the owner of the table
custnotes:

CREATE TABLE "james".custnotes
(customer_num INTEGER, notes CHAR(240))

You can access the table as shown in the following example:

SELECT * FROM "james".custnotes. ♦

Scope of Reference of 4GL Identifiers
Any 4GL identifier can be characterized by its scope of reference, sometimes
called its name scope, or simply its scope. A point in the program where an
entity can be referenced by its identifier is said to be in the scope of reference
of that identifier. Conversely, any point in the program where the identifier
cannot be recognized is said to be outside its scope of reference.

Identifiers of Variables

The scope of reference of a variable is determined by where in the .4gl source
module the DEFINE statement appears that declares the identifier. Identifiers
of variables can be local, module, or (in some cases) global in their scope:

■ Local 4GL variables are declared within a program block. These
variables cannot be referenced by statements outside the same
program block.

■ Module variables (sometimes called modular or static) must be
declared outside any MAIN, REPORT, or FUNCTION program block.
These identifiers cannot be referenced outside the same .4gl module.

If the GLOBALS…END GLOBALS statement declares variables in one module,
you can extend the scope of those variables to any other module that includes
a GLOBALS filename statement, where filename specifies the file that contains
the GLOBALS…END GLOBALS statement.

4GL Identifiers

2-18 HCL Informix 4GL Reference Guide

Module identifiers whose scope has been extended to additional modules by
this mechanism are sometimes said to have global scope, even if they are out
of scope in some modules. Truly global in scope, however, are the names
of the constants NOTFOUND, TRUE and FALSE, and built-in variables like
status, int_flag, quit_flag, and the SQLCA record. These predefined identi-
fiers do not need to be declared. Unless you declare a conflicting identifier,
they are visible in any 4GL statement, and can be referenced from any 4GL
module, as can the names of the built-in functions and operators like
LENGTH() and INFIELD() that Chapter 4 describes.

Other 4GL Identifiers

Also global in scope are names of 4GL windows, forms, reports, and
functions. The scope of the identifiers of form entities (like screen fields,
screen arrays, screen records, or table aliases) includes all the 4GL statements
that are executed while the form is open.

The following table summarizes the scope of reference of 4GL identifiers for
various types of 4GL program entities.

Named 4GL Program Entity Scope of Reference of 4GL Identifier

Constant Global (for TRUE, FALSE, and NOTFOUND)

Formal argument Local to its function or report definition

Function or report Global

Variable Module (if declared outside a program block) or
local (if declared inside a program block)

Screen field, array, or record While the form that declares it is displayed

Screen form or window Global (after it has been declared)

Statement label Local (to the program block in which it appears)

Table alias While the form that declares it is displayed

4GL Identifiers

The INFORMIX-4GL Language 2-19

Here each line represents a separate name space. With each name space, 4GL
identifiers that have the same scope of reference must be unique. (In addition
to these restrictions, a formal argument cannot have the same identifier as its
own function or report.) For details of how 4GL resolves conflicts between
non-unique identifiers within the same name space, see “Visibility of
Identical Identifiers” on page 2-19.

In C, global variables and functions share the same name space. Unless you
compile your 4GL source code to p-code, a compilation error results if a
global variable has the same identifier as a 4GL function or report.

Scope and Visibility of SQL Identifiers
By default, the scope of a cursor or prepared object name is from its DECLARE
or PREPARE declaration until the module ends, or until a FREE statement
specifies its name. (The -globcurs compiler flag makes their scope global.)
After FREE, subsequent DECLARE or PREPARE statements in the same
module cannot reassign the same name, even to an entity that is identical to
whatever FREE referenced. All other SQL identifiers have global scope.

Statements cannot reference the name of a global database entity like a table,
column, or index after an SQL data definition statement to DROP the entity is
executed, or if the database that contains the entity is not open.

If you assign to a 4GL entity the name of an SQL entity, the 4GL name takes
precedence within its scope. To avoid ambiguity in DELETE, INSERT, SELECT,
and UPDATE statements (and only in these statements), prefix an @ symbol to
the name of any table or column that has the same name as a 4GL variable.
Otherwise, only the 4GL identifier is visible in these ambiguous contexts.

Visibility of Identical Identifiers
A compile-time error occurs if you declare the same name for two variables
that have the same scope. You can, however, declare the same name for
variables that differ in their scope. For example, you can use the same
identifier to reference different local variables in different program blocks.

You can also declare the same name for two or more variables whose scopes
of reference are different but overlapping. Within their intersection, 4GL
interprets the identifier as referencing the variable whose scope is smaller,
and therefore the variable whose scope is a superset of the other is not visible.

4GL Identifiers

2-20 HCL Informix 4GL Reference Guide

Non-Unique Global and Local Variables

If a local variable has the same identifier as a global variable, then the local
variable takes precedence inside the program block in which it is declared.
Elsewhere in the program, the identifier references the global variable, as
illustrated in the 4GL program in Figure 2-1.

Figure 2-1
Precedence of Local Variables over Global Variables

GLOBALS

DEFINE var INT
END GLOBALS
MAIN

DEFINE var INT
LET var = 2
DISPLAY var AT 2,2
SLEEP 2
CALL first3()

END MAIN
FUNCTION first3()

DEFINE var INT
LET var = 3
DISPLAY var AT 3,3
CALL final4()
SLEEP 2

END FUNCTION
FUNCTION final4()

LET var = 4
DISPLAY var AT 4,4
SLEEP 2

END FUNCTION

Scope is global (entire program).

Scope is local to the MAIN program block

Scope is local to the first3 FUNCTION.

Scope is global (entire program).

The shaded area indicates where the global identifier called var is visible.
This is superseded in the MAIN statement and in the first FUNCTION
program block by local variables that have the same name. Only the last
DISPLAY statement references the global variable; the first two display local
variables.

4GL Identifiers

The INFORMIX-4GL Language 2-21

Non-Unique Global and Module Variables

A module variable can have the same name as a global variable that is
declared in a different module. Within the module where it is declared, the
module variable takes precedence over the global variable. Statements in that
module cannot reference the global variable.

A module variable cannot have the same name as a global variable that is
declared in the same module.

Non-Unique Module and Local Variables

If a local variable has the same identifier as a module variable, then the local
identifier takes precedence inside the program block in which it is declared.
Elsewhere in the same source-code module, the name references the module
variable, as illustrated in Figure 2-2.

Figure 2-2
Precedence of Local Variables over Module Variables

DEFINE var INT
MAIN

DEFINE var INT
LET var = 2
DISPLAY var AT 2,2
SLEEP 2
CALL first3()

END MAIN
FUNCTION first3()

DEFINE var INT
LET var = 3
DISPLAY var AT 3,3
CALL final4()
SLEEP 2

END FUNCTION
FUNCTION final4()

LET var = 4
DISPLAY var AT 4,4
SLEEP 2

END FUNCTION

Scope is the entire module.

Scope is local to the MAIN program block.

Scope is local to the first3 FUNCTION.

Scope is the entire module.

Interacting with Users

2-22 HCL Informix 4GL Reference Guide

The shaded area indicates where the module variable called var is visible.
This is superseded in the MAIN block and in the first FUNCTION program
block by the identifiers of local variables called var. The first two DISPLAY
statements show values of local variables; the last displays the module
variable.

In the portion of a program where more than one variable has the same
identifier, 4GL gives precedence to a module identifier over a global one, and
to a local identifier over one with any other scope. Assign unique names to
variables if you wish to avoid masking part of the scope of non-unique
module identifiers.

Interacting with Users
You can use 4GL to create applications composed of the following interface
elements:

■ Menus
■ Screen forms
■ 4GL windows
■ Help messages
■ Reports based on data retrieved from an SQL database (described in

Chapter 7, “INFORMIX-4GL Reports”)

Ring Menus

The INFORMIX-4GL Language 2-23

3
u

Ring Menus
You can use the MENU statement of 4GL to create and display a ring menu o
command options, so that users can perform the tasks that you specify. Th
menu of a typical 4GL program, for example, might look like Figure 2-3.

Figure 2
The Format of a Typical 4GL Ring Me

Options: Customer Order Customer Calls Clients State ...
Display information about current customers.

Message describing the Current option Menu options Ellipsis points
currently highlighted menu show additional
option options exist

Menu title

Option names are not 4GL identifiers, and can include embedded blank
characters and other printable characters. By default, an option is chosen
when the user types its initial character, but you can specify additional
activation keys. Different menus can have the same option names.

If a menu has more options than can fit on one line, ellipsis points automati-
cally indicate that more options appear on another page of the menu. In this
example, the ellipsis indicates that additional menu options are on one or
more pages to the right. Similarly, an ellipsis on the left means that additiona
menu options are on one or more menu pages to the left.

The user can scroll to the right to display the next page of options by using
the RIGHT ARROW or SPACEBAR, or scroll to the left with the LEFT ARROW.

You can nest MENU statements within other MENU statements, so that the
menus form a hierarchy. A nested MENU statement can appear directly
within a menu control block, or else in a function that is called directly or
indirectly when the user chooses an option of the enclosing menu.

Ring Menus

2-24 HCL Informix 4GL Reference Guide

Selecting Menu Options
By pressing RETURN, the user can select the menu option that is currently
highlighted in reverse video. In the previous example, Customer would be
selected. The highlight that indicates the current option is called the menu
cursor.

The menu in Figure 2-3 on page 2-23 is called a ring menu because the menu
cursor behaves as if the list of options were cyclic; if the user moves the cursor
to the right, past the last option, then the first option is highlighted. Similarly,
moving the menu cursor to the left, past the first option, highlights the last
option.

Pressing the key that matches the initial character of a menu option, such as
O (for Order) in the preceding illustration, selects the corresponding option.

All other options are disabled until the associated COMMAND block
completes its execution. Disabled menu options cannot be selected.

Ambiguous Keyboard Selections
If the user makes an ambiguous menu option selection (for example, by
typing C in the 4GL menu containing Customer, Customer Calls, and Clients
in the previous example, 4GL clears the second line of the menu and prompts
the user to clarify the choice. 4GL displays each keystroke, followed by the
names of the menu options that begin with the typed letters. When 4GL
identifies a unique option, it closes this prompt line and executes the state-
ments associated with the selected menu option. Pressing BACKSPACE undoes
the most recently typed key.

Hidden Options and Invisible Options
You can suppress the display of any subset of the menu options, disabling
these hidden options. “The HIDE OPTION and SHOW OPTION Keywords”
on page 4-260 describes how the MENU statement can programmatically
control whether a menu option is hidden or accessible.

Menus can also include invisible options. An invisible option does not appear
in the menu, but it performs the specified actions when the user presses the
activation key. For a description of how to create invisible options, see
“Invisible Menu Options” on page 4-257.

Screen Forms

The INFORMIX-4GL Language 2-25

Disabled Menus
Menus themselves are not always accessible. During screen interaction state-
ments like INPUT, CONSTRUCT, INPUT ARRAY, and DISPLAY ARRAY, errors
would be likely to result if the user could interrupt the interaction with menu
choices. 4GL prevents these errors by disabling the entire menu during the
execution of these statements. The menu does not change its appearance
when it is disabled.

Reserved Lines for Menus
The first line (called the Menu line) lists a title and options of the menu. A
menu cursor (a double border) highlights the current option. For each option,
a menu control block specifies statements to execute if the user chooses the
option. (For more information, see “The MENU Control Blocks” on
page 4-250).

The next line (called the Menu Help line) displays a prompt for the currently
highlighted option. If the user moves the menu cursor to another option, this
prompt is replaced by one for the new current option.

Screen Forms
A screen form is a 4GL display in which the user can view, enter, or edit data.
Chapter 6, “Screen Forms,” describes how to create screen forms.

The following visual elements (described in greater detail in Chapter 6) can
appear in a 4GL screen form:

■ Fields. Also called form fields or screen fields, these areas are where
the user enters or edits data, or the 4GL program displays a value.

■ Field delimiters. Fields are usually enclosed within brackets.
■ Screen records. These are logically related sets of fields.
■ Screen arrays. These are scrollable arrays of fields or records.
■ Decorative rectangles. These can ornament the form.
■ Text. Anything else in the form is called text. Text always appears

while the form is visible.

Screen Forms

2-26 HCL Informix 4GL Reference Guide

Text can include labels and titles, as in Figure 2-4.

Figure 2-4

Visual Elements on a Screen Form

Form title

ORDER FORM

 Customer Number: []

Text
 First Name: [] Last Name: [Grant|Miller]
 Address: []
 []
 City: [] State: [] Zip: []
 Telephone: []

Decorative line
 Order No: [] Order Date: [>06/05/89] Ship Date: []

Screen field Item No. Stock No. Code Description Quantity Price Total

 [] [] [] [] [] [] []
 [] [] [] [] [] [] []
 [] [] [] [] [] [] []

 [] [] [] [] [] [] []

Visual Cursors

4GL marks the user’s current location (if any) in the current menu, form, or
field with a visual cursor. Usually, each of these is simply called the cursor:

■ Menu cursor. Reverse video marks the option chosen if you press
RETURN.

■ Field cursor. This pipe symbol (|) marks the current character
position in the current field.

Screen Forms

The INFORMIX-4GL Language 2-27

Field Attributes
Several 4GL statements can set display attributes (as described in
“ATTRIBUTE Clause” on page 3-96). A form specification file can also
specify field attributes. These optional descriptors can control the display
when the cursor is in the field, or can supply or restrict field values during
data entry. Field attributes can have effects like these:

■ They control cursor movement among fields.
■ They set validation and default value field attributes.
■ They set formatting attributes or automatically invoke a multiple-

line editor for character data, or an external editor to view or modify
TEXT or BYTE data.

■ They set screen display color and intensity attributes.

Reserved Lines
On the 4GL screen, certain lines are reserved for output from specific 4GL
statements or from other sources. By default, these reserved lines appear in the
following positions on the 4GL screen:

■ Menu line. Line 1 displays the menu title and options list from
MENU.

■ Prompt line. Line 1 also displays text specified by the PROMPT
statement.

■ Menu Help line. Line 2 displays text describing MENU options. You
cannot reposition this line independently of the Menu line.

■ Message line. Line 2 also displays text from the MESSAGE statement.
You can reposition this line with the OPTIONS statement.

■ Form line. Line 3 begins a form display when DISPLAY FORM
executes.

■ Comment line. The next-to-last line of the 4GL screen (or the last line
in a 4GL window) displays COMMENTS attribute messages.

■ Error line. The last line of the 4GL screen displays output from the
ERROR statement.

4GL Windows

2-28 HCL Informix 4GL Reference Guide

If you display the form in a named 4GL window, these default values apply
to that window, rather than to the 4GL screen, except for the Error line. (The
position of the Error line is defined relative to the entire screen, rather than to
any 4GL window.)

The OPTIONS statement can change these default positions for all the 4GL
windows of your application. The OPEN WINDOW statement can reposition
all of these reserved lines (except the Error line) within the specified 4GL
window. (These 4GL statements are described in detail in Chapter 4.)

4GL Windows
A 4GL window is a named rectangular area on the 4GL screen. When a 4GL
program starts, the entire 4GL screen is the current window. Some 4GL state-
ments can reference this default window as SCREEN. The OPEN WINDOW
statement can create additional 4GL windows, dimensions, position, and
attributes of each window. In DBMS applications that perform various tasks,
displaying distinct activities in different 4GL windows is a good design
strategy.

No 4GL window can display more than one 4GL form. The CURRENT
WINDOW statement can transfer control from one 4GL window to another.

The Current Window
4GL maintains a list of all open 4GL windows, called the window stack. When
you open a new 4GL window, it is added to the top of this stack. The window
at the top of the stack is the current window.

The current 4GL window is always completely visible, and can obscure all or
part of other windows. When you specify a new current window, 4GL adjusts
the window stack by moving that window to the top, and closing any gap in
the stack left by the window. When you close a window, 4GL removes that
window from the window stack. The top-most window among those that
remain on the screen becomes the current window. All this takes place within
the 4GL screen.

On-Line Help

The INFORMIX-4GL Language 2-29

All input and output is done in the current window. If that window contains
a screen form, the form becomes the current form. The DISPLAY ARRAY, INPUT,
INPUT ARRAY, and MENU statements all run in the current window. If a user
displays a form in another window from within one of these statements (for
example, by activating an ON KEY block), the window containing the new
form becomes the current window. When the enclosing statement resumes
execution, the original window is restored as the current window.

Programs with multiple windows might need to switch to a different current
window unconditionally, so that input and output occur in the appropriate
window. The CURRENT WINDOW statement makes a specified window (or
SCREEN) the current window. When a window becomes the current window,
4GL restores its values for the positions of the Prompt, Menu, Message, Form,
and Comment lines.

On-Line Help
4GL includes two distinct facilities for displaying help messages:

■ Development help. The developer can request help from the
Programmer’s Environment regarding features of the 4GL language.
Use the Help key (typically CONTROL-W) to display help on the
currently selected menu option.

■ Runtime help. The user of a 4GL application can display
programmer-defined help messages.

Runtime help is displayed when the user presses a designated Help key
(CONTROL-W). The 4GL statements that can include a HELP clause are these:

■ CONSTRUCT (during a query by example)
■ INPUT and INPUT ARRAY (during data entry)
■ MENU (for each menu option)
■ PROMPT (when the user must supply keyboard input)

The HELP clause specifies a single help message for the entire 4GL statement.
To provide field-level help in these interactive statements, you can use an ON
KEY clause with the INFIELD() operator and the SHOW_HELP() function,
which are described in Chapter 5, “Built-In Functions and Operators.”

On-Line Help

2-30 HCL Informix 4GL Reference Guide

The Help Key and the Message Compiler
By default, CONTROL-W acts as the Help key. To specify a nondefault Help key,
or to identify a file that contains help messages, use the OPTIONS statement.
If you specify a file of help messages, 4GL displays the messages in the Help
window.

While the MENU statement of 4GL is executing, the question (?) mark key
also acts as the Help key.

The Help Window
Here is an example of a typical Help window display.

When the user presses the Help key in a context for which you have prepared
a help message, that message appears in a Help window. The 4GL screen is
hidden while this window is open.

The Help window has a 4GL ring menu containing Screen and Resume menu
options. Screen displays the next page of help text. Resume closes the Help
window and redisplays the 4GL screen.

HELP: Screen
Ends this Help session.

To delete a customer from the database, first use the
query function to find the customer row you want to
delete. Then select the delete option and type "y" to
delete the row or "n" if you decide not to delete the row.

You have reached the end of this help text. Press RETURN to continue.

Resume

Nested and Recursive Statements

The INFORMIX-4GL Language 2-31

You must create these help messages and store them in an ASCII file. Each
message begins with a unique whole number that has an absolute value no
greater than 32,767 and is prefixed by a period (.). Statements of 4GL can
reference a help message by specifying its number in a HELP clause.
You must compile help messages from the ASCII source file to a runtime
format by using the mkmessage utility. For more information about creating
help messages, see “The mkmessage Utility” on page B-2.

The Help window persists until the user closes it. The user can dismiss the
Help window by using the Resume menu option or by pressing RETURN.

Nested and Recursive Statements
The form-based 4GL statements CONSTRUCT, DISPLAY ARRAY, INPUT, INPUT
ARRAY, and PROMPT are collectively referred to as input control block (ICB)
statements, because they use a common underlying data structure called the
input control block. 4GL supports nested and recursive ICB statements in
which the parent and the child ICB statements use the same screen form for
accepting and displaying data. In the case of recursive ICB statements, the
parent and the child statements can be the same:

■ Nested input occurs when two ICB statements (such as INPUT, INPUT
ARRAY, DISPLAY ARRAY, or CONSTRUCT) operate concurrently on
the same fields of the same screen form. Concurrently, in this context,
means that one ICB statement is suspended while using the same
form field that another ICB statement is using.

■ Recursive input occurs when two instances of the same ICB statement
operate concurrently, and a BEFORE or AFTER or ON KEY control
block is activated that invokes a function that executes the same ICB
statement recursively, re-executing that ICB statement. It does not
matter whether the recursion is direct (the function calls itself) or
indirect (the function calls another function, which in turn calls the
first function again).

Opening and closing screen forms precludes nesting and recursion of ICB
statements, which can only occur when forms are not being opened and
closed while the outer ICB statement is still processing.

Recursive and nested input imply the use of the same 4GL window. Changing
the current window inherently changes the form (or the instance of the form)
that is currently in use.

Nested and Recursive Statements

2-32 HCL Informix 4GL Reference Guide

4GL supports both direct and indirect nesting of the ICB statements; the level
of nesting is limited only by the availability of the resources. Direct nesting
involves embedding the child ICB statement in a control block, such as ON
KEY, BEFORE FIELD, AFTER FIELD, and so forth, of the parent ICB statement.

The following code example illustrates direct nesting of INPUT statements:

MAIN

DEFINE r1, r2 RECORD

f1, f2, f3 CHAR(30)
END RECORD

DATABASE nestedinputDB
DEFER INTERRUPT
OPEN FORM nest_form FROM "nested_input"
DISPLAY FORM nest_form
LET INT_FLAG = FALSE
IF NOT INT_FLAG THEN
INPUT BY NAME r1.* WITHOUT DEFAULTS --Parent INPUT stmt
BEFORE INPUT
MESSAGE "BEFORE INPUT STATEMENT 1" SLEEP 1
BEFORE FIELD f1
MESSAGE "Input Statement 1 -- BF1" SLEEP 1
AFTER FIELD f2
MESSAGE "Input Statement 1 -- AF1" SLEEP 1
--Child INPUT Statement
INPUT BY NAME r2.* WITHOUT DEFAULTS --Child INPUT stmt
BEFORE INPUT
MESSAGE "BEFORE INPUT STATEMENT 2" SLEEP 1
AFTER INPUT
MESSAGE "AFTER INPUT STATEMENT 2" SLEEP 1
ON KEY (CONTROL-W)
MESSAGE "IP2: HELP IS NOT AVAILABLE" SLEEP 1
END INPUT --End of Child INPUT stmt
LET r2.f1 = "Child INPUT Statement -- ", r2.f1 CLIPPED
INSERT INTO table_2 VALUES(r2.*)
AFTER INPUT
MESSAGE "AFTER INPUT STATEMENT 1" SLEEP 1
ON KEY (CONTROL-W)
MESSAGE "IP1: HELP IS NOT AVAILABLE" SLEEP 1
END INPUT --End of Parent INPUT stmt
END IF
LET r.f1 = "Parent INPUT Statement -- ", r1.f1 CLIPPED
INSERT INTO table_1 VALUES(r1.*)
MESSAGE "Input Statement -- complete" SLEEP 1

END MAIN

Nested and Recursive Statements

The INFORMIX-4GL Language 2-33

In this example of nested INPUT statements, the parent and the child state-
ments use the same form for entering data. After the user enters data in fields
f1 and f2 for the parent INPUT statement, control transfers to the child INPUT
statement. Once the child INPUT statement is executed, data entered for the
child is inserted in table_2. Then control returns to the parent and fields f1
and f2 are restored to their original values.

Indirect nesting invokes a function that contains the child ICB statement,
from the parent ICB statement. Once again, the parent and the child ICB state-
ments use the same form for data entry.

Nested and Recursive Statements

2-34 HCL Informix 4GL Reference Guide

The following code illustrates indirect nesting of INPUT statements:

MAIN
DEFINE r1 RECORD
f1, f2, f3 CHAR(30)
END RECORD
DATABASE nestedinputDB
DEFER INTERRUPT
OPEN FORM nest_form FROM "nested_input"
DISPLAY FORM nest_form
LET INT_FLAG = FALSE

IF NOT INT_FLAG THEN
INPUT BY NAME r1.* WITHOUT DEFAULTS--Parent INPUT stmt
BEFORE INPUT
MESSAGE "BEFORE INPUT STATEMENT 1" SLEEP 1
BEFORE FIELD f1
MESSAGE "Input Statement 1 -- BF1" SLEEP 1
AFTER FIELD f2
MESSAGE "Input Statement 1 -- AF1" SLEEP 1
--Indirect Nesting

CALL child_inputstmt()
AFTER INPUT
MESSAGE "AFTER INPUT STATEMENT 1" SLEEP 1
ON KEY (CONTROL-W)

MESSAGE "IP1: HELP IS NOT AVAILABLE" SLEEP 1
END INPUT --End of Parent INPUT stmt

END IF
LET r.f1 = "Parent INPUT Statement -- ", r1.f1 CLIPPED
INSERT INTO table_1 VALUES(r1.*)
MESSAGE "Input Statement -- complete" SLEEP 1

END MAIN
FUNCTION child_inputstmt()

DEFINE r2 RECORD
f1, f2, f3 CHAR(30)
END RECORD
LET INT_FLAG = FALSE

IF NOT INT_FLAG THEN
INPUT BY NAME r2.* WITHOUT DEFAULTS --Child INPUT stmt
BEFORE INPUT
MESSAGE "BEFORE INPUT STATEMENT 2" SLEEP 1
AFTER INPUT
MESSAGE "AFTER INPUT STATEMENT 2" SLEEP 1
ON KEY (CONTROL-W)

MESSAGE "IP2: HELP IS NOT AVAILABLE" SLEEP 1
END INPUT --End of Child INPUT stmt

END IF
LET r2.f1 = "Child INPUT Statement -- ", r2.f1 CLIPPED
INSERT INTO table_2 VALUES(r2.*)

END FUNCTION

Performing heterogeneous nesting is valid where the parent and the child
statements are entirely different. For example, where CONSTRUCT is the
parent statement, INPUT can be the child statement.

Nested and Recursive Statements

The INFORMIX-4GL Language 2-35

The recursive ICB statements feature provides extra flexibility to 4GL
programmers. The following example illustrates the use of the recursive
INPUT statement:

MAIN
DEFINE r RECORD
f1, f2, f3 CHAR(30)
END RECORD
DEFINE z INTEGER
DATABASE recinputDB
DEFER INTERRUPT
OPEN FORM recurs_form FROM "recursive_input"
DISPLAY FORM recurs_form
LET z = 0
CALL recursive_input(z, r)

END MAIN
FUNCTION recursive_input(z1, r1)

DEFINE r1 RECORD
f1, f2, f3 CHAR(30)
END RECORD
DEFINE z1 INTEGER
LET INT_FLAG = FALSE
LET z1 = z1 + 1
IF z1 > 3 THEN
RETURN
END IF
MESSAGE "Recursive Cycle: ", z1 SLEEP 1

IF NOT INT_FLAG THEN
INPUT BY NAME r1.* WITHOUT DEFAULTS
BEFORE INPUT
MESSAGE "BEFORE INPUT STATEMENT 1" SLEEP 1
BEFORE FIELD f1
MESSAGE "Input Statement 1 -- BF1" SLEEP 1
AFTER FIELD f2
MESSAGE "Input Statement 1 -- AF1" SLEEP 1
CALL recursive_input(z1, r1) --Recursive call
AFTER INPUT
MESSAGE "AFTER INPUT STATEMENT 1" SLEEP 1
ON KEY (CONTROL-W)
MESSAGE "IP1: HELP IS NOT AVAILABLE" SLEEP 1
END INPUT

END IF
LET r.f1 = "Recursive Cycle -- ", z1, r1.f1 CLIPPED
INSERT INTO table_1 VALUES(r1.*)
MESSAGE "Input Statement -- complete" SLEEP 1

END FUNCTION

Nested and Recursive Statements

2-36 HCL Informix 4GL Reference Guide

For every recursive invocation of the function recursive_input(), the same
form is used for data entry. A recursive call is made after you enter data in
fields f1 and f2 for each invocation. Before making a recursive call, the
context is stored in dynamically allocated variables and pushed onto a stack.
After the terminating condition for recursion is satisfied, the context is
popped out of the stack, and the buffers for fields f1 and f2 revert to their
original values.

It is valid to combine all the different types of nesting, such as direct, indirect,
heterogeneous, and homogeneous, with recursive ICB statements. To avoid
anomalous behavior, it is advisable to recompile and relink pre-6.x 4GL appli-
cations that use ICB-related statements with current 4GL software.

Early Exits from Nested and Recursive Operations
These nested input features allow some operations that can cause 4GL to
clean up incorrectly during INPUT, INPUT ARRAY, DISPLAY ARRAY,
CONSTRUCT, MENU, and PROMPT statements, and in FOREACH loops.

For any nested statements, an early exit from inside one of the inner state-
ments to one of the outer statements, or a RETURN, means that 4GL does not
clean up any statement except the innermost statement.

Nested and Recursive Statements

The INFORMIX-4GL Language 2-37

The following code example, though of no practical use, illustrates nested
INPUT statements. There are nine levels of nested statements in the code.

MAIN
CALL f()

END MAIN
FUNCTION f()

DEFINE s CHAR(300)
DEFINE y INTEGER
DEFINE i INTEGER
DEFINE t INTEGER
DEFINE a ARRAY[10] OF INTEGER
DECLARE c CURSOR FOR
SELECT Tabid FROM Systables
OPEN WINDOW w AT 1, 1 WITH FORM "xxx"
LET y = 0
FOREACH c INTO t

FOR i = 1 TO 10
WHILE y < 1000
MENU "ABCDEF"
BEFORE MENU
HIDE OPTION "B"
COMMAND "A" "Absolutely"
SHOW OPTION "B"
IF a[1] THEN EXIT MENU END IF
IF a[1] THEN CONTINUE MENU END IF
NEXT OPTION "E"
COMMAND "B" "Beautiful"
MESSAGE "Thank you"
COMMAND "C" "Colourful"
MESSAGE "Thank you"
COMMAND "D" "Delicious"
MESSAGE "Thank you"
COMMAND "E" "Exit"
EXIT MENU
COMMAND "F"
MENU "XYZ"
COMMAND "X"
EXIT MENU
COMMAND "Y"
INPUT BY NAME y WITHOUT DEFAULTS
AFTER FIELD y
IF a[1] THEN EXIT FOR END IF
IF a[1] THEN CONTINUE FOR END IF
IF a[1] THEN EXIT FOREACH END IF
IF a[1] THEN CONTINUE FOREACH END IF
IF a[1] THEN EXIT WHILE END IF
IF a[1] THEN CONTINUE WHILE END IF
IF a[1] THEN RETURN END IF
IF a[1] THEN EXIT MENU END IF
IF a[1] THEN CONTINUE MENU END IF
IF a[1] THEN EXIT INPUT END IF
IF a[1] THEN CONTINUE INPUT END IF
IF a[1] THEN GOTO End_Label END IF

Nested and Recursive Statements

2-38 HCL Informix 4GL Reference Guide

IF a[1] THEN GOTO Mid_Label END IF
CONSTRUCT BY NAME s ON y

AFTER FIELD y
IF a[1] THEN EXIT FOR END IF
IF a[1] THEN CONTINUE FOR END IF
IF a[1] THEN EXIT FOREACH END IF
IF a[1] THEN CONTINUE FOREACH END IF
IF a[1] THEN EXIT WHILE END IF
IF a[1] THEN CONTINUE WHILE END IF
IF a[1] THEN RETURN END IF
IF a[1] THEN EXIT MENU END IF
IF a[1] THEN CONTINUE MENU END IF

-- EXIT INPUT is not allowed by the compiler (error 4488)
-- IF a[1] THEN EXIT INPUT END IF
-- CONTINUE INPUT is not allowed by the compiler
-- (error 4488)
-- IF a[1] THEN CONTINUE INPUT END IF

IF a[1] THEN EXIT CONSTRUCT END IF
IF a[1] THEN CONTINUE CONSTRUCT END IF
IF a[1] THEN GOTO End_Label END IF

IF a[1] THEN GOTO Mid_Label END IF
CALL SET_COUNT(3)
DISPLAY ARRAY a TO a.*

ON KEY (F3)

IF a[1] THEN EXIT FOR END IF
IF a[1] THEN CONTINUE FOR END IF
IF a[1] THEN EXIT FOREACH END IF
IF a[1] THEN CONTINUE FOREACH END IF
IF a[1] THEN EXIT WHILE END IF
IF a[1] THEN CONTINUE WHILE END IF
IF a[1] THEN RETURN END IF
IF a[1] THEN EXIT MENU END IF
IF a[1] THEN CONTINUE MENU END IF
IF a[1] THEN EXIT DISPLAY END IF

-- CONTINUE DISPLAY is not allowed by the compiler
-- IF a[1] THEN CONTINUE DISPLAY END IF
-- EXIT INPUT is not allowed by the compiler (error 4488)
-- IF a[1] THEN EXIT INPUT END IF
-- CONTINUE INPUT is not allowed by the compiler (error
-- 4488)
-- IF a[1] THEN CONTINUE INPUT END IF
-- EXIT CONSTRUCT is not allowed by the compiler (error
-- 4488)
-- IF a[1] THEN EXIT CONSTRUCT END IF
-- CONTINUE CONSTRUCT is not allowed by the compiler
-- (error 4488)
-- IF a[1] THEN CONTINUE CONSTRUCT END IF

IF a[1] THEN GOTO End_Label END IF
IF a[1] THEN GOTO Mid_Label END IF
INPUT ARRAY a FROM a.*
AFTER FIELD y
IF a[1] THEN EXIT FOR END IF
IF a[1] THEN CONTINUE FOR END IF
IF a[1] THEN EXIT FOREACH END IF

Nested and Recursive Statements

The INFORMIX-4GL Language 2-39

IF a[1] THEN CONTINUE FOREACH END IF
IF a[1] THEN EXIT WHILE END IF
IF a[1] THEN CONTINUE WHILE END IF
IF a[1] THEN RETURN END IF
IF a[1] THEN EXIT MENU END IF
IF a[1] THEN CONTINUE MENU END IF
IF a[1] THEN EXIT INPUT END IF
IF a[1] THEN CONTINUE INPUT END IF

-- EXIT DISPLAY *is* allowed by the compiler (despite
-- error 4488)

IF a[1] THEN EXIT DISPLAY END IF
-- CONTINUE DISPLAY is not allowed by the compiler
-- IF a[1] THEN CONTINUE DISPLAY END IF
-- EXIT CONSTRUCT is not allowed by the compiler (error
-- 4488)
-- IF a[1] THEN EXIT CONSTRUCT END IF
-- CONTINUE CONSTRUCT is not allowed by the compiler
-- (error 4488)
-- IF a[1] THEN CONTINUE CONSTRUCT END IF

IF a[1] THEN GOTO End_Label END IF
IF a[1] THEN GOTO Mid_Label END IF
LABEL Mid_label:
MESSAGE "You got here? How?"
NEXT FIELD y

END INPUT
END DISPLAY
END CONSTRUCT
END INPUT
COMMAND "Z"
MESSAGE "Sucker!"
CONTINUE MENU
END MENU
END MENU
END WHILE
END FOR

END FOREACH
LET y = 0

LABEL End_label:
CLOSE WINDOW w

END FUNCTION

This example illustrates some problems that early exits from nested ICB and
MENU statements can cause. For example, when EXIT FOREACH executes
from within an INPUT statement that itself is nested within two MENU state-
ments, a FOR loop, and a WHILE loop (as in the first EXIT FOREACH statement
of the previous example), then the intervening menus (ABCDEF and XYZ) are
not cleaned up correctly. Here the INPUT statement itself is handled correctly,
however, and the database cursor in the FOREACH loop closes correctly.

Exception Handling

2-40 HCL Informix 4GL Reference Guide

Jump statements, including GOTO and WHENEVER…GOTO also are not dealt
with properly. If this is a concern, do not use GOTO in contexts like this.

Exception Handling
4GL provides facilities for issuing compile-time and link-time detection of
compilation errors, and for detection and handling of warnings and runtime
errors and that occur during program execution.

Compile-Time Errors and Warnings
This Guide describes 4GL language syntax, violations of which can cause
compilation errors. Compilation and link-time errors can also result from
improper settings of environment variables, or from invalid SQL syntax.
These topics are described in the Informix Guide to SQL Guides.

If you do not understand an error or warning message, look up its numeric
code with the finderr utility, or look in the on-line documentation of your
Informix database server, or in your network software Guide.

Runtime Errors and Warnings
INFORMIX-4GL Concepts and Use provides an overview of runtime errors and
the 4GL facilities for handling them. (See also the built-in STARTLOG() and
ERRORLOG() functions described in Chapter 5, “Built-In Functions and
Operators,”of the present Guide; these can support automatic or explicit
logging of runtime errors in a file.)

By default, runtime errors and warnings are written to stderr. (Versions of
4GL earlier than 6.0 wrote runtime errors and warnings to stdout.)

Runtime Errors and Warnings

The INFORMIX-4GL Language 2-41

There are several types of runtime errors and warnings:

■ SQL errors, warnings, or NOTFOUND conditions that the database
server detects and records in the SQLCA area; see “Error Handling
with SQLCA” on page 2-45

■ SPL (Stored Procedure Language) errors that the database server
reports during execution of a stored procedure; see Informix Guide to
SQL: Syntax

■ Interrupt, Quit, or other signals from the user or from other sources

■ Runtime errors and warnings that 4GL issues

For errors that occur in stored procedures, you can use the ON EXCEPTION
statement of SPL to trap errors within the procedure. You can use the DEFER
statement of 4GL to trap and handle Interrupt and Quit signals, and you can
use WHENEVER to trap and handle SQL and 4GL errors and warnings.

The WHENEVER statement can control the processing of exceptional condi-
tions of several kinds: SQL warnings, SQL end-of-data errors, errors in SQL or
screen I/O operations, or errors in evaluating 4GL expressions.

The DEFER statement can instruct 4GL not to terminate the program when a
user presses the Interrupt or Quit key. The DEFER statement has dynamic
scope, as opposed to the lexical scope of WHENEVER. When Quit or Interrupt
is deferred, the signal is ignored globally (that is, in all modules).

See the descriptions of DEFER and WHENEVER in Chapter 4 for details of how
to use these statements to handle signals, errors, and warnings.

Normal and AnyError Scope
The term error scope refers to whether the scope of error handling includes
expression errors. Normal error scope includes SQL errors, validation errors
discovered by the VALIDATE statement, and screen interaction statement
errors, but it ignores expression errors. Expression errors neither initiate any
action by a WHENEVER statement, nor do they set the status variable when
Normal error scope is in effect.

Runtime Errors and Warnings

2-42 HCL Informix 4GL Reference Guide

In contrast, AnyError error scope means that expression errors also activate
error logic, and status is set to an appropriate negative value after the
statement that produced the expression error. This was the only error scope
available with Version 4.0 of 4GL. In the current release, however, you must
request it explicitly with the WHENEVER ANY ERROR directive or with the -
anyerr flag when you compile or in the RDS runner or Debugger command
line.

For maximum ease in preventing, locating, and correcting expression errors,
Informix recommends that you write all new 4GL code to work under
AnyError error scope. With 4GL programs that you compile to C, you can
achieve this automatically by setting the C4GLFLAGS environment variable
to include -anyerr. With RDS, you can achieve this by setting the
FGLPCFLAGS environment variable to include -anyerr.

A Taxonomy of Runtime Errors
The WHENEVER statement classifies 4GL runtime errors into four disjunct
categories, as shown in Figure 2-5.

Figure 2-5
Categories of
Runtime Errors

Here errors of type 1 occur on the database server, and reset the built-in
SQLCA.SQLCODE variable to a negative value. (See “Error Handling with
SQLCA” on page 2-45 for a description of SQLCA.SQLCODE.)

To trap errors of types 1, 2, and 3, which correspond to Normal error scope,
specify WHENEVER ERROR. As Figure 2-5 indicates, Normal error scope is a
logical subset of AnyError error scope.

4Gl errors

1

SQL
errors

2

Screen I/O
errors

3

Validation
errors

4

Evaluation
errors

Normal Error Scope

AnyError Error Scope

Runtime Errors and Warnings

The INFORMIX-4GL Language 2-43

To use AnyError error scope, which can also trap errors of type 4, you must
specify WHENEVER ANY ERROR, or else compile with the -anyerr option.
Errors of type 4 can include arithmetic, Boolean, or conversion errors that
occur when 4GL evaluates an expression.

Important: Earlier releases of 4GL supported fatal (or “untrappable”) runtime errors,
which could not be trapped by WHENEVER statements, but such errors are not a
feature of this release. There are no 4GL errors outside AnyError error scope.

Default Error Behavior and ANSI Compliance
The default responses to error conditions differ between the ANSI-compliant
method and the non-ANSI-compliant method as follows:

1. If ANSI compliance is requested and no WHENEVER statement is in
effect, the default action after an error is CONTINUE.
ANSI compliance is in effect if any of the following conditions exists:
■ There is a default compile-time database that is ANSI-compliant.
■ The -ansi compilation flag is specified.
■ The DBANSIWARN environment variable is set.
In releases of RDS earlier than 6.0, the default error action was STOP
(rather than CONTINUE) for the last two of these three conditions.

2. If neither ANSI compliance nor any WHENEVER statement is in effect,
the following factors determine the default error action:
■ If the -anyerr flag is used, the default action is STOP.
■ If the -anyerr flag is not used, the default action after an

expression or data type conversion error is CONTINUE. After
other categories of errors, it is STOP.

ANSI

Changes to 4GL Error Handling

2-44 HCL Informix 4GL Reference Guide

The error behavior depends on the database that the nonprocedural
DATABASE statement references when you compile the program. If you
compile with a non-ANSI-compliant default database, but run with an ANSI-
compliant current database, the error behavior is as if the database were not
an ANSI-compliant database. The converse also applies: if you compile
against an ANSI-compliant database but run against a non-ANSI-compliant
database, then the error behavior is the same as if the runtime database were
ANSI-compliant.

If you compile part of the application against an ANSI-compliant database
and part of it against a non-ANSI-compliant database, then those parts of the
application compiled against the ANSI-compliant database have the default
error action of CONTINUE and those parts compiled against the non-ANSI-
compliant database have the default error action of STOP.

Changes to 4GL Error Handling
In this version of 4GL (and in contrast to versions earlier than 6.01), the
following error handling features are in effect:

■ The status variable is set for expression errors only if AnyError error
scope is in effect. AnyError behavior is no longer the default for RDS.
This is a significant backward-compatibility concern for RDS users
who do not explicitly use AnyError error scope. Use the -anyerr flag
when compiling your p-code modules to prevent unexpected failure
of expression errors to set status (and recompile other p-code mod-
ules in the same program, for consistency within each program).

■ Error and warning messages are no longer written to the UNIX
standard error file. They are written to the 4GL error log file only.

This change primarily affects 4GL programs that are compiled to C and that
use Normal error scope (because most RDS expression or conversion errors
have used -anyerr behavior, regardless of the requested error scope). Use 4GL
error logs in order to recognize and isolate errors.

Error Handling with SQLCA

The INFORMIX-4GL Language 2-45

Error Handling with SQLCA
Proper database management requires that all logical sequences of
statements that modify the database continue successfully to completion.
Suppose, for example, that an UPDATE operation on a customer account
shows a reduction of $100.00 in the payable balance, but for some reason the
next step, an UPDATE of the cash balance, fails; now your books are out of
balance. It is prudent to verify that every SQL statement executes as you
anticipated. 4GL provides two ways to do this:

■ The global variable status, which can indicate errors, both from SQL
statements and from other 4GL statements

■ The global record SQLCA, which indicates the success of SQL
statements, and provides other information about actions of the
database server

Compared to status, the SQLCA.SQLCODE variable is typically easier to use
for monitoring the success or failure of SQL statements because it ignores
exceptional conditions that might be encountered in other 4GL statements.

4GL returns a result code into the SQLCA record after executing every SQL
statement. Because it is automatically defined, you do not need to (and must
not) declare the SQLCA record, which has this structure:

DEFINE SQLCA RECORD
SQLCODE INTEGER,
SQLERRM CHAR(71),
SQLERRP CHAR(8),
SQLERRD ARRAY [6] OF INTEGER,
SQLAWARN CHAR (8)

END RECORD

Error Handling with SQLCA

2-46 HCL Informix 4GL Reference Guide

The members of SQLCA have the following semantics:

SQLCODE indicates the result of any SQL statement. It is set to zero for a
successful execution, and to NOTFOUND (= 100) for a success-
fully executed query that returns zero rows, or for a FETCH
that seeks beyond the end of the current active set. SQLCODE
is negative after an unsuccessful SQL operation.

At runtime, 4GL sets the variable status equal to SQLCODE
after each SQL statement. (See also the description of the ANY
keyword of WHENEVER in “A Taxonomy of Runtime Errors”
on page 2-42.) The finderr utility can provide explanations of
SQL and 4GL error codes.

SQLERRM is not used at this time.

SQLERRP is not used at this time.

SQLERRD is an array of six variables of data type INTEGER:

SQLERRD[1] is not used at this time.

SQLERRD[2] is a SERIAL value returned or ISAM error
code.

SQLERRD[3] is the number of rows inserted or updated.

SQLERRD[4] is the estimated CPU cost for query.

SQLERRD[5] is the offset of the error into the SQL state-
ment.

SQLERRD[6] is the row ID of the last row that was pro-
cessed; whether it was returned is server
dependent.

SQLAWARN is an 8-byte string whose characters signal any warnings (as
opposed to errors) after any SQL statement executes. All char-
acters are blank if no problems were detected.

SQLAWARN[1] is set to W if any of the other warning charac-
ters were set to W. If SQLAWARN[1] is blank,
you do not have to check the other warning
characters.

Error Handling with SQLCA

The INFORMIX-4GL Language 2-47

SQLAWARN[2] is set to W if one or more values were trun-
cated to fit into a CHAR variable, or if a DATA-
BASE statement selected a database with
transactions.

SQLAWARN[3] is set to W if an aggregate like SUM(), AVG(),
MAX(), or MIN() encountered a null value in
its evaluation, or if the DATABASE statement
specified an ANSI/ISO-compliant database.

SQLAWARN[4] is set to W if a DATABASE statement selected
an Informix Dynamic Server database, or
when the number of items in the select-list of
a SELECT clause is not the same as the num-
ber of program variables in the INTO clause.
(The number of values returned by 4GL is the
smaller of these two numbers.)

SQLAWARN[5] is set to W if float-to-decimal conversion is
used.

SQLAWARN[6] is set to W if your program executes an Infor-
mix extension to the ANSI/ISO standard for
SQL syntax while the DBASIWARN variable is
set, or after the -ansi compilation flag was
used.

SQLAWARN[7] is set to W if a query skips a table fragment, or
if the database and client have different
locales.

SQLAWARN[8] is not used at present.

If a multi-row INSERT or UPDATE statement of SQL fails, then SQLERRD[3] is
set to the number of rows that were processed before the error was detected.
If a LOAD operation fails with error -846, however, SQLERRD[3] is always set
to 1, regardless of how many rows (if any) were successfully inserted.

For a complete description of SQLCA, see the Informix Guide to SQL: Tutorial
in your Informix database server documentation.

Data Types and Expressions

In This Chapter ... 3-5

Data Values in 4GL Programs ... 3-5

Data Types of 4GL .. 3-6
Simple Data Types ... 3-9

Number Data Types .. 3-10
Character Data Types ... 3-11
Time Data Types.. 3-11

Structured Data Types ... 3-12
Large Data Types ... 3-12
Descriptions of the 4GL Data Types .. 3-12
ARRAY ... 3-13
BYTE .. 3-14
CHAR .. 3-16
CHARACTER .. 3-17
DATE ... 3-17
DATETIME ... 3-18
DEC ... 3-23
DECIMAL (p, s) ... 3-23
DECIMAL (p) ... 3-24
DOUBLE PRECISION ... 3-25
FLOAT .. 3-25
INT ... 3-26
INTEGER .. 3-26
INTERVAL ... 3-27
MONEY .. 3-32
NCHAR .. 3-33
NVARCHAR .. 3-34

Chapter

3

3-2 HCL Informix 4GL Reference Guide

NUMERIC .. 3-34
REAL ... 3-34
RECORD ... 3-35
SMALLFLOAT .. 3-37
SMALLINT ... 3-38
TEXT ... 3-39
VARCHAR ... 3-40
Data Type Conversion ... 3-42

Converting from Number to Number .. 3-42
Converting Numbers in Arithmetic Operations 3-43
Converting Between DATE and DATETIME .. 3-44
Converting CHAR to DATETIME or INTERVAL Data Types 3-45
Converting Between Number and Character Data Types 3-46
Converting Large Data Types ... 3-46

Summary of Compatible 4GL Data Types .. 3-46
Notes on Automatic Data Type Conversion .. 3-48

Expressions of 4GL .. 3-49
Differences Between 4GL and SQL Expressions .. 3-51
Components of 4GL Expressions ... 3-52

Parentheses in 4GL Expressions .. 3-52
Operators in 4GL Expressions ... 3-53
Operands in 4GL Expressions ... 3-56
Named Values as Operands... 3-57
Function Calls as Operands ... 3-58
Expressions as Operands ... 3-59

Boolean Expressions .. 3-60
Logical Operators and Boolean Comparisons 3-61
Data Type Compatibility .. 3-61
Evaluating Boolean Expressions ... 3-62

Integer Expressions ... 3-63
Binary Arithmetic Operators ... 3-64
Unary Arithmetic Operators .. 3-65
Literal Integers .. 3-65

Number Expressions ... 3-66
Arithmetic Operators ... 3-66
Literal Numbers .. 3-67

Character Expressions ... 3-69
Arrays and Substrings .. 3-70
String Operators .. 3-70
Non-Printable Characters... 3-71

Data Types and Expressions 3-3

Time Expressions ... 3-72

Numeric Date ... 3-75
DATETIME Qualifier .. 3-76
DATETIME Literal ... 3-78
INTERVAL Qualifier ... 3-80
INTERVAL Literal ... 3-82
Arithmetic Operations on Time Values .. 3-83
Relational Operators and Time Values ... 3-85

Field Clause .. 3-86
Table Qualifiers ... 3-89

Owner Naming .. 3-89
Database References .. 3-90

THRU or THROUGH Keywords and .* Notation .. 3-92
ATTRIBUTE Clause .. 3-96

Color and Monochrome Attributes ... 3-97
Precedence of Attributes ... 3-98

3-4 HCL Informix 4GL Reference Guide

Data Types and Expressions 3-5

In This Chapter
This chapter describes how 4GL programs represent data values. The first
part of this chapter describes the 4GL data types; the latter part describes 4GL
expressions, which can return specific values of these data types.

Data Values in 4GL Programs
This section identifies and describes the data types of 4GL. In general, data
values in 4GL must be represented as some data type. A data type is a named
category that describes what kind of information is being stored, and that
implies what kinds of operations on the data value make sense.

In some cases, a value stored as one data type can be converted to another.
“Data Type Conversion” on page 3-42 identifies the pairs of 4GL data types
for which automatic conversion is supported and describes ways in which
information can be lost or modified by such conversion.

A related fundamental concept of 4GL is the notion of an expression. Just
as a data type (such as INTEGER) characterizes a general category of values,
an expression defines a specific data value. Later sections of this chapter
describe how data values are represented in 4GL source code by expressions,
and classify expressions according to the data type of the returned value.

Data Types of 4GL

3-6 HCL Informix 4GL Reference Guide

Data Types of 4GL
You must declare a data type for each variable, FORMONLY field, formal
argument of a function or report, or value returned by a function. Function
and report arguments can be any 4GL data types except ARRAY.

The following data types are valid in declarations of program variables.

Data Type Kinds of Values Stored

ARRAY OF type Arrays of values of any other single 4GL data type

BYTE Any kind of binary data, of length up to 231 bytes

CHAR(size) Character strings, of size up to 32,767 bytes in length

CHARACTER This keyword is a synonym for CHAR

DATE Points in time, specified as calendar dates

DATETIME Points in time, specified as calendar dates and time-of-day

DEC This keyword is a synonym for DECIMAL

DECIMAL(p,s)d Fixed-point numbers, of a specified scale and precision

DECIMAL(p) Floating-point numbers, of a specified precision

DOUBLE PRECISION These keywords are a synonym for FLOAT

FLOAT Floating-point numbers, of up to 32-digit precision

INT This keyword is a synonym for INTEGER

INTEGER Whole numbers, from -2,147,483,647 to +2,147,483,647

INTERVAL Spans of time in years and months, or in smaller time units

MONEY Currency amounts, with definable scale and precision

NCHAR(size) Character strings, of size up to 32,767 bytes in length

NUMERIC This keyword is a synonym for DECIMAL

NVARCHAR(size) Character strings of varying length, for size ≤ 255 bytes

(1 of 2)

Data Types of 4GL

Data Types and Expressions 3-7

Data Type Kinds of Values Stored

REAL This keyword is a synonym for SMALLFLOAT

RECORD Ordered sets of values, of any combination of data types

SMALLFLOAT Floating-point numbers, of up to 16-digit precision

SMALLINT Whole numbers, from -32,767 to +32,767

TEXT Character strings of up to 231 bytes

VARCHAR(size) Character strings of varying length, for size ≤ 255 bytes

(2 of 2)

Except for ARRAY and RECORD, the 4GL data types correspond to built-in SQL
data types of Informix database servers. The data types of 4GL approximate
a superset of the SQL data types that 7.x Informix database servers recognize,
but with the following restrictions:

■ The SERIAL data type of SQL is not a 4GL data type. (Use the INTEGER
data type to store SERIAL values from a database.) You cannot use the
SERIAL keyword in 4GL statements that are not SQL statements.

■ 4GL does not recognize the BITFIXED, BITVARYING, BLOB, BOOLEAN,
CLOB, DISTINCT, INT8, LIST, LVARCHAR, MULTISET, OPAQUE,
REFERENCE, ROW, SERIAL8, SET, or user-defined data types of
Informix database servers.

Declarations of 4GL variables, formal arguments, and returned values use the
following syntax to specify data types directly.

Simple Data Type

p. 3-9
Structured Data Type

p. 4-86
Large Data Type

p. 4-86

4GL Data Type

Data Types of 4GL

3-8 HCL Informix 4GL Reference Guide

Declarations of variables can also use the LIKE keyword, as described in
“Indirect Typing” on page 4-83. TEXT and BYTE are called the large data types;
ARRAY and RECORD are called the structured data types. All other 4GL data
types are simple data types.

Sections that follow describe the 4GL data types in each of these categories.

Simple Data Types

Data Types and Expressions 3-9

Simple Data Types
Each simple data type of 4GL can store a single value whose maximum storage
requirement is specified or implied in the data type declaration.

INTEGER
INT

SMALLINT
DECIMAL

DEC
NUMERIC
MONEY
FLOAT

(16))

(precision ,scale) (16, 2)
(precision

, 2)
, scale)

DOUBLE PRECISION (precision) REAL

SMALLFLOAT

 DATE

 DATETIME

 INTERVAL

CHARACTER

 CHAR

 NCHAR

VARCHAR

NVARCHAR

(1)
 (size)

(size , 0

, reserved

)

precision is the number of significant digits. For FLOAT, 1 ≤ precision ≤ 14.
For DECIMAL and MONEY, the range is 1 ≤ precision ≤ 32.

reserved is an SQL parameter not used by 4GL; 0 ≤ reserved ≤ size ≤ 255.
scale is the number of digits (≤ 32) in the fractional part of the number,

where 0 ≤ scale ≤ precision. The actual scale may be less than 32.
size is the maximum number of bytes that the data type can store.

For CHAR: 1 ≤ size ≤ 32,767; for VARCHAR: 1 ≤ size ≤ 255.

Element Description

p. 3-80 INTERVAL Qualifier
p. 3-76 DATETIME Qualifier

Simple Data Type

C
ha

ra
ct

er

Ti
m

e
Nu

m
be

r

Simple Data Types

3-10 HCL Informix 4GL Reference Guide

Number Types Description

Whole Number SMALLINT
INTEGER, INT

Fixed-Point DECIMAL (p, s),

DEC(p, s),
NUMERIC(p, s)

MONEY (p, s)

Floating-Point DECIMAL (p),
DEC(p),
NUMERIC(p)
FLOAT,
DOUBLE PRECISION
SMALLFLOAT, REAL

Integers, ranging from -32,767 to +32,767
Integers, ranging from -2,147,483,647 to +2,147,483,647
(that is, -(231 -1) to (231 -1))

Fixed-point numbers, of scale s and precision p

Currency values, of scale s and precision p

Floating-point numbers of precision p (but see “DECIMAL
(p)” on page 3-24 for information about ANSI-compliant
databases)
Floating-point, double-precision numbers
Floating-point, single-precision numbers

All parameters in data type declarations must be specified as literal integers.
(For more information, see “Literal Integers” on page 3-65.) The precision of
FLOAT and DOUBLE PRECISION data type declarations, and reserved in
VARCHAR data type declarations, are accepted by 4GL but are ignored.

Each simple data type can be classified as a number, time, or character type.
(Numeric, chronological, and string are synonyms for these categories.)

Number Data Types
4GL supports seven simple data types to store various kinds of numbers.

Simple Data Types

Data Types and Expressions 3-11

Character Data Types
4GL supports four simple data types for storing character string values.

Character Types Description

CHAR (size),
CHARACTER (size)

Strings of length size, for size up to 32,767 bytes

VARCHAR (size, reserved) Strings of length ≤ size, for size ≤ 255 bytes

NCHAR (size) Strings of length size, for size up to 32,767 bytes

NVARCHAR (size, reserved) Strings of length ≤ size, for size ≤ 255 bytes

The TEXT data type (see “TEXT” on page 3-39) can store text strings of up to
two gigabytes (= 231 bytes). However, TEXT is not classified here as a
character data type, because 4GL manipulates TEXT values in a different way
from how CHAR, VARCHAR, NCHAR, or NVARCHAR values are processed.

Time Data Types
4GL supports three simple data types for values in chronological units. Two
store points in time, and the third stores spans of time (positive or negative).

Time Types Description

DATE Calendar dates (month, day, year) with a fixed scale of days, in the
range from January 1 of the year 1 up to December 31, 9999

DATETIME Calendar dates (year, month, day) and time-of-day (hour, minute,
second, and fraction of second), in the range of years 1 to 9999

INTERVAL Spans of time, in years and months, or in smaller units

Structured Data Types

3-12 HCL Informix 4GL Reference Guide

Structured Data Types
4GL supports two structured data types for storing sets of values.

Structured Types Description

ARRAY Arrays of up to 32,767 values (in up to three dimensions) of any
single data type except ARRAY

RECORD Sets of values of any data type, or any combination of data types

Large Data Types
Large data types store pointers to binary large objects up to 231 bytes (two
gigabytes) or up to a limit imposed by your system resources.

Large Types Description

TEXT Strings of printable characters

BYTE Anything that can be digitized and stored on your system

Descriptions of the 4GL Data Types
Sections that follow describe each of the 4GL data types, in alphabetical order.

Unless otherwise noted, descriptions of formats for data entry and display
are for the default (U.S. English) locale. Some locales support other character
sets and different entry and display formats for number, currency, and date
values, as specified in the locale files and in environment variables. ♦

GLS

ARRAY

Data Types and Expressions 3-13

ARRAY
This structured data type stores a one-, two-, or three-dimensional array of
variables, all of the same data type. These variables can be any 4GL data type
except ARRAY. This is the syntax for declaring an array of variables:

Array Elements
Data types are here a subset of those listed in “Data Types of 4GL” on
page 3-6, because ARRAY is not valid.

A variable in an array is called an element. You can use bracket ([]) symbols
and comma-separated integers to reference a single element of an array. For
example, if xray is the identifier of an ARRAY variable:

■ xray [i] is the ith element of a one-dimensional array.
■ xray [i, j] is the jth element in the ith row of a two-dimensional array.
■ xray [i, j, k] is the kth element in the jth column of the ith row of a

three-dimensional array.

Here the coordinates i, j, and k can be variables or other integer expressions
that return positive whole numbers in the range 1 to 32,767. Within an SQL
statement delimited by SQL…END SQL, an ARRAY host variable needs the
dollar sign ($) prefix, but a variable used as an index to an array requires no
prefix.

Some C compilers impose a limit lower than 32,767 on the number of array
elements in a dimension, or on the total number. (For an array of two or more
dimensions, this total is the product of all the declared size specifications.)

ARRAY

,
[3 size] OF 4GL Data Type

(subset of p. 3-8)

ARRAY Data Type

is a positive integer number (ranging from 1 to 32,767) of elements within
a dimension. Each dimension can have a different size.

size

Element Description

BYTE

3-14 HCL Informix 4GL Reference Guide

Because you cannot manipulate an array as a single unit, statements must
refer to individual elements of an array. You reference a single array element
by specifying its coordinates in each dimension of the array. For an array
with two dimensions, for example, you must specify two coordinates to
reference any element. In expressions, 4GL expands the identifier of a record
to a list of its members but 4GL does not expand the name of an array to its
elements.

You cannot pass an array to (or from) a function or report. You can, however,
pass individual array elements. If these elements are records, 4GL expands
each element to its members in the ordinary way. Similarly, if record is a
RECORD having an ARRAY member, record.* is not a valid argument to a
function or to a report, nor (in this case) is record.* a valid specification in a list
of returned values.

Substrings of Character Array Elements
If char_array [i, j, k] is an element of an array of a character data type, you can
use a comma-separated pair of integer expressions between trailing bracket
([]) symbols to specify a substring within its string value:

char_array [i, j, k] [m, n]

Here m ≤ n, for m and n expressions that return positive whole numbers to
specify the respective positions of the first and last characters of a substring
within the array element whose coordinates in char_array are i, j, and k.

BYTE
The BYTE data type stores any kind of binary data in a structureless byte
stream. Binary data typically consists of saved spreadsheets, program load
modules, digitized voice patterns, or anything that can be stored as digits.

The DEFINE statement can use the LIKE keyword to declare a 4GL variable
like a BYTE column in an Informix database. The INFORMIX-SE database
server does not support BYTE columns, but the 4GL application program can
declare program variables of the BYTE data type.

The data type BYTE has no maximum size; the theoretical limit is 231 bytes,
but the practical limit is determined by the storage capacity of your system.

BYTE

Data Types and Expressions 3-15

You can use a BYTE variable to store, retrieve, or update the contents of a BYTE
database column, or to reference a file that you wish to display to users of the
4GL program through an external editor. After you declare a BYTE data type,
you must use the LOCATE statement to specify the storage location.

When you select a BYTE column, you can assign all or part of it to a variable
of type BYTE. You can use brackets ([]) and subscripts to reference only part
of a BYTE value, as shown in the following example:

SELECT cat_picture [1,75] INTO cat_nip FROM catalog
WHERE catalog_num = 10001

This statement reads the first 75 bytes of the cat_picture column of the row
with the catalog number 10001, and stores this data in the cat_nip variable.
(Before running this query, the LOCATE statement must first be executed to
allocate memory for the cat_nip BYTE variable.)

Restrictions on BYTE Variables
Built-in functions of 4GL cannot have BYTE arguments. Among the operators
of 4GL, only IS NULL and IS NOT NULL can use BYTE variables as operands.
The DISPLAY statement and PRINT statements cannot display BYTE values.
Neither can the LET statement or INITIALIZE statement assign any value
(except null) to a BYTE variable. The CALL and OUTPUT TO REPORT state-
ments pass any BYTE arguments by reference, not by value.

A form field linked to a BYTE column (or a FORMONLY field of type BYTE)
displays the character string <BYTE value> rather than actual data. You must
use the PROGRAM attribute to display a BYTE value. No other field attributes
(except COLOR) can reference the value of a BYTE field. The upscol utility
cannot set default attributes or default values for a BYTE field.

CHAR

3-16 HCL Informix 4GL Reference Guide

CHAR
The CHAR data type of 4GL can store a character string, up to a number of
bytes specified between parentheses in the size parameter of the data type
declaration. These can be printable or non-printable characters (see “Non-
Printable Characters” on page 3-71), as defined for the locale. The size can
range from 1 to 32,767 bytes.

For example, the variable keystrokes in the following declaration can hold a
character string of up to 78 bytes:

DEFINE keystrokes CHAR(78)

If the size is not specified, the resulting default CHAR data type can store only
a single byte. In a form, you cannot specify the size of a FORMONLY CHAR
field; the size defaults to the field length from the screen layout.

A character string returned by a function can contain up to 32,767 bytes. On
INFORMIX-SE servers, the maximum data string length that a CHAR column
can store is 32,511 bytes, but CHAR variables are not constrained by this.

When a value is passed between a CHAR variable and a CHAR database
column, or between two CHAR variables, exactly size bytes of data are trans-
ferred, where size is the declared length of the 4GL variable or the database
column that receives the string. If the length of the data string is shorter than
size, the string is padded with trailing blanks (ASCII 32) to fill the declared
size. If the string is longer than size, the stored value is truncated.

The ASCII 0 end-of-data character terminates every CHAR value; in most
contexts, any subsequent characters in a data string cannot be retrieved from
or entered into CHAR database columns. Use the CLIPPED operator of 4GL if
you wish to convert CHAR variables with NULL values to empty strings.

To perform arithmetic on numbers stored in variables, use a number data
type. CHAR variables can store digits, but you might not be able to use them
in some calculations. Conversely, leading zeros (in some postal codes, for
example) are stripped from values stored as number data types INTEGER or
SMALLINT. To preserve leading zeros, store such values as CHAR data types.

In most locales, CHAR data types require one byte of storage per character, or
size bytes for size characters. In some East Asian locales, however, more than
one byte may be required to store an individual logical character, and some
white space characters can occupy more than one byte of storage.

GLS

CHARACTER

Data Types and Expressions 3-17

By default, when character strings (whether of data type CHAR or VARCHAR)
are sorted by 4GL in a nondefault client locale, collation is in code-set order.
If the COLLATION setting in the locale files defines a localized collation order,
4GL uses this order to sort CHAR and VARCHAR values, provided that the
DBNLS environment variable is set to 1. (Even if the database locale defines
a nondefault collation sequence, in most contexts the database server uses the
code-set order to sort CHAR and VARCHAR column values.)

The database server generally sorts strings by code-set order, even if the
COLLATION category of the locale defines a nondefault order, except for
values in NCHAR or NVARCHAR columns. (COLLATION functionally replaces
the XPG3 category LC_COLLATE in earlier Informix GLS products.) If the
database and 4GL client have different locales, the order of collation can
depend on whether 4GL or the database server performs the sort operation.

If the database has NCHAR or NVARCHAR columns, you must set the DBNLS
environment variable to 1 if you want to store values from such columns in
CHAR or VARCHAR variables of 4GL, or if you want to insert values of CHAR
or VARCHAR variables into NCHAR or NVARCHAR database columns.

For more information on using non-ASCII values in CHAR columns, see
Appendix E, “Developing Applications with Global Language Support.” ♦

CHARACTER
The CHARACTER keyword is a synonym for CHAR.

DATE
The DATE data type stores calendar dates. The date value is stored internally
as an integer that evaluates to the count of days since December 31, 1899. The
default display format of a DATE value depends on the locale. In the default
(U.S. English) locale, the default format is

mm/dd/yyyy

where mm is a month (1 to 12), dd is a day of the month (1 to 31 or less), and
yyyy is a year (0001 to 9999). The DBDATE environment variable can change
the separator or the default order of time units for data entry and display.

DATETIME

3-18 HCL Informix 4GL Reference Guide

In some East-Asian locales, the GL_DATE environment variable can specify
Japanese or Taiwanese eras for the entry and display of DATE values. (In any
locale, GL_DATE can specify formats beyond what DBDATE can specify.) ♦

By default, if the user of a 4GL application enters from the keyboard a single-
digit or double-digit value for the year, as in 3 or 03, 4GL uses the setting of
the DBCENTURY environment variable to supply the first two digits of the
year. (Users must pad the year value with one or two leading zeros to specify
years in the First Century; for example, 093 or 0093 for the year 93 A.D.)

Dates that are stored as CHAR or VARCHAR strings are not affected by
DBCENTURY; see Appendix D, “Environment Variables.” You can also set the
CENTURY attribute for individual DATE fields to override the global
DBCENTURY expansion rule in that field; see “CENTURY” on page 6-35 for
details of setting this field attribute.

Because DATE values are stored as integers, you can use them in arithmetic
expressions, such as the difference between two DATE values. The result, a
positive or negative INT value, is the number of days that have elapsed
between the two dates. The UNITS DAY operator can convert this to an
INTERVAL data type. (DATE operands in division, multiplication, or exponen-
tiation operations generally cannot produce meaningful results.)

The FORMAT attribute specifies DATE display formats in forms. For month,
4GL accepts the value 1 or 01 for January, 2 or 02 for February, and so on. For
days, it accepts a value 1 or 01 for the first day of the month, 2 or 02 for the
second, and so on, up to the maximum number of days in a given month.

DATETIME
The DATETIME data type stores an instance in time, expressed as a calendar
date and time-of-day. You specify the time units that the DATETIME value
stores; the precision can range from a year through a fraction of a second.
Data values are stored as DECIMAL formats representing a contiguous
sequence of values for units of time.

GLS

DATETIME DATETIME Qualifier
p. 3-76

DATETIME

Data Types and Expressions 3-19

In some East-Asian locales, the GL_DATETIME environment variable can
specify Japanese or Taiwanese eras for the entry and display of DATETIME
values. (In any locale, however, GL_DATETIME can specify nondefault data
entry and data display formats for DATETIME values.) ♦

The scale and precision specification is called the DATETIME qualifier. It uses
a “first TO last” format to declare variables and screen fields. You must
substitute one or two of these keywords for the first and last terms.

Keyword Corresponding Time Unit and Range of Values

YEAR A year, numbered from 0001 (A.D.) to 9999

MONTH A month, numbered from 1 to 12

DAY A day, numbered from 1 to 31, as appropriate for its month

HOUR An hour, numbered from 0 (midnight) to 23

MINUTE A minute, numbered from 0 to 59

SECOND A second, numbered from 0 to 59

FRACTION (scale)
or FRACTION

A decimal fraction of a second, with a scale of up to five digits;
the default scale is three digits (thousandth of a second)

The keyword specifying last in “first TO last” cannot represent a larger unit of
time than first. Thus, YEAR TO SECOND or HOUR TO HOUR are valid, but DAY
TO MONTH results in a compiler error, because the value for last (here
MONTH) specifies a larger unit of time than DAY, the first keyword.

Unlike INTERVAL qualifiers, DATETIME qualifiers cannot specify nondefault
precision (except for FRACTION, if that is the last keyword in the qualifier).
The following are examples of valid DATETIME qualifiers:

■ DAY TO MINUTE

■ FRACTION TO FRACTION(4)

■ YEAR TO MINUTE

■ MONTH TO SECOND

Operations with DATETIME values that do not include YEAR in their qualifier
use the system date to supply any additional precision. If the first term is DAY
and the current month has fewer than 31 days, unexpected results can occur.

GLS

DATETIME

3-20 HCL Informix 4GL Reference Guide

For example, assume that it is February, and you wish to store data from
January 31 in the sometime variable that is declared in this statement:

DEFINE sometime DATETIME DAY TO MINUTE
CREATE TABLE mytable (mytime DATETIME DAY TO MINUTE)
LET sometime = DATETIME(31 12:30) DAY TO MINUTE
INSERT INTO mytable VALUES (sometime)

Because the column mytime does not store the month or year, the current
month and year are used to evaluate whether the inserted value is within
acceptable bounds. February has only 28 (or 29) days, so no value for DAY can
be larger than 29. The INSERT statement in this case would fail, because the
value 31 for day is out of range for February. To avoid this problem, qualify
DATETIME data types with YEAR or MONTH as the first keyword, and do not
enter data values with DAY as the largest time unit.

DATETIME Literals and Delimiters
Statements of 4GL can assign values to DATETIME data types. The simplest
way to do this is as a DATETIME literal or as a character string. Both formats
represent a specific DATETIME value as a numeric DATETIME value.

The DATETIME literal format begins with the DATETIME keyword, followed by
a pair of parentheses that enclose unsigned whole numbers (separated by
delimiters) to represent a consecutive sequence of year through fraction
values, or a subset thereof. This must be followed by a DATETIME qualifier,
specifying the “first TO last” keywords for the set of time units within the
numeric DATETIME value.

DATETIME (Numeric Date and Time
p. 3-78

) DATETIME Qualifier
p. 3-76

DATETIME Literal
p. 3-78

DATETIME

Data Types and Expressions 3-21

The required delimiters must separate every time unit value in a literal.
DATETIME YEAR TO FRACTION(3) values, for example, require six delimiters,
as shown in Figure 3-1.

Figure 3-1
Numeric Date

and Time

These are the delimiters that are required for separating successive units of
time within DATETIME literal values.

Delimiter Position Within Numeric DATETIME Value

Hyphen (-) Between the year, month, and day portions of the value

Blank space Between the day and hour portions

Colon (:) Between the hour, minute, and second portions

Decimal point (.) Between the second and fraction portions

DATETIME literals can specify every time unit from the data type declaration,
or only the units of time that you need. For example, you can assign a value
qualified as MONTH TO HOUR to a variable declared as YEAR TO MINUTE
if the value contains information for a contiguous sequence of time units.
You cannot, however, assign a value for just month and hour; in this case, the
DATETIME literal must also include a value (and delimiters) for day.

A DATETIME literal that specifies fewer units of time than in the declaration
is automatically expanded to fill all the declared time units. If the omitted
value is for the first unit of time, or for this and for other time units larger than
the largest unit that is supplied, the missing units are automatically supplied
from the system clock-calendar. If the value omits any smaller time units,
their values each default to zero (or to 1 for month and day) in the entry. To
specify a year between 1 and 99, you must pad the year value with leading
zeros.

Hyphen Space Colon Decimal point

98-08-15 12:42:06.011
Year Month Day Hour Minute Second Fraction

DATETIME

3-22 HCL Informix 4GL Reference Guide

The DBCENTURY environment variable determines how single-digit and
double-digit year values are expanded; see Appendix D, “Environment
Variables.” The CENTURY attribute for an individual DATETIME field can
override the global DBCENTURY expansion rule within that field.

Character Strings as DATETIME Values
You can also specify a DATETIME value as a character string, indicating the
numeric values of the date, the time, or both. In a 4GL source module, this
must be enclosed between a pair of quotation (") marks, without the
DATETIME keyword and without qualifiers, but with all the required delim-
iters. A pair of single (') quotation marks is also valid as delimiters. Unlike
DATETIME literals, the character string must include information for all the
units of time declared in the DATETIME qualifier. For example, the following
LET statement specifies a DATETIME value entered as a character string:

LET call_dtime = "2001-08-14 08:45"

In this case, the call_dtime variable was declared as DATETIME YEAR TO
MINUTE, so the character string must specify values for year, month, day,
hour, and minute time units. If the character string does not contain infor-
mation for all the declared time units, an error results. Similarly, an error
results if a delimiter is omitted, or if extraneous blanks appear within the
string.

When a user of the 4GL program enters data in a DATETIME field of a screen
form, or during a PROMPT statement that expects a DATETIME value, the only
valid format is a numeric DATETIME value, entered as an unquoted string.
Any entry in a DATETIME field must be a contiguous sequence of values for
units of time and delimiters, in the following format (or in some subset of it):

year-month-day hour:minute:second.fraction

Depending on the data type declaration of the DATETIME field, each of these
units of time can have values that combine traditional base-10, base-24, base-
60, and lunar calendar values from clocks and calendars.

Values that users enter in a DATETIME field of the 4GL form need not include
all the declared time units, but users cannot enter data as DATETIME literals,
a format that is valid only within 4GL statements and in the data type decla-
rations of FORMONLY DATETIME fields of form specification files.

DEC

Data Types and Expressions 3-23

DATETIME values are stored internally in the format of fixed-point DECIMAL
values (as described in “DECIMAL (p, s)” on page 3-23), but with sets of
consecutive digits representing the declared time units. All time-unit values
of a DATETIME data type are two-digit numbers, except for the year and
fraction values. The year is stored as four digits. The fraction requires n digits,
for 1 ≤ n ≤ 5, rounded up to an even number. You can use the following
formula (rounded up to a whole number of bytes) to calculate the number of
bytes required to store a DATETIME value:

((total_number_of_digits_for_all_time_units) /2)+1

For example, a YEAR TO DAY qualifier requires a total of 8 digits (4 for year,
2 for month, and 2 for day), or ((8/2) + 1) = 5 bytes of storage. For information
about DATETIME values in expressions, see “Time Expressions” on page 3-72.

DEC
The DEC keyword is a synonym for DECIMAL.

DECIMAL (p, s)
The DECIMAL(p,s) data type stores values as fixed-point decimal numbers, of
up to 30 (and for some data values, up to 32) significant digits. As the syntax
diagram in “Simple Data Types” on page 3-9 indicates, you can optionally
specify precision (the number of significant digits) and scale (the number of
digits to the right of the decimal point). For example, DECIMAL (14,2) specifies
a total of 14 significant digits, 2 of which describe the fractional part of the
value.

The largest absolute value that a DECIMAL(p,s) data type can store without an
error is 10 p-s -10 -s, where p is the precision and s is the scale. Values with an
absolute value less than 0.5 ¥ 10-s are stored as zero. You cannot specify p or
s for a FORMONLY DECIMAL field in a form; its precision is the smaller of 32
and (length - 2), where length is the field width in the screen layout.

DECIMAL (p,s) data types are useful for storing numbers with fractional parts
that must be calculated exactly, such as rates or percentages. Unless you are
developing a scientific or engineering application that explicitly controls for
measurement error, store floating-point numbers as DECIMAL(p,s) values.

DECIMAL (p)

3-24 HCL Informix 4GL Reference Guide

When a user enters data in a SMALLFLOAT or FLOAT field, 4GL converts the
base-10 value to binary format for storage. Likewise, to display a FLOAT or
SMALLFLOAT number, 4GL reformats it from binary to base-10. Both conver-
sions can lead to inaccuracy. Thus, if 10.7 is entered into a FLOAT field, it
might be stored as 10.699999 or as 10.700001, depending on the magnitude
and the sign of the binary-to-decimal conversion error. This limitation is a
feature of digital computers, rather than of 4GL, but it might motivate you to
use DECIMAL(p,s) rather than FLOAT in contexts requiring high precision.

DECIMAL(p,s) values are stored internally with the first byte representing a
sign bit and a 7-bit exponent in excess-65 format; the rest of the bytes express
the mantissa as base-100 digits. This implies that DECIMAL(32,s) data types
store only s-1 decimal digits to the right of the decimal point, if s is an odd
number. The stored value can have up to 30 significant decimal digits in its
fractional part, or up to 32 digits to the left of the decimal point. The following
formulae calculate storage (in bytes) needed for DECIMAL(p,s) values, with
any fractional part of the result discarded:

When scale is even: (precision + 3) /2)
When scale is odd: (precision + 4) /2)

For example, DECIMAL(14,2) requires ((14 + 3) / 2), or 8 bytes of storage.

DECIMAL (p)
When you specify both the precision and the scale, the 4GL program can
manipulate the DECIMAL (p,s) value with fixed-point arithmetic. If the data
type declaration specifies no precision or scale, however, the default is
DECIMAL(16), a floating-point number with a precision of 16 digits.

If only one parameter is specified, this is interpreted as the precision of a
floating-point number whose exponent can range from 10-130 to 10126. The
range of absolute data values is approximately from 1.0E-130 to 9.99E+126.

DOUBLE PRECISION

Data Types and Expressions 3-25

In an ANSI-compliant database, declaring a column as DECIMAL(p) results in
a fixed-point data type with a precision of p and a scale of zero. If you declare
a 4GL data type LIKE a DECIMAL(p) column in an ANSI-compliant Informix
database, the resulting data type is restricted to a scale of zero, which is
equivalent to an integer. For DECIMAL(p,0) data types, any significant digits
(within the declared precision) in the fractional part of a data value are stored
internally, but are not displayed. For example, if a data value of 0.25 is stored
in the DECIMAL(25,0) variable Q, the value of Q is displayed as zero, but the
Boolean expression (Q > 0) evaluates as TRUE.

DOUBLE PRECISION
The DOUBLE PRECISION keywords are a synonym for FLOAT.

FLOAT
The FLOAT data type stores values as double-precision floating-point binary
numbers with up to 16 significant digits. FLOAT corresponds to the double
data type in the C language. Values for the FLOAT data type have the same
range of values as the C double data type on your C compiler. FLOAT data
types usually require 8 bytes of memory storage.

For compatibility with the ANSI standard for embedded SQL, you can declare
a whole number between 1 and 14 as the precision of a FLOAT data type, but
the actual precision is data-dependent and compiler-dependent.

A variable of the FLOAT data type typically stores scientific or engineering
data that can be calculated only approximately. Because floating-point
numbers retain only their most significant digits, a value that is entered into
A FLOAT variable or database column can differ slightly from the numeric
value that a 4GL form or report displays.

This rounding error arises because of the way computers store floating-point
numbers internally. For example, you might enter a value of 1.1 into a FLOAT
field. After processing the 4GL statement, the program might display this
value as 1.09999999. This occurs in the typical case where the exact floating-
point binary representation of a base-10 value requires an infinite number of
digits in the mantissa. The computer stores a finite number of digits, so it
stores an approximate value, with the least significant digits treated as zeros.

INT

3-26 HCL Informix 4GL Reference Guide

Statements of 4GL can specify FLOAT values as floating-point literals.

You can use uppercase or lowercase E as the exponent symbol; omitted signs
default to + (positive). If a number in another format (such as an integer or a
fixed-point decimal) is supplied in a .4gl file or from the keyboard when a
FLOAT value is expected, 4GL attempts data type conversion.

In reports and screen displays, the USING operator can format FLOAT values.
Otherwise, the default scale in output is two decimal digits.

INT
The INT keyword is a synonym for INTEGER.

INTEGER
The INTEGER data type stores whole numbers in a range from -2,147,483,647
to +2,147,483,647. The negative number -2,147,483,648 is a reserved value that
cannot be used. Values are stored as signed 4-byte binary integers, with a
scale of zero, regardless of the word length of your system. INTEGER can
stores counts, quantities, categories coded as natural numbers, and the like.

Arithmetic operations on binary integers are typically without rounding
error; these operations and sort comparisons are performed more efficiently
than on FLOAT or DECIMAL data. INTEGER values, however, can only store
data whose absolute value is less than 2 31. Any fractional part of the value is
discarded. If a value exceeds this numeric range, neither 4GL nor the database
can store the data value as an INTEGER data type.

Sign of the mantissa Sign of the exponent
Mantissa

Exponent

-1234.56789e-3

INTERVAL

Data Types and Expressions 3-27

INTEGER variables can store SERIAL values of the database. If a user inserts a
new row into the database, 4GL automatically assigns the next whole number
in sequence to any field linked to a SERIAL column. Users do not need to enter
data into such fields. Once assigned, a SERIAL value cannot be changed. (See
the description of the SERIAL data type in the Informix Guide to SQL: Reference.)

INTERVAL
This data type stores spans of time, the differences between two points in
time. You can also use it to store quantities that are naturally measured in
units of time, such as age or sums of ages, estimated or actual time required
for some activity, or person-hours or person-years of effort attributed to some
task.

An INTERVAL data value is stored as a DECIMAL number that includes a
contiguous sequence of values representing units of time. The INTERVAL
data types of 4GL fall into two classes, based on their declared precision:

■ A year-month interval represents a span of years, months, or both.
■ A day-time interval represents a span of days, hours, minutes,

seconds, and fractions of a second, or a contiguous subset of those
units.

Automatic data type conversion between these two categories of INTERVAL
data types is not a feature of 4GL.

Unlike DATETIME data types, which they somewhat resemble in their format,
INTERVAL data types can assume zero or negative values. The declaration of
an INTERVAL data type uses the following syntax.

INTERVAL INTERVAL Qualifier
p. 3-80

INTERVAL

3-28 HCL Informix 4GL Reference Guide

INTERVAL Qualifiers
The INTERVAL qualifier specifies the precision and scale of an INTERVAL data
type, using a first TO last format to declare 4GL variables, formal arguments
of functions and reports, and screen fields. It has the same syntax in declara-
tions of 4GL variables and FORMONLY fields as for INTERVAL columns of the
database. You must substitute one or two keywords from only one the
following lists for first and last keywords of an INTERVAL qualifier.

Year-Month INTERVAL Keywords Day-Time INTERVAL Keywords

YEAR, MONTH DAY, HOUR, MINUTE, SECOND, FRACTION

As with DATETIME data types, you can declare INTERVAL data types to
include only the units that you need. INTERVAL represents a span of time
independent of an actual date, however, so you cannot mix keywords from
both lists in the same INTERVAL qualifier. Because the number of days in a
month depends on the month, an INTERVAL data value cannot combine both
months and days as units of time. For example, specifying “MONTH TO
MINUTE” as an INTERVAL qualifier produces a compile-time error.

Arithmetic expressions that combine year-month INTERVAL values with DATE
values (or with DATETIME values that include smaller time units than month)
can return an invalid date, such as February 30. (In general, adding or
subtracting an interval of months from any calendar date later than the 28th
day of any month can produce similar errors in SQL and 4GL expressions.)

For any keyword specifying first except FRACTION, you have the option of
specifying a precision of up to 9 digits; otherwise the default precision is 2
digits, except for YEAR, which defaults to 4 digits of precision. If an
INTERVAL qualifier specifies only a single unit of time, the keywords speci-
fying first and last are the same. When first and last are both FRACTION, you
can only specify the scale after the last keyword.

When last is FRACTION, you can specify a scale of 1 to 5 digits; otherwise, the
scale defaults to 3 digits (thousandth of a second). For example, the following
are valid INTERVAL qualifiers:

HOUR TO MINUTE MONTH(5) TO MONTH
FRACTION TO FRACTION(4) HOUR(9) TO FRACTION(5)

INTERVAL

Data Types and Expressions 3-29

The keyword specifying the last term cannot represent a larger unit of time
than that specifying first term. Thus, YEAR TO MONTH and HOUR TO HOUR
are valid, but HOUR TO DAY results in a compiler error, because the first
keyword (here HOUR) specifies a smaller unit of time than DAY, the last
keyword.

After you declare an INTERVAL data type, a 4GL statement can assign it the
value of a time expression (as described in “Time Expressions” on page 3-72)
that specifies an INTERVAL value. The simplest way to do this is as an
INTERVAL literal or as a character string. Both formats require that you
specify a numeric INTERVAL value.

INTERVAL Literals and Delimiters
The INTERVAL literal format begins with the INTERVAL keyword, followed by
a pair of parentheses that enclose unsigned whole numbers (separated by
delimiters) to represent a consecutive sequence of YEAR through FRACTION
values, or as a portion thereof. This must be followed by a valid INTERVAL
qualifier, specifying the “first TO last” keywords for the set of time units.

A numeric INTERVAL uses the same delimiters as DATETIME values, except
that month and day need no separator, because they cannot both appear in the
same INTERVAL value. The following delimiters are required for separating
successive units of time within literal INTERVAL values.

Delimiter Position Within Numeric INTERVAL Value

Hyphen (-) Between the year, month, and day portions of the value

Blank space Between the day and hour portions

Colon (:) Between the hour, minute, and second portions

Decimal point (.) Between the second and fraction portions

 INTERVAL (Numeric Time Interval) INTERVAL Qualifier

p. 3-82 p. 3-80

INTERVAL Literal
p. 3-82

INTERVAL

3-30 HCL Informix 4GL Reference Guide

Time unit values in a numeric INTERVAL have a default precision of 2 digits,
except for year (4 digits), and fraction (3). The qualifier can override these
defaults for the first time unit, and for the scale of the fraction.

For example, INTERVAL YEAR(3) TO MONTH values require one delimiter.

Similarly, INTERVAL DAY(6) TO FRACTION(2) values require four delimiters.

INTERVAL literals can specify all the time units from the data type decla-
ration, or only the units that you need. For example, you can assign a value
qualified as HOUR TO MINUTE to a variable declared as DAY TO SECOND if
the entered value contains information for a contiguous sequence of time
units. You cannot, however, assign only day and minute values; in this case,
the INTERVAL literal must also include a value (and delimiters) for hour.

The value for the first time units in an INTERVAL literal can have up to nine
digits of precision (except for FRACTION, which cannot include more than
five digits). If a first unit value to be entered is greater than the default
number of digits for that time unit, however, you must explicitly identify the
number of significant digits that you are entering. For example, an INTERVAL
of DAY TO HOUR that spans 162.5 days can use the following format:

INTERVAL (162 12) DAY(3) TO HOUR

Year 102-08 Month

Hyphen

Space Colon Decimal point

120815 12:42:06.01
Day Hour Minute Second Fraction

INTERVAL

Data Types and Expressions 3-31

An INTERVAL literal in a 4GL statement must include numeric values for both
the first and last time units from the qualifier, and values for any intervening
time units. You can optionally specify the precision of the first time unit (and
also a scale, if the last keyword of the INTERVAL qualifier is FRACTION).

Character Strings as INTERVAL Values
You can also specify an INTERVAL value as a character string, indicating the
numeric values of the time units. In a 4GL source code module, this must be
enclosed between a pair of quotation (") marks, without the INTERVAL
keyword and without qualifiers, but with all the required delimiters. Unlike
INTERVAL literals, the character string must include information for all the
units of time declared in the INTERVAL qualifier. For example, the character
string in the next statement specifies a span of five years and six months:

LET long_time = "5-06"

Similarly, values entered as character strings into INTERVAL columns of the
database must include information for all time units that were declared for
that column. For example, the following INSERT statement shows an
INTERVAL value entered as a character string:

INSERT into manufact (manu_code, manu_name, lead_time)
VALUES ("BRO", "Ball-Racquet Originals", "160")

Because the lead_time column is defined as INTERVAL DAY(3) TO DAY, this
INTERVAL value requires only one value, indicating the number of days
required. If the character string does not contain information for all the
declared time units, the database server returns an error.

Data Entry by Users
When a user of the 4GL program enters data in an INTERVAL field of a form,
the only valid format is as an unquoted character string. Any entry into an
INTERVAL field must be a contiguous sequence of values for units of time and
separators, in one of these two formats (or in some subset of one):

year-month
day hour:minute:second.fraction

MONEY

3-32 HCL Informix 4GL Reference Guide

Depending on the data type declaration of the field, each of these units of
time (except the first) is restricted to values that combine traditional base-10,
base-24, base-60, and lunar calendar values from clocks and calendars. The
first value can have up to nine digits, unless FRACTION is the first unit of
time. (If FRACTION is the first time unit, the maximum scale is 5 digits.)

Values that users enter in an INTERVAL field of a 4GL form need not include
all the declared time units, but users cannot enter data as INTERVAL literals,
a format that is valid only within 4GL statements and in data type declara-
tions of FORMONLY fields of data type INTERVAL in form specification files.

By default, all values for time units in a numeric INTERVAL are two-digit
numbers, except for the year and fraction values. The year value is stored as
four digits. The fraction value requires n digits where 1 ≤ n ≤ 5, rounded up
to an even whole number. You can use the following formula (rounded up to
a whole number of bytes) to calculate the number of bytes required for an
INTERVAL value:

((total_number_of_digits_for_all_time_units)/2) + 1

For example, a YEAR TO MONTH qualifier requires a total of 6 digits (4 for
year and 2 for month), or ((6/2) + 1) = 4 bytes of storage.

For information on using INTERVAL data in arithmetic and relational
operations, see “Expressions of 4GL” on page 3-49.

MONEY
The MONEY data type stores currency amounts. Like the DECIMAL data type,
the MONEY data type stores fixed-point numbers, up to a maximum of 32
significant digits. As the syntax diagram in “Simple Data Types” on page 3-9
indicates, you can optionally include one or two whole numbers to specify
the precision (the number of significant digits) and the scale (the number of
digits to the right of the decimal point).

Unlike the DECIMAL data type (described in “DECIMAL (p, s)” on
page 3-23), which stores floating-point numbers if its data type declaration
specifies neither scale nor precision, MONEY values are always stored as
fixed-point decimal numbers. If you declare a MONEY data type with only
one parameter, 4GL interprets that parameter as the precision. By default, the
scale is 2, so the data type MONEY(p) is stored internally as DECIMAL(p,2),
where p is the precision (1 ≤ p ≤ 32).

NCHAR

Data Types and Expressions 3-33

If no parameters are specified, MONEY is interpreted as DECIMAL(16,2). This
stores 16 significant digits, 2 of which describe the fractional part of the
currency value. The largest absolute value that you can store without error as
a MONEY data type is 10p-s -10-s. Here p is the precision, and s is the scale.

Values with an absolute value less than 0.5 x 10-s are stored as zero. You
cannot specify the precision or the scale of a FORMONLY MONEY field in a
4GL form; here the precision defaults to the smaller of 32 or (length - 2), where
length is the field length from the SCREEN section layout.

On the screen, MONEY values are displayed with a currency symbol, by
default, a dollar sign ($), and a decimal point (.) symbol. You can change
the display format for MONEY values in the DBMONEY or DBFORMAT
environment variable. The settings of these variables take precedence over
the default currency format of the locale. 4GL statements and keyboard input
by users to fields of screen forms do not need to include currency symbols in
literal MONEY values.

The same formulae as for DECIMAL values apply to MONEY data types, with
any fractional part of the result discarded:

When scale is even: (precision + 3) /2
When scale is odd: (precision + 4) /2

For example, a MONEY(13,2) variable has a precision of 13 and a scale of 2.
This requires ((13 + 3) /2) = 8 bytes of storage.

NCHAR
The NCHAR data type stores character data in a fixed-length field. This data
can be a sequence of single-byte or multibyte letters, numbers, and symbols.
However, the code set of your database locale must support the characters.
NCHAR columns of the database can support localized collation, if the locale
specifies a localized collating sequence, but 4GL treats NCHAR variables like
CHAR variables.

NCHAR stores the number of bytes specified between parentheses in the size
parameter of the data type declaration. The size can range from 1 to 32,767
bytes.

For INFORMIX-SE, the size can range from 1 to 32,511 bytes. ♦

If you do not specify size in a DEFINE declaration, the default is NCHAR(1).
SE

NVARCHAR

3-34 HCL Informix 4GL Reference Guide

When the database server retrieves or sends an NCHAR value, it transfers
exactly size bytes of data. If the length of a character string is shorter than size,
the database server extends the string with spaces to make up the size bytes.
If the string is longer than size bytes, the database server truncates the string.

NVARCHAR
The NVARCHAR data type stores character data in a variable-length field.
This data can be a sequence of single-byte or multibyte letters, numbers, and
symbols. However, the code set of your database locale must support the
characters. NVARCHAR columns of the database can support localized
collation, if the locale specifies a localized collating sequence, but 4GL treats
NVARCHAR variables like VARCHAR variables.

The database server does not strip an NVARCHAR object of any user-entered
trailing white space, nor does it pad the NVARCHAR object to the full length
of the column. However, if you specify a minimum reserved space (reserve)
and some of the data values are shorter than that amount, some of the space
that is reserved for rows goes unused.

NUMERIC
The NUMERIC keyword is a synonym for DECIMAL. (When the word numeric
appears in lowercase letters in this Guide, it is always the adjective formed
from the noun number, rather than the name of a data type.)

The NUMERIC keyword is a synonym for DECIMAL. (When the word numeric
appears in lowercase letters in this Guide, it is always the adjective formed
from the noun number, rather than the name of a data type.)

REAL
The REAL keyword is a synonym for SMALLFLOAT. (When the phrase real
number appears in lowercase letters in this Guide, it denotes a number that is
neither imaginary nor transfinite, rather than the name of a data type.)

RECORD

Data Types and Expressions 3-35

RECORD
The RECORD data type is an ordered set of variables. Within each of these
sets (called a program record), the component variables (called members) can
be of any 4GL data type, or any combination of data types in a fixed order.

Valid data types for member variables of records include all the simple data
types (listed in “Simple Data Types” on page 3-9), the large data types (BYTE,
TEXT), and the structured data types (ARRAY, RECORD). The following is the
data type declaration syntax for RECORD variables.

You can use the LIKE keyword to specify that a member variable has the same
data type as a database column. If you do not specify member names, but use
an asterisk (*) after a table name, you declare a record whose members have
the same identifiers as the columns in table; their data types correspond to the
fixed sequence of SQL data types in an entire row of the table. (Any SERIAL
column in table corresponds to a record member of data type INTEGER.)

RECORD member

 ,
Simple Data Type

p. 3-9 END RECORD

LIKE column
Table Qualifier

p. 3-89 table.

LIKE table.*

column is the name of a column in the default (or specified) database.
member is a name that you declare for a member variable of the record.
table is the SQL identifier of a database table, synonym, or view.

Element Description

Table Qualifier
p. 3-89

RECORD Data
Type

RECORD

3-36 HCL Informix 4GL Reference Guide

This example uses the LIKE keyword to declare two program records, one of
which contains a member variable called nested of the RECORD data type:

DEFINE p_customer RECORD LIKE informix.customer.*,
p_orders RECORD

order_num LIKE informix.orders.order_num,
nested RECORD a LIKE informix.items.item_num,

b LIKE informix.stock.unit_descr
END RECORD

END RECORD

If table is a view, the column cannot be based on an aggregate. You cannot
specify table.* if table is a view that contains an aggregate column.

In an ANSI-compliant database, you must qualify the table name with the
owner prefix, if the program will be run by users other than owner. If the table
is an external or external, distributed table, its name must be qualified by the
name of the remote database and by the name of its database server.

If the client locale and the database locale are not identical, do not use the
LIKE keyword to declare a member variable whose name is the same as a
database column whose identifier includes any non-ASCII character that is
not supported by the character set of the client locale. ♦

Referencing Record Members
If record is the identifier that you declare for a program record in a DEFINE
statement, or the name of a screen record in a 4GL form, you can use the
following notation to reference members of the record in 4GL statements:

■ The notation record.member refers to an individual member of a
record, where member is the identifier of the member.

■ The notation record.first THRU record.last refers to a consecutive
subset of members, from record.first through record.last. Here first is
an identifier that was listed before last among the explicit or implicit
member names in the RECORD declaration. You can also use the
keyword THROUGH as a synonym for THRU.

■ The notation record.* refers to the entire record.

GLS

SMALLFLOAT

Data Types and Expressions 3-37

Several restrictions apply when you reference members of a record:

■ You cannot use THRU or THROUGH to indicate a partial list of screen
record members in 4GL statements for displaying or entering data in
a screen form.

■ You cannot use THRU, THROUGH, or .* to reference a program record
that contains an ARRAY variable among its members. (But you can
use these notations to specify all or part of a record that contains one
or more other records as members.)

■ You cannot use THRU, THROUGH, or .* notation in a SELECT or
INSERT variable list in a quoted string in PREPARE statements. (You
can, however, use the .* notation to specify a program record in the
variable list of an INSERT or SELECT clause of a DECLARE statement.)

A program record whose members correspond in number, order, and data
type compatibility to a database table or to a screen record can be useful for
transferring data from the database to the screen, to reports, or to functions
of the 4GL program. For more information, see “Summary of Compatible 4GL
Data Types” on page 3-46 and Chapter 7, “INFORMIX-4GL Reports.”

SMALLFLOAT
The SMALLFLOAT data type stores single-precision floating-point binary
numbers, with up to 8 significant digits. The range of values is the same as
for the float data type of C. The storage requirement is usually 4 bytes.

The SMALLFLOAT data type typically stores scientific or engineering data
that can only be calculated approximately. Because floating-point numbers
retain only their most significant digits, a value entered into a SMALLFLOAT
variable or column can differ slightly from the base-10 value that an 4GL form
or 4GL report displays.

This error arises from the internal storage format of binary floating-point
numbers. For example, if you enter a value of 1.1 into a SMALLFLOAT field,
after processing the 4GL statement, the screen might display this value as
1.1000001. This occurs in the typical case where the exact floating-point
binary representation of a base-10 value requires an infinite number of digits
in the mantissa. A computer stores only a finite number of digits, so it stores
an approximate value, with the least-significant digits treated as zeros.

SMALLINT

3-38 HCL Informix 4GL Reference Guide

Statements of 4GL can specify SMALLFLOAT values as floating-point literals,
using the following format.

You can use uppercase or lowercase E as the exponent symbol; omitted signs
default to + (positive). If a literal value in another format (such as an integer
or a fixed-point decimal) is supplied from the keyboard into a SMALLFLOAT
field, or in a 4GL statement, 4GL attempts data type conversion.

In reports and screen displays, the USING operator can format SMALLFLOAT
values. The default scale in output, however, is two digits.

SMALLINT
The SMALLINT data type stores data as signed 2-byte binary integers. Values
must be whole numbers within the range from -32,767 to +32,767. Any
fractional part of the data value is discarded. If a value lies outside this range,
you cannot store it in a SMALLINT variable or database column. (The negative
value -32,768 is reserved; it cannot be assigned to a SMALLINT variable or
database column, and it cannot be entered into a SMALLINT field of a form.)

You can use SMALLINT variables and FORMONLY fields of screen forms
to store, manipulate, and display data that can be represented as whole
numbers of an absolute value less than 2 15. This data type typically stores
small whole numbers, Boolean values, ranks, or measurements that classify
data into a small number of numerically-coded categories. Because the
SMALLINT data type requires only 2 bytes of storage, arithmetic operations
on SMALLINT operands can be done very efficiently, provided that all of the
data values lie within the somewhat limited SMALLINT range.

Sign of the mantissa Sign of the exponent
Mantissa

Exponent

-1234.5e-3

TEXT

Data Types and Expressions 3-39

TEXT
The TEXT data type stores character data in ASCII strings. TEXT resembles the
BYTE data type, but 4GL supports features to display TEXT variables whose
values are restricted to combinations of printable ASCII characters and the
following white space characters:

■ TAB (= CONTROL-I)
■ NEWLINE (= CONTROL-J)
■ FORMFEED (= CONTROL-L)

If you attempt to include other non-printable characters in TEXT values, the
features of 4GL for processing TEXT data might not work correctly.

In some locales, other white space characters are supported; more than one
byte is required to store some East-Asian white space characters. ♦

Strings stored as TEXT variables have a theoretical limit of 231 bytes, and a
practical limit determined by the available storage on your system.

INFORMIX-SE database servers do not support TEXT columns, but regardless
of the database server, you can declare 4GL variables of type TEXT. ♦

You can use a TEXT variable to store, retrieve, or update the contents of a
TEXT database column, or to reference a file that you wish to display to users
of the 4GL program through a text editor. After you declare a TEXT data type,
you must use the LOCATE statement to specify the storage location.

When you retrieve a value from a TEXT column, you can assign all or part of
it to a TEXT variable. Use brackets ([]) and comma-separated subscripts to
reference only a specified part of a TEXT value, as in the following example:

SELECT cat_description [1,75] INTO cat_nap FROM catalog
WHERE catalog_num = 10001

This reads the first 75 bytes of the cat_description column of the row with the
catalog number 10001, and stores these data in the cat_nap TEXT variable.

GLS

SE

VARCHAR

3-40 HCL Informix 4GL Reference Guide

Restrictions on TEXT Variables
In a 4GL form, a field linked to a TEXT column (or a FORMONLY field of type
TEXT) only displays as many characters as can fit in the field. To display TEXT
values longer than the screen field, or to edit a TEXT value, you must assign
the PROGRAM attribute to the TEXT field. The WORDWRAP attribute can
display the initial characters of a TEXT value, up to the last segment of the
field, but cannot edit a TEXT field. No other 4GL field attribute (except
COLOR) can reference the value of a TEXT field.

In a CALL, OUTPUT TO REPORT, or RETURN statement, TEXT arguments are
passed by reference, rather than by value. (“Passing Arguments by
Reference” on page 4-18 discusses this issue in greater detail.) The DISPLAY
TO statement can display a TEXT value, but DISPLAY and DISPLAY AT cannot.
The LET statement cannot assign any value (except NULL) toa TEXT variable.

Built-in functions of 4GL cannot specify TEXT arguments. Expressions of 4GL
(as described in “Expressions of 4GL” on page 3-49) can reference TEXT
variables only to test for NULL values, or as an operand of WORDWRAP.

VARCHAR
The VARCHAR data type stores character strings of varying lengths. You can
optionally specify the maximum size of a data string, and the minimum
storage reserved on disk.

INFORMIX-SE database servers do not support this data type, but any 4GL
application can declare VARCHAR variables. ♦

The declared size of VARCHAR can range from 1 to 255 bytes. If you specify
no size, the default is 1. The data type can store shorter character strings than
this maximum size, but not longer strings. In a form specification file, you
cannot specify any parameters for a FORMONLY VARCHAR field; here the size
defaults to the physical field length in the screen layout.

In data type declarations, the minimum reserved storage can range from 0 to
255 bytes, but this cannot be greater than the declared size. Just as 4GL accepts
but ignores the precision specification in FLOAT or DOUBLE PRECISION data
type declarations for compatibility with ANSI/ISO SQL syntax, 4GL accepts
but ignores reserved in VARCHAR declarations. (But in SQL declarations like
CREATE TABLE, the reserved value can affect the behavior of the database.)

SE

VARCHAR

Data Types and Expressions 3-41

The ASCII 0 end-of-data character terminates every VARCHAR value; any
subsequent characters in a data string generally cannot be retrieved from or
entered into VARCHAR (nor CHAR) database columns.

When you assign a value to a VARCHAR variable, only the data characters are
stored, but neither 4GL nor the database server strips a VARCHAR value of
user-entered trailing blanks. Unlike CHAR values, VARCHAR values are not
padded with blank spaces to the declared maximum size, so the CLIPPED
operator may not be needed in operations on VARCHAR values.

VARCHAR values are compared to CHAR values and to other VARCHAR
values in 4GL Boolean expressions in the same way that CHAR values are
compared: the shorter value is padded on the right with spaces until both
values have equal lengths and they are compared for the full length.

In most locales, VARCHAR values require one byte of storage per character, or
size bytes for size characters. In some East Asian locales, however, more than
one byte may be required to store an individual logical character, and some
white space characters can occupy more than one byte of storage.

If a collation order is defined by the COLLATION category in a locale file, the
database server uses this order to sort values from NVARCHAR and NCHAR
database columns in SQL statements, but uses code-set order to sort CHAR or
VARCHAR values. If DBNLS is set to 1, 4GL uses COLLATION to sort CHAR or
VARCHAR variables; otherwise, 4GL uses code-set order. If 4GL and the
database have different locales, collation order for a sorting operation might
depend on whether 4GL or the database server performs the sort.

If the database has NVARCHAR or NCHAR columns, you must set the DBNLS
environment variable to 1 if you want to store values from such columns in
VARCHAR or CHAR variables of 4GL, or if you want to insert values of CHAR
or VARCHAR variables into NCHAR or NVARCHAR database columns.

For more information, see Appendix E, “Developing Applications with
Global Language Support.” ♦

GLS

Data Type Conversion

3-42 HCL Informix 4GL Reference Guide

Data Type Conversion
4GL can assign the value of a number, character string, or point in time to a
variable of a different data type. 4GL performs data type conversion without
objection when the process makes sense. If you assign a number expression
to a CHAR variable, for example, 4GL converts the resulting number to a
literal string. In an expression, 4GL attempts to convert the string represen-
tation of a number or time value to a number, time span, or point in time.

An error is issued only if 4GL cannot perform the conversion. For example,
4GL converts the string "123.456" to the number 123.456 in an arithmetic
expression, but adding the string "Juan" to a number produces an error.

The global status variable is not reset when a conversion error occurs, unless
you specify the ANY ERROR keywords (without CONTINUE) ina WHENEVER
compiler directive, or include the - anyerr command-line argument.

Converting from Number to Number
When you pass a value from one number data type to another, the receiving
data type must be able to store all of the source value. For example, if you
assign an INTEGER value to a SMALLINT variable, the conversion will fail if
the absolute value is larger than 32,767. Overflow can also occur when you
transfer data from FLOAT or SMALLFLOAT variables or database columns to
INTEGER, SMALLINT, or DECIMAL data types.

The kinds of errors that you might encounter when you convert values from
one number data type to another are listed in “Notes on Automatic Data Type
Conversion” on page 3-48. For example, if you convert a FLOAT value to
DECIMAL(4,2), 4GL or the database server rounds off the floating-point value
before storing it as a fixed-point number. This can sometimes result in
overflow, underflow, or rounding errors, depending on the data value and
on the declared precision of the receiving DECIMAL data type.

The SQLAWARN[1] and SQLAWARN[5] characters of the global SQLCA
record are set to W after any FLOAT or SMALLFLOAT value is converted to a
DECIMAL value.

Data Type Conversion

Data Types and Expressions 3-43

Converting Numbers in Arithmetic Operations
4GL performs most arithmetic operations on DECIMAL values, regardless of
the declared data types of the operands. (The exceptions are integers; see
“Arithmetic Operators” on page 3-66.) The data type of the receiving variable
determines the format of the stored or displayed result.

The following rules apply to the precision and scale of the DECIMAL variable
that results from an arithmetic operation on two numbers:

■ All operands, if not already DECIMAL, are converted to DECIMAL,
and the result of the arithmetic operation is always a DECIMAL.

Source Operand Converted Operand

FLOAT DECIMAL (16)

INTEGER DECIMAL (10, 0)

MONEY (p) DECIMAL (p, 2)

SMALLFLOAT DECIMAL (8)

SMALLINT DECIMAL (5, 0)

■ In addition and subtraction, 4GL adds trailing zeros to the operand

with the smaller scale, until the scales are equal.
■ If the data type of the result of an arithmetic operation requires the

loss of significant digits, 4GL reports an error.
■ Leading or trailing zeros are not considered significant digits, and do

not contribute to the determination of precision and scale.
■ If one operand has no scale (that is, a floating-point decimal), the

result is also a floating-point decimal.
■ The precision and scale of the result of an arithmetic operation

depend on the precision and scale of the operands and on the arith-
metic operator. The rules of 4GL are summarized in the following
table for arithmetic operands that have a definite scale.

Data Type Conversion

3-44 HCL Informix 4GL Reference Guide

In this table, p1 and s1 represent the precision and scale of the first operand,
and p2 and s2 represent the precision and scale of the second operand.

Numeric Operation Precision and Scale of Returned Value

Addition (+) and
Subtraction (-)

Precision: MIN(32, MAX(p1 - s1, p2 - s2) + MAX(s1, s2) + 1)
Scale: MIN(30, MAX(s1, s2))

Multiplication (*) Precision: MIN(32, p1+ p2)
Scale: MIN(30, s1 + s2)

Division (/) Precision: 32
Scale: MAX(0, 32 - p1 + s1 - s2)

These values are upper limits, because the actual precision and scale of
DECIMAL(p,s) values are data-dependent. The USING operator can override
the default scale when output is displayed.

Converting Between DATE and DATETIME
You can convert DATE values to DATETIME values. If the DATETIME precision
includes time units smaller than day, however, 4GL either ignores the time-of-
day units or else fills them with zeros, depending on the context. The
examples that follow illustrate how these two data types are converted; it is
assumed here that the default display format for DATE values is mm/dd/yyyy:

■ If a DATE value is specified where a DATETIME YEAR TO DAY is
expected, 4GL converts the DATE value to a DATETIME value. For
example, 08/15/2001 becomes 2001-08-15.

■ If a DATETIME YEAR TO DAY value is specified where a DATE is
expected, 2001-08-15 becomes 08/15/2001.

■ If a DATE value is specified where a DATETIME YEAR TO FRACTION
(or TO SECOND, TO MINUTE, or TO HOUR) is expected, 4GL converts
the DATE value to a DATETIME value, and fills any smaller time units
from the DATETIME declaration with zeros. For example, the DATE
value 08/15/2001 becomes 2001-08-15 00:00:00.

■ If a DATETIME YEAR TO SECOND to DATE, value is specified where a
DATE is expected, 4GL converts the DATETIME value to a DATE value,
but drops any time units smaller than DAY. Thus, 2001-08-15
12:31:37 becomes 08/15/2001.

Data Type Conversion

Data Types and Expressions 3-45

The EXTEND() operator can return a DATETIME value from a DATE operand.

Converting CHAR to DATETIME or INTERVAL Data Types
You can specify DATETIME and INTERVAL data in literal formats, as
described in previous sections, or as quoted strings. Values specified as
suitably formatted character strings are automatically converted into
DATETIME or INTERVAL values, if the string specifies a value for every time
unit declared for that DATETIME or INTERVAL variable. The next examples
illustrate both formats for December 5, 1974, and for a time interval of nearly
18 days:

DEFINE mytime DATETIME YEAR TO DAY,
myval INTERVAL DAY TO SECOND

LET mytime = DATETIME(74-12-5) YEAR TO DAY
LET mytime = "74-12-5" --same effect as previous line

LET myval = INTERVAL(17 21:15:30) DAY TO SECOND
LET myval = "17 21:15:30" --same effect as previous line

When a character string is converted into a DATETIME or INTERVAL value,
4GL assumes that the character string includes information about all the
declared time units. You cannot use character strings to enter DATETIME or
INTERVAL values for a subset of time units, because this produces ambiguous
values. If the character string does not contain information for all the declared
time units, 4GL returns an error, as in some of these examples:

DEFINE tyme DATETIME YEAR TO DAY,
mynt INTERVAL DAY TO SECOND

LET tyme = DATETIME(5-12) MONTH TO DAY --Valid
LET tyme = "5-12" --Error!

LET mynt = INTERVAL(11:15) HOUR TO MINUTE --Valid
LET mynt = "11:15" --Error!

The previous DATETIME example (variable tyme) assigns a MONTH TO DAY
value to a variable declared as YEAR TO DAY. Entering only these values is
valid in the first LET statement because the qualifier of the DATETIME literal
specifies no year, so 4GL automatically supplies the value of the current year.

In the example of the character string, however, 4GL does not know whether
the "5-12" refers to year and month, or month and day, so it returns an error.

Summary of Compatible 4GL Data Types

3-46 HCL Informix 4GL Reference Guide

The previous INTERVAL example (variable mynt) assigns an HOUR TO
MINUTE value to a variable declared as DAY TO SECOND. The first LET
statement simply pads the value with zeros for day and second. The second
LET statement produces a conversion error, however, because 4GL does not
know whether "11:15" specifies HOUR TO MINUTE or MINUTE TO SECOND.

Empty or blank strings are converted to null time (or number) values.

Converting Between Number and Character Data Types
You can store a CHAR or VARCHAR value in a number variable and vice
versa. But if the CHAR or VARCHAR value contains any characters that are not
valid in a number data type (for example, the letters l or O instead of the
digits 1 or 0), 4GL returns a data type conversion error.

In a locale that is not U.S. English, if number or currency values are converted
to character strings during the LET statement, the conversion process inserts
locale-specific separators and currency symbols into the converted strings,
rather than the default U.S. English separators and currency symbols. ♦

Converting Large Data Types
You can store a TEXT value in a BYTE data type. No other data type conver-
sions involving large binary data types are supported directly by 4GL.

Summary of Compatible 4GL Data Types
Some ordered pairs of 4GL data types are said to be compatible, in the sense
that automatic data type conversion is possible for some non-null data
values. As “Notes on Automatic Data Type Conversion” on page 3-48
indicates, however, whether conversion occurs without error is in many cases
data-dependent, and is typically sensitive to the declared length, precision,
or scale of the receiving data type.

The table that follows shows which pairs of 4GL data types are compatible.

Summary of Compatible 4GL Data Types

Data Types and Expressions 3-47

➍

➂➍

➍

➍➄

➂

➍

 ➎

These relationships apply to values of simple data types, to simple members
of RECORD data types, and to simple elements of ARRAY data types:

■ Unshaded cells show the types of values (listed in the top row) that
4GL can assign to each type of variable (listed on the left).

■ Shaded cells indicate incompatible pairs of data types, for which 4GL
does not support automatic data type conversion.

Data Type of Value to Be Passed

CHAR ➀ ➀ ➀ ➀ ➀ ➀ ➀ ➀➊ ➀➋ ➀➀

VARCHAR ➀ ➀ ➀ ➀ ➀
➀ ➀ ➀➊ ➀➋ ➀➀

INTEGER ➁➂ ➁➂ ➂ ➃ ➂➃ ➂➃ ➂➃

SMALLINT ➁➂ ➁➂ ➂ ➂ ➃ ➂➃ ➂➃ ➂➃

FLOAT ➁➂➄ ➁➂➄ ➌ ➌ ➂ ➂

SMALLFLOAT ➁➂➄ ➁➂➄ ➌➄ ➌ ➄ ➂ ➄ ➂➄

DECIMAL

MONEY

➁➂➅

➁➂➅

➁➂➅

➁➂➅

➂ ➂ ➂➅ ➂➅

➂ ➂ ➂➅ ➂➅

➂➅ ➂➅

➂➅ ➂➅

DATE ➁ ➁ ➍ ➍ ➂➃➍ ➂➃➍ ➂➃➍ ➂➃➍ ➐

DATETIME ➁ ➁

INTERVAL ➁ ➁

➏➐ ➆➐

➂➆

Symbols in the cells refer to notes in the next section. These apply when the
data types of the passed value and of the receiving variable are not identical:

■ Light circles (➀) indicate the possibility of conversion failure, or
discrepancies between the passed value and the receiving data type.

■ Dark circles (➊) mark features that do not usually cause conversion
errors, but that can produce unexpected data formats or values.

SM
AL

LF
LO

AT

DE
CI

MA
L

MO
NE

Y

DA
TE

DA
TE

TIM
E

IN
TE

RV
AL

CH
AR

VA
RC

HA
R

IN
TE

GE
R

SM
AL

LIN
T

FL
OA

T

Re
ce

ivi
ng

 D
ata

 T
yp

e

Summary of Compatible 4GL Data Types

3-48 HCL Informix 4GL Reference Guide

Notes on Automatic Data Type Conversion
In the previous table, numbers within light circles (➀) indicate restrictions
that can cause the data type conversion to fail, or that can sometimes result in
discrepancies between the passed value and the receiving variable.

➀ If the result of converting a value to a character string is longer than the
receiving variable, the character string is truncated from the right.

➁ Character string values must depict a literal of the receiving data type.

➂ If the value exceeds the range of the receiving data type, an overflow
error occurs.

➃ Any fractional part of the value is truncated.

➄ If the passed value contains more significant digits than the receiving
data type supports, low-order digits are discarded.

➅ If the passed value contains more fractional digits than the receiving
data type supports, low-order digits are discarded.

➆ Differences in qualifiers can cause truncation from the left or right.

Numbers in dark circles (➊) indicate less critical conversion features. These
can result in the assignment of unexpected values, or unexpected formats.

➊ DBMONEY or DBFORMAT controls the format of the converted string.
➋ DBFORMAT, DBDATE, or GL_DATE controls the format of the result.

➌ Rounding errors can produce an assigned value with a fractional part.

➍ An integer value corresponding to a count of days is assigned.

➎ An implicit EXTEND (value, YEAR TO DAY) is performed by 4GL.

➏ The DATE becomes a DATETIME YEAR TO DAY literal before assignment.

➐ If the passed value has less precision than the receiving variable, any
missing time unit values are obtained from the system clock.

You may wish to avoid writing code that applies automatic conversion to
DATETIME variables declared with time units smaller than YEAR as the first
keyword of the qualifier unless default values that feature (➐) assigns from
the system clock are useful in your application. For more information, see
Chapter 2, “The INFORMIX-4GL Language.”

Expressions of 4GL

Data Types and Expressions 3-49

(4GL
Ex ion press)

Time Expressions:

Number Expressions:

Boolean Expression
p. 3-60

Integer Expression
p. 3-63

Number Expression
p. 3-66

Character Expression
p. 3-69

4GL
Expression

Expressions of 4GL
A 4GL expression is a sequence of operands, operators, and parentheses that
4GL can evaluate as a single value.

INTERVAL
Expression

p. 3-74
DATETIME
Expression

p. 3-74
DATE

Expression
p. 3-74

Usage
Statements, functions, form specifications, operators, and expressions can
have expressions as arguments, components, or operands. The context where
an expression appears, as well as its syntax, determines the data type of its
returned value. It is convenient to classify 4GL expressions into the following
five categories, based on the data type of the value that they return.

Expression Type What the Expression Returns

Boolean A value that is either TRUE or FALSE (or null in some contexts)

Integer A whole-number value of data type INT or SMALLINT

(1 of 2)

Usage

3-50 HCL Informix 4GL Reference Guide

Expression Type What the Expression Returns

Number A value of any of the number data types.
For more information, see “Number Data Types” (page 3-10).

Character A character string of data type CHAR or VARCHAR

Time A value of data type DATE, DATETIME, or INTERVAL

(2 of 2)

In this Guide, if the term 4GL expression is not qualified as one of these five
data type categories, the expression can be any 4GL data type.

As the diagram suggests, 4GL Boolean expressions are special cases of integer
expressions, which in turn are a logical subset of number expressions.
You can substitute a 4GL Boolean or integer expression where a number
expression is valid (unless this results in an attempt to divide by zero).Topics
that are discussed in this section include the following:

■ “Components of 4GL Expressions” on page 3-52

■ “Boolean Expressions” on page 3-60

■ “Integer Expressions” on page 3-63

■ “Number Expressions” on page 3-66

■ “Character Expressions” on page 3-69

■ “Time Expressions” on page 3-72

Differences Between 4GL and SQL Expressions

Data Types and Expressions 3-51

Differences Between 4GL and SQL Expressions
Expressions in SQL statements (and in SPL statements) are evaluated by the
database server, not 4GL. The set of operators that can appear in SQL or SPL
expressions resembles the set of 4GL operators, but they are not identical.

A 4GL program can include SQL operators, but these are restricted to SQL
statements. Similarly, most SQL (and all SPL) operands are not valid in 4GL
expressions. The SQL identifiers of databases, tables, or columns can appear
in a LIKE clause or field name in 4GL statements (as described in “Field
Clause” on page 3-86), provided that these SQL identifiers comply with the
naming rules of 4GL, but the following SQL and SPL operands and operators
cannot appear in other 4GL expressions:

■ SQL identifiers, such as column names
■ The names of SPL variables
■ The SQL keywords USER and ROWID

■ Built-in or aggregate SQL functions that are not part of 4GL

■ The BETWEEN and IN operators (except in form specifications)
■ The EXISTS, ALL, ANY, or SOME keywords of SQL expressions

Conversely, you cannot include the following 4GL operators in SQL or SPL
expressions:

■ Arithmetic operators for exponentiation (**) and modulus (MOD)

■ String operators ASCII, COLUMN, SPACE, SPACES, and WORDWRAP

■ Field operators FIELD_TOUCHED(), GET_FLDBUF(), and INFIELD()

■ The report operators LINENO and PAGENO

■ The time operators DATE() and TIME

These and other built-in functions and operators of 4GL are described in
Chapter 5, “Built-In Functions and Operators.”

See the Informix Guide to SQL: Syntax for the syntax of SQL expressions and
SPL expressions.

Components of 4GL Expressions

3-52 HCL Informix 4GL Reference Guide

Components of 4GL Expressions
An expression of 4GL can include the following components:

■ Operators, as listed on the next page

■ Parentheses, to override the default precedence of operators

■ Operands, including the following:
❑ Named values
❑ Function calls returning a single value
❑ Field names
❑ Literal values
❑ Other 4GL expressions

Parentheses in 4GL Expressions
You can use parentheses as you would in algebra to override the default
order of precedence of 4GL operators. In mathematics, this use of parentheses
represents the “associative” operator. It is, however, a convention in
computer languages to regard this use of parentheses as delimiters rather
than as operators. (Do not confuse this use of parentheses to specify operator
precedence with the use of parentheses to enclose arguments in function calls
or to delimit other lists.)

In the following example, the variable y is assigned the value of 2:

LET y = 15 MOD 3 + 2

In the next example, however, y is assigned the value of 0 because the paren-
theses change the sequence of operations:

LET y = 15 MOD (3 + 2)

Chapter 4, “INFORMIX-4GL Statements,” describes the LET statement of
4GL, which can assign the value of an expression to a variable of a compatible
data type.

Components of 4GL Expressions

Data Types and Expressions 3-53

Operators in 4GL Expressions
The operators listed in Figure 3-2 on page 3-54 can appear in 4GL expressions.
Expressions with several operators are evaluated according to their prece-
dence, from highest (16) to lowest (1), as indicated in the left-most (P)
column. In the previous example, although the modulus operator (MOD) had
a higher precedence than the addition (+) operator, the parentheses
instructed 4GL to perform the addition first, contrary to the default order of
operator precedence.

The P values that indicate precedence in Figure 3-2 are ordinal numbers; they
may change if future releases add new operators.

The fourth column (A) indicates the direction of associativity, if any, of each
operator. See the page references in the right-most column of Figure 3-3 on
page 3-55 for additional information about individual operators of 4GL.

Components of 4GL Expressions

3-54 HCL Informix 4GL Reference Guide

Figure 3-
Precedence (P) and Associativity (A) of 4GL Operators

P Operator Description A Example Page
16 . Record membership Left myrec.memb 3-35

 [] Array index or substring Left ar[i,6,k][2,(int-expr)] 3-13
 () Function call None myfun(var1,expr) 3-58

15 UNITS Single-qualifier interval Left (int-expr) UNITS DAY 5-26
14 +

-
Unary plus
Unary minus

Right
Right

+ (number-expr)
- numbarray_var3[i,j,k]

3-65
3-65

13 * * Exponentiation (by integer) Left (number-expr) ** (int-expr) 3-64
 MOD Modulus (of integer) Left (int-expr) MOD (int-expr) 3-64

12 * Multiplication Left x * (number-expr) 3-64
/ Division Left (number-expr)/ arr[y] 3-64

11 + Addition Left (number-expr)+ (number-expr) 3-64
- Subtraction Left (x - y) - (number-expr) 3-64

10 || Concatenation Left "str" || "ing" 5-50
9 LIKE String comparison Right (character-expr) LIKE "%z_%" 5-38

MATCHES String comparison Right (character-expr)MATCHES"*z?" 5-38
8 < Test for: less than Left (expr1)< (expr2) 5-35

<= Less than or equal to Left x <= yourfun(y,z) 5-35
= or == Equal to Left x = expr 5-35

>= Greater than or equal to Left x >= FALSE 5-35
> Greater than Left var1 > expr 5-35

!= or <> Not equal to Left myrec.memb<>LENGTH(var1) 5-35
7 IN() Test for: set membership Right expr1 NOT IN (x,3,expr2) 5-40
6 BETWEEN ... AND Test for: range Left BETWEEN (integer-expr) AND 9 5-40
5 IS NULL Test for: NULL Left x IS NULL OR y IS NOT NULL 5-37
4 NOT Logical inverse Left NOT ((expr) IN (y,DATE)) 3-61
3 AND Logical intersection Left expr1 AND fun(expr2,-y) 3-61
2 OR Logical union Left LENGTH(expr1,j) OR expr2 3-61
1 ASCII Return ASCII character Right LET x = ASCII (int-expr) 5-31

CLIPPED Delete trailing blanks Right DISPLAY poodle CLIPPED 5-45
COLUMN Begin line-mode display Right PRINT COLUMN 58, "30" 5-47

ORD Logical inverse of ASCII Right LET key = ORD(character-expr) 5-100
SPACES Insert blank spaces Right DISPLAY (int-expr) SPACES 5-108
USING Format character string Right TODAY USING "yy/mm/dd" 5-123

WORDWRAP Multiple-line text display Right PRINT odyssey WORDWRAP 5-135

Components of 4GL Expressions

Data Types and Expressions 3-55

Figure 3-
Data Types of Operands and of Returned Values

P Expression Left (= x) Right (= y) Returned Value Page
16 x . y RECORD Any Same as y 5-97

 w [x , y] INT or SMALLINT INT or SMALLINT Any or Character 5-113
 (y) Any or Large Any 3-58

15 x UNITS INT or SMALLINT INTERVAL 5-119
14 + y Number or Same as y 5-22

- y

 INTERVAL
Number or Same as y 5-22

 INTERVAL

13 x * * y Number INT or SMALLINT Number 5-25
 x MOD y INT or SMALLINT INT or SMALLINT INT or SMALLINT 5-25

12 x * y Number or INTERVAL Number Number or 5-25

x / y

Number or INTERVAL Number
INTERVAL
Number or 5-25

 INTERVAL

11 x + y Number or Time Number or Time Number or Time 5-26
 x - y Number or Time Number or Time Number or Time 5-26

10 x || y Any Any Character 5-50
9 x LIKE y Character Character Boolean 5-38

 x MATCHES y Character Character Boolean 5-38
8 x < y Any Same as x Boolean 5-34

 x <= y Any Same as x Boolean 5-34
x = y or x == y Any Same as x Boolean 5-34

 x >= y Any Same as x Boolean 5-34
 x > y Any Same as x Boolean 5-34

x != y or x <> y Any Same as x Boolean 5-34
7 x IN (y) Any Same as x Boolean 5-40
6 BETWEEN x AND y Any Same as x Boolean 5-40
5 x IS NULL Any or Large
4 NOT y Boolean

Boolean
Boolean

5-37
5-33

3 x AND y Boolean Boolean Boolean 5-33
2 x OR y Boolean Boolean
1 ASCII y INT or SMALLINT

Boolean
Character

5-33
7-62

 x CLIPPED Character Character 5-45
 COLUMN y INT or SMALLINT Character 7-62
 ORD(y) Character INT or SMALLINT 5-100
 x SPACES INT or SMALLINT Character 7-64
 x USING "y" Character,DATE,MONEY Character Character 5-123
 x WORDWRAP Character or TEXT Character 7-65

Components of 4GL Expressions

3-56 HCL Informix 4GL Reference Guide

Also of lowest precedence (P = 1) are the following operators:

■ Field operators FIELD_TOUCHED(), GET_FLDBUF(), and INFIELD()

■ Report operators SPACE, LINENO, and PAGENO

■ Time operators CURRENT, DATE(), DAY(), EXTEND(), MDY(),
MONTH(), TIME, TODAY, WEEKDAY(), and YEAR()

Where no data type is listed in the previous table, the operator has no left (or
else no right) operand. If an operand is not of the data types listed here, 4GL
attempts data type conversion, as described in “Summary of Compatible
4GL Data Types” on page 3-46.

Most 4GL operators do not support RECORD nor ARRAY operands, but they
can accept as an operand a variable (of a simple data type) that is an element
of an array, or that is a member of a record.

Operands in 4GL Expressions
Operands of 4GL expressions can be any of the following:

■ Named values
■ Function calls that return one value
■ Literal values
■ Other 4GL expressions

Sections that follow describe these operands of 4GL expressions.

Components of 4GL Expressions

Data Types and Expressions 3-57

Named Values as Operands
A 4GL expression can include the name of a variable of any simple data type
(as identified in “Simple Data Types” on page 3-9) or the constants TRUE,
FALSE, or NOTFOUND. The variable can also be a simple member of a record
or a simple element of an array.

Variable

constant

variable

record .
 ,

1 array [3 Integer
E n xpressio]

p. 3-63

Variable

Named Value

constant is one of the built-in constants TRUE, FALSE, or NOTFOUND.
record is the name of a structured variable of the RECORD data type.
variable is the name of a 4GL program variable of a simple data type.

is the name of a structured variable of the ARRAY data type. The
comma-separated expression list specifies the index of an element
within the declared size of the array.

array
Element Description

Components of 4GL Expressions

3-58 HCL Informix 4GL Reference Guide

In three special cases, other identifiers can be operands in 4GL expressions:

■ Conditional COLOR attributes in form specification files can use a
field tag where a named value is valid in the syntax of a 4GL Boolean
expression.

■ The built-in FIELD_TOUCHED(), GET_FLDBUF(), and INFIELD()
operators can take field names (as described in “Field Clause” on
page 3-86) as operands. See Chapter 5, “Built-In Functions and
Operators,” for the syntax of these field operators.

■ The identifier of a BYTE or TEXT variable can be the operand of the
IS NULL and IS NOT NULL Boolean operators.

If the variable is a member of a record, qualify it with the record name prefix,
separated by a period (.) as the record membership operator.

Variables of the BYTE or TEXT data types cannot appear in expressions, except
as operands of the IS NULL or IS NOT NULL operators or (for TEXT variables
only) the WORDWRAP operator. These operators are described in Chapter 5.

Function Calls as Operands
A 4GL expression can include calls to functions that return exactly one value.

The function can be a programmer-defined or built-in function, provided that
it returns a single value of a data type that is valid in the expression.
(Function calls as arguments can return multiple values.)

function (
 ,

4GL
Expression

p. 3-49

)

Function Call

function is the name of a function. The parentheses are required, regardless of
whether the function takes any arguments.

Element Description

Components of 4GL Expressions

Data Types and Expressions 3-59

For information about this statement, see “FUNCTION” on page 4-140, and
see Chapter 5 for more information about declaring, defining, and invoking
4GL functions.

Expressions as Operands
Two expressions cannot appear consecutively without some separator, but
you can nest expressions within expressions. In any context, however, the
complexity of a 4GL expression is restricted. If an error message indicates that
an expression is too complex, you should substitute two or more simpler
expressions that 4GL can evaluate, and then combine these values.

If an expression returns a different data type from what 4GL expects in the
context, 4GL attempts data type conversion, as described in “Summary of
Compatible 4GL Data Types” on page 3-46.

Boolean Expressions

3-60 HCL Informix 4GL Reference Guide

Boolean Expressions
In 4GL, a Boolean expression is one that returns either TRUE (defined as 1) or
FALSE (defined as 0) or (in some contexts) null. The syntax of Boolean expres-
sions in 4GL statements is not identical to that of Boolean conditions in SQL
statements. Boolean expressions of 4GL have the following syntax.

AND

OR
4GL Expression

p. 3-49

NOT Boolean Comparison

Function Call
p. 3-58

TRUE

FALSE

String Comparison
p. 5-38

Relational Comparison
p. 5-35

NULL Test
p. 5-37 Membership and Range Tests

p. 5-40

Boolean
Comparison

Boolean
Expression

Boolean Expressions

Data Types and Expressions 3-61

Logical Operators and Boolean Comparisons
The following Boolean operators can appear in 4GL Boolean expressions:

■ The logical operators AND, OR, and NOT combine one or more Boolean
values into a single Boolean expression.

■ Boolean comparisons can test operands and return Boolean values:
❑ Relational comparisons test for equality or inequality.
❑ The IS NULL operator tests for null values.
❑ The MATCHES or LIKE operators compare character strings.
❑ The BETWEEN…AND operator compares a value to a range.
❑ The IN() operator tests a value for set membership.

Data Type Compatibility
Any type of 4GL expression can also be a Boolean expression. You can use an
INT or SMALLINT variable to store the returned TRUE, FALSE, or NULL value.

You may get unexpected results, however, from Boolean comparisons of
operands of dissimilar data types. In general, you can compare numbers with
numbers, character strings with strings, and time values with time values.

If a time expression operand of a Boolean expression is of the INTERVAL data
type, any other time expression to which it is compared by a relational
operator must also return an INTERVAL value. You cannot compare a span of
time (an INTERVAL value) with a point in time (a DATE or DATETIME value).
See “Summary of Compatible 4GL Data Types” on page 3-46 for additional
information about data type compatibility in 4GL expressions.

Boolean Expressions

3-62 HCL Informix 4GL Reference Guide

Evaluating Boolean Expressions
In contexts where a Boolean expression is expected, 4GL applies the following
rules after it evaluates the expression:

■ If the value is a non-zero real number or any of the following items:
❑ Character string representing a non-zero number
❑ Non-zero INTERVAL

❑ Any DATE or DATETIME value
❑ A TRUE value returned by a Boolean function like INFIELD()

❑ The built-in integer constant TRUE

then the Boolean expression returns TRUE.
■ If an expression that returns NULL is the operand of the IS NULL

operator, the value of the Boolean expression is TRUE.
■ If the value is NULL and the expression does not appear in any of the

following contexts:
❑ The NULL Test (page 5-37)
❑ Boolean Comparisons (page 5-34)
❑ Any conditional statement of 4GL (IF, CASE, WHILE)
then the Boolean expression returns NULL.

■ Otherwise, the Boolean expression is evaluated as FALSE.

Boolean expressions in CASE, IF, or WHILE statements return FALSE if any
element of the comparison is NULL, except for operands of the IS NULL and
the IS NOT NULL operator. See “Boolean Operators” on page 5-33 for more
information about individual Boolean operators and Boolean expressions.

If you include a Boolean expression in a context where 4GL expects a number,
the expression is evaluated, and is then converted to an integer by the rules:
TRUE = 1 and FALSE = 0.

Integer Expressions

Data Types and Expressions 3-63

Integer Expressions
An integer expression returns a whole number. It has the following syntax.

Integer
Expression Case I: Pure integers

+ Literal Integer + p. 3-65
- Function Call

-

p. 3-58 *
Named Value /

p. 3-57 MOD

Boolean **
Expression

p. 3-60

Case II: Differences between DATE values

DATE Expression - DATE Expression
p. 3-74 p. 3-74

Here any function call or named value must return an integer. Logical restric-
tions on using DATE values as integer expressions are discussed in
“Arithmetic Operations on Time Values” on page 3-83.

Integer expressions can be components of expressions of every other type.
Like Boolean expressions, integer expressions are a logical subset of number
expressions, but they are separately described here because some 4GL
operators, statements, form specifications, operators, and built-in functions
are restricted to integer values, or to positive integers.

Integer Expressions

3-64 HCL Informix 4GL Reference Guide

Binary Arithmetic Operators
Six binary arithmetic operators can appear in an integer expression, and can
take integer expressions as both the right-hand and left-hand operands.

Operator Symbol Operator Name Name of Result Precedence

** Exponentiation Power 12

mod Modulus Integer remainder 12

* Multiplication Product 11

/ Division Quotient 11

+ Addition Sum 10

- Subtraction Difference 10

All arithmetic calculations are performed after converting both operands to
DECIMAL values (but MOD operands are first converted to INTEGER).

If an expression has several operators of the same precedence, 4GL processes
them from left to right. For the complete precedence scale for 4GL operators,
see Figure 3-2 on page 3-54. If any operand of an arithmetic expression is a
NULL value, the entire expression returns NULL.

An integer expression specifying an array element or the right-hand MOD
operand cannot include exponentiation (**) or modulus (MOD) operators,
and cannot be zero. The right-hand integer expression operand of the
exponentiation operator (**) cannot be negative. You cannot use mod as a
4GL identifier.

If both operands of the division operator (/) have INT or SMALLINT data
types, 4GL discards any fractional portion of the quotient. An error occurs if
the right-hand operand of the division operator evaluates to zero. With some
restrictions, 4GL also supports these binary arithmetic operators in number
expressions (as described in “Number Expressions” on page 3-66) and in
some time expressions (as described in “Time Expressions” on page 3-72).

Differences between two DATE values are integer expressions. To convert
these to type INTERVAL, apply the UNITS DAY operator explicitly.

Integer Expressions

Data Types and Expressions 3-65

As noted earlier in this chapter, if you include a Boolean expression in a
context where 4GL expects a number, the expression is evaluated, and is then
converted to an integer by the rules: TRUE = 1 and FALSE = 0. An error results
if you attempt to divide by zero.

Unary Arithmetic Operators
You can use plus (+) and minus (-) symbols at the left are unary operators to
indicate the sign of the expression, or the sign of a component number. For
unsigned values, the default is positive (+). Use parentheses to separate the
subtraction operator (-) from any immediately following unary minus sign,
as in the following:

minuend -(-subtrahend)

unless you want 4GL to interpret the “--” symbols as a comment indicator.

The same rules apply to plus and minus unary operators used with number
expressions, and with time expressions that return INTERVAL values.

The unary plus and minus operators are recursive.

Literal Integers
You must write literal integers in base-10 notation, without embedded blank
spaces or commas, and without a decimal point.

This release of 4GL does not support non-ASCII digits in number expressions,
such as the Hindi numbers that some Middle-Eastern locales recognize. ♦

GLS

+
-

digit

Literal
Integer

is any of the digits 1, 2, 3, 4, 5, 6, 7, 8, 9, or 0. digit

Element Description

Number Expressions

3-66 HCL Informix 4GL Reference Guide

 You can precede the integer with unary minus or plus signs:

15 -12 13938 +4

Number Expressions
A number expression is a specification that evaluates to a real number.

Number
Expression

+ Literal Number + p. 3-67
- Named Value -

p. 3-57 * Integer
Function Call / Expression p. 3-58 p. 3-63 MOD

Boolean
Expression **

p. 3-60

Here the function call or named value must return a real number of data type
DECIMAL, FLOAT, INTEGER, MONEY, SMALLFLOAT, or SMALLINT.

If any operand of an arithmetic operator in a number expression is a null
value, 4GL evaluates the entire expression as a NULL value. The range of
values in a number expression is that of the receiving data type.

Arithmetic Operators
The sections “Binary Arithmetic Operators” on page 3-64 and “Unary Arith-
metic Operators” on page 3-65 apply to number expressions. 4GL converts
any modulus (MOD) operand or right-hand operand of the exponentiation
operator (**) to INTEGER before conversion to DECIMAL for evaluation; this
feature has the effect of discarding any fractional part of the operands.

If both operands are INTEGER, SMALLINT, or DATE data types, the result of
any arithmetic operation (including division) is a whole number. If either
operand is of data type DECIMAL, FLOAT, MONEY, or SMALLFLOAT, the
returned value may include a fractional part, except in MOD operations.

Number Expressions

Data Types and Expressions 3-67

Literal Numbers
A literal number is the base-10 representation of a real number, written as an
integer, as a fixed-point decimal number, or in exponential notation.

Literal
Number

+ digit

- . e
-

 . digit E + digit

GLS

Element Description
digit is any of the digits 1, 2, 3, 4, 5, 6, 7, 8, 9, or 0.

This cannot include a comma (,) or blank space (ASCII 32). The unary plus or
a minus sign can precede a literal number, mantissa, or exponent.

This release of 4GL does not support non-ASCII digits in literal numbers, such
as the Hindi numbers that some Middle-Eastern locales recognize. ♦

There are three kinds of literal numbers:

■ Integer literals can exactly represent INTEGER and SMALLINT values
Literal integers have no decimal points, as in this example:

10 -27 25567

■ Fixed-point decimal literals can exactly represent DECIMAL(p,s) and
MONEY values. These can include a decimal point:

123.456.00123456 -123456.0

■ Floating-point literals can exactly represent FLOAT, SMALLFLOAT,
and DECIMAL(p) values that contain a decimal point or exponential
notation, or both. These are examples of floating-point literals:

123.456e4 -1.23456e2 -123456.0e-3

When you use a literal number to represent a MONEY value, do not precede
it with a currency symbol. Currency symbols are displayed by 4GL when
MONEY values appear in a form or in a report, using whatever the DBMONEY
or DBFORMAT environment variable specifies, or else the default symbol,
which in the default (U.S. English locale) is the dollar sign ($).

Number Expressions

3-68 HCL Informix 4GL Reference Guide

In other locales, DBMONEY or DBFORMAT can specify number and currency
display and data entry formats to conform with local cultural conventions. ♦

4GL automatically attempts data type conversion when a literal number is in
a different format from the expected data type. If you include a character
value in a context that requires a number expression, 4GL attempts to convert
the string to a number. (For more information, see “Summary of Compatible
4GL Data Types” on page 3-46.)

You may get unexpected results, however, if a literal number in a 4GL
Boolean expression is not in a format that can exactly represent the data type
of another value with which it is compared by a relational operator. Because
of rounding errors, for example, relational operators generally cannot return
TRUE if one operand returns a FLOAT value and the other an INTEGER.

Similarly, you will get unpredictable (but probably useless) results if you use
literal binary, hexadecimal, or other numbers that are not base-10 where 4GL
expects a number expression. You must convert such numbers to a base-10
format before you can use them in a number expression.

GLS

Character Expressions

Data Types and Expressions 3-69

Character Expressions
A character expression is a specification that evaluates to a character string.

Character
Expression

"

 character

Function Call
p. 3-58

Named Value
p. 3-57

"
CLIPPED

[E
Integer

n xpressio
p. 3-63

,

USIN

Integer

Expression
p. 3-63

"format
string "

]

 Element Description
character is one or more characters enclosed between two single (') or double

(") quotation marks. (This is sometimes called a character string, a
quoted string, or a string literal.)

format string is a formatting mask to specify how 4GL displays the returned
character value. For details, see “USING” on page 5-123.

Here the function call or named value returns a CHAR or VARCHAR value. No
variable in a character expression can be of the TEXT data type, except in a
NULL test (as described in “The NULL Test” on page 5-37), or as a
WORDWRAP operand in a PRINT statement of a 4GL report. As in any 4GL
statement or expression, you cannot reference a named value outside its
scope of reference. (See “Scope of Reference of 4GL Identifiers” on page 2-17.)

If a character expression includes a 4GL variable or function whose value i
neither a CHAR nor VARCHAR data type, 4GL attempts to convert the valu
to a character string. For example, the following program fragment stores th
character string "FAX32" in the CHAR variable K:

VARIABLE I INTEGER,
J, K CHAR(5)

LET I = 4*8
LET J = "FAX"
LET K = J CLIPPED,I

Character Expressions

3-70 HCL Informix 4GL Reference Guide

The maximum length of a string value is the same as for the declared data
type: up to 32,767 bytes for CHAR values, and up to 255 bytes for VARCHAR.

If character expressions are operands of a relational operator, 4GL evaluates
both character expressions, and then compares the returned values according
to their position within the collating sequence of the locale. For more infor-
mation, see “Relational Operators” on page 5-35.

Arrays and Substrings
Any integer expression in brackets that follows the name of an array must
evaluate to a positive number within a range from 1 to the declared size of
the array. For example, SQLCA.SQLCAWARN[6] specifies the sixth element of
character array SQLCAWARN within the SQLCA global record.

The pair of integer expressions that can follow a character expression specify
a substring. The first value cannot be larger than the second. Both must be
positive, and no larger than the string length (or the receiving data type). For
example, name[1,4] specifies the first four characters of a program variable
called name.

Neither the exponentiation (**) nor the modulus (MOD) operators can appear
in an integer expression that specifies an array element or a substring, but
parentheses and the other arithmetic operators (+, -, *, /) are permitted.

String Operators
You can use the USING keyword, followed by a format string, to impose a
specific format on the character string to which an expression evaluates, or
upon any components of a concatenated character expression. (4GL forms
and reports support additional features for formatting character values.)

To discard trailing blanks from a character value, apply the CLIPPED operator
to the expression, or to any components of a concatenated character
expression. For more information about handling blank characters in
character values, see the sections of Chapter 5 that describe the WORDWRAP
field attribute in forms and the WORDWRAP operator in 4GL reports, and see
“The WORDWRAP Operator” on page 7-65.

You can insert blanks in DISPLAY or PRINT statements by using the SPACE or
COLUMN operators; these are described in Chapter 5. The keyword SPACES
is a synonym for SPACE.

Character Expressions

Data Types and Expressions 3-71

You can use the ASCII operator in DISPLAY or PRINT statements. This takes an
integer expression as its operand, and returns a single-character string, corre-
sponding to the specified ASCII character. See Chapter 5 for details.

Non-Printable Characters
In the default (U.S. English) locale, 4GL regards the following as the printable
ASCII characters:

■ TAB (= CONTROL-I)
■ NEWLINE (= CONTROL-J)
■ FORMFEED (= CONTROL-L)
■ ASCII 32 (= blank) through ASCII 126 (= ~)

For information about the ASCII characters and their numeric codes, see
Appendix G, “Reserved Words.” Any other characters are non-printable.
Character strings that include one or more non-printable characters (for
example, packed fields) can be operands or returned values of character
expressions. They can be stored in 4GL variables or in database columns of
the CHAR, VARCHAR, and TEXT data types.

You should be aware, however, that many 4GL features for manipulating
character strings were designed for printable characters only. If you create
4GL applications that use character expressions, character variables, or
character columns to manipulate non-printable characters, you may
encounter unexpected results. The following are examples of problems that
you risk when CHAR, TEXT, and VARCHAR values include non-printable
characters.

■ Behavior of I/O and formatting features like the WORDWRAP
attribute or the DISPLAY or PRINT statements is designed and
documented for printable characters only. It may be difficult to
describe or to predict the effects of data with non-printable
characters with these I/O features, but the users of your application
are unlikely to enjoy the results.

■ Strings with non-printable characters can have unpredictable results
when output to I/O devices. For example, some sequences of non-
printable characters can cause terminals to position the cursor in the
wrong place, clear the display, modify terminal attributes, or
otherwise make the screen unreadable.

Time Expressions

3-72 HCL Informix 4GL Reference Guide

■ For another example, CONTROL-D (= ASCII 4) and CONTROL-Z

(= ASCII 26) in output from a report can be interpreted as logical end-
of-file, causing the report to stop printing prematurely.

■ If you store a zero byte (ASCII 0) in a CHAR or VARCHAR variable or
column, it might be treated as a string terminator by some operators,
but as data by others, and this behavior might vary between the
Rapid Development System and the C Compiler implementation of
4GL, or even between database servers. The workaround is to not use
the ASCII 0 character within CHAR or VARCHAR data strings.

If you encounter these or related difficulties in processing non-printable
characters, you might consider storing such values as BYTE data types.

Nondefault locales can define other non-printable characters. The
DBAPICODE environment variable lets computer peripherals that use a
character set that is different from that of the database communicate with the
database. DBAPICODE specifies the character-mapping file between the
character set of the peripheral device and the character set of the database.

For more information about nondefault locales, see Appendix E. ♦

Time Expressions
A time expression is a specification that 4GL can evaluate as a DATE,
DATETIME, or INTERVAL value.

GLS

INTERVAL Expression

p. 3-74

DATETIME Expression
p. 3-74

DATE Expression

p. 3-74

Time Expression

Time Expressions

Data Types and Expressions 3-73

As the diagram suggests, the DATE data type is a logical subset of DATETIME.
4GL rules for arithmetic, however, are not identical for DATE and DATETIME
operands, and the internal storage formats of DATE and DATETIME values are
completely different. (For more information, see “Arithmetic Operations on
Time Values” on page 3-83.)

Formatting features, such as USING (described in Chapter 5) and the FORMAT
and PICTURE attributes (described in Chapter 6, “Screen Forms”), also treat
DATETIME and DATE values differently or support only DATE.

These three data types are logically related, because they express values in
units of time. But unlike the number and character data types that were
described earlier in this chapter, for which 4GL supports automatic data type
conversion (aside from restrictions based on truncation, overflow, or
underflow), conversion among time data types is more limited. In contexts
where a time expression is required, DATETIME or DATE values can
sometimes be substituted for one another. INTERVAL values, however, which
represent one-dimensional spans of time, cannot be converted to DATETIME
or DATE values, which represent zero-dimensional points in time.

In addition, if the declared precision of an INTERVAL value includes years or
months, automatic conversion to an INTERVAL having smaller time units
(like days, hours, minutes, or seconds) is not available. See also “Summary of
Compatible 4GL Data Types” on page 3-46.

Time Expressions

3-74 HCL Informix 4GL Reference Guide

f

Case I: Expressions that return a DATE value

" "

USING

TODAY

Case II: Expressions that return a DATETIME value

" "

CURRENT

EXTEND ()

Case III: Expressions that return an INTERVAL value

+

-

" "

UNITS keyword
Integer Expression

p. 3-63

Named Value
p. 3-57

Function Call
p. 3-58

INTERVAL Literal
p. 3-82

Numeric Time Interval
p. 3-82

DATETIME Qualifier
p. 3-76

Named Value
p. 3-57

Function Call
p. 3-58

DATETIME Literal
p. 3-78

Function Call
p. 3-58

INTERVAL
Expression

Numeric Date and Time
p. 3-78

DATETIME
Expression

Named Value
p. 3-57

Character
Expression

p. 3-69

Numeric Date
p. 3-75

DATE
Expression

Each of the three types of time expressions has its own syntax.

 DATETIME

Expression

, DATETIME
Qualifier
p. 3-76

DATE
Expression

Time Expressions

Data Types and Expressions 3-75

Here the keyword can be YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, or
FRACTION. The function call or named value must return a single value of the
corresponding data type. Other operators besides those listed here can also
appear in time expressions. Chapter 5 describes built-in operators like UNITS.
Sections that follow show the syntax of component segments of DATE,
DATETIME, and INTERVAL expressions.

Numeric Date
A numeric date represents a DATE value as a quoted string of digits and
optional separator symbols. For the default locale, it has this format.

Element Description
dd is the number of the day of the month, from 1 to 31.
mo is a number from 1 to 12, representing the month.
separator is any character that is not a digit.
yy is an integer from 1 to 99, abbreviating the year. If only a single digit is

 supplied, 4GL automatically prefixes it with a leading zero.
yyyy is an integer from 1 to 9999, representing the year.

The digits must represent a valid calendar date. The default locale supports
6 digits (moddyy) or 8 digits (moddyyyy), with blank, slash (/), hyphen (-),
no symbol, or any character that is not a digit as separator. Here mo, dd, and
yyyy have the same meanings as in “DATETIME Literal” on page 3-78.

The DBDATE environment variable can change the order of time units and
can specify other separators. Like the USING operator or the FORMAT field
attribute, DBDATE can also specify how 4GL displays DATE values.

In some East-Asian locales, the GL_DATE environment variable can specify
Japanese or Taiwanese eras for the entry and display of DATE values. (In any
locale, GL_DATE can specify formats beyond what DBDATE can specify.) ♦

" mo dd yy "
separator dd separator yyyy

Numeric Date

GLS

Time Expressions

3-76 HCL Informix 4GL Reference Guide

The DBCENTURY environment variable, or CENTURY attribute, determines
how to expand abbreviated year values in DATE (or DATETIME) fields of 4GL
forms. These features can also expand a two-digit year in a PROMPT
statement.

If you omit the quotation marks where a DATE value is expected, 4GL
attempts to evaluate your specification as a literal integer or as an integer
expression specifying a count of days since December 31, 1899. If slash (/) is
the separator, the quotient of month and day is divided by the year value,
producing a value that usually rounds to zero, or December 31, 1899. This
result may not be useful, if the logical context requires a more recent date.

DATETIME Qualifier
The DATETIME qualifier specifies the precision and scale of a DATETIME value.
It has the same syntax as the qualifiers of DATETIME database columns.

YEAR

MONTH

TO YEAR

TO MONTH

DAY TO DAY

HOUR TO HOUR

MINUTE TO MINUTE

SECOND TO SECOND

FRACTION TO FRACTION (3)

(scale)

DATETIME Qualifier

is an integer (1 ≤ scale ≤ 5), enclosed between parentheses. scale

Element Description

Time Expressions

Data Types and Expressions 3-77

Specify the largest time unit in the DATETIME value as the first keyword.
After the TO, specify the smallest time unit as the last keyword. These time
units can be recorded in the numeric DATETIME value.

YEAR is a year; in numeric values, this can range from 1 to 9999.
MONTH is a month, ranging from 1 to 12.
DAY is a day, ranging from 1 to 31, as appropriate to its month.
HOUR is an hour, ranging from 0 (midnight) to 23.
MINUTE is a minute, ranging from 0 to 59.
SECOND is a second, ranging from 0 to 59.
FRACTION is a fraction of a second, with up to 5 decimal places.

Unlike INTERVAL qualifiers, DATETIME qualifiers cannot specify nondefault
precision (except for FRACTION when it is the smallest unit in the qualifier).
Here are some examples of DATETIME qualifiers:

YEAR TO MINUTE MONTH TO MONTH
DAY TO FRACTION(4) MONTH TO DAY

An error results if the first keyword represents a smaller time unit than the
last, or if you use the plural form of a keyword (such as “MINUTES”).

Time Expressions

3-78 HCL Informix 4GL Reference Guide

DATETIME Literal
A DATETIME literal is the representation of a DATETIME value as the numeric
date and time, or a portion thereof, followed by a DATETIME qualifier.

Element Description
dd is the number of the day of the month, from 1 to 31.
fffff is the fraction of a second, up to 5 digits, as set by the precision specified

 for the FRACTION time units in the DATETIME qualifier.
hh is the hour (from a 24-hour clock), from 0 (midnight) to 23.
mi is the minute of the hour, from 0 to 59.
mo is a number from 1 to 12, representing the month.
space is a blank space (ASCII 32), entered by pressing SPACEBAR.
ss is the second of the minute, from 0 to 59.
yyyy is a number from 1 to 9999, representing the year. If it has fewer than 3

 digits, 4GL expands the year value to 4 digits (according to the
 DBCENTURY setting, unless the CENTURY attribute is specified).

DATETIME (Numeric Date
and Time

) DATETIME Qualifier
p. 3-76

yyyy
-

mo

-
dd

space
hh

:
mi

:
ss

.
fffff

Numeric Date
and Time

DATETIME Literal

Time Expressions

Data Types and Expressions 3-79

An error results if you omit any required separator or include values for units
outside the range specified by the qualifier. Here are some examples:

DATETIME (99-3-6) YEAR TO DAY
DATETIME (09:55:30.825) HOUR TO FRACTION
DATETIME (01-5) YEAR TO MONTH

Here is an example of a DATETIME literal used in an arithmetic expression as
an operand of the EXTEND operator:

EXTEND (DATETIME (2000-8-1) YEAR TO DAY, YEAR TO MINUTE)
- INTERVAL (720) MINUTE (3) TO MINUTE

The DBCENTURY environment variable setting determines how single-digit
and two-digit year specifications in DATETIME fields of 4GL forms are
expanded. For more information, see Appendix D, “Environment Variables.”

The CENTURY attribute of 4GL forms can specify the same algorithms as
DBCENTURY for expanding abbreviated year values. Unlike DBCENTURY ,
however, which specifies a single default algorithm for the entire application,
CENTURY specifies the expansion rule for a single field. If the two settings are
different, the CENTURY setting takes precedence (within its field) over the
DBCENTURY setting. For more information, see “DBCENTURY” on
page D-15 and “CENTURY” on page 6-35. The PROMPT statement also
supports a CENTURY attribute for DATETIME (or DATE) values that the user
enters with the year abbreviated.

The GL_DATETIME environment variable can specify display and data entry
formats for DATETIME values to conform with local cultural conventions,
such as Japanese or Taiwanese eras for year values in some East-Asian
locales. ♦

GLS

Time Expressions

3-80 HCL Informix 4GL Reference Guide

INTERVAL Qualifier
The INTERVAL qualifier specifies the precision and scale of an INTERVAL
value. It has the same syntax in 4GL as for INTERVAL database columns.

INTERVAL Case I: Time units smaller than MONTH

Qualifier

DAY (2) TO DAY

(precision)
HOUR (2) TO HOUR

(precision)
MINUTE (2) TO MINUTE

(precision)
SECOND (2) TO SECOND

(precision)

FRACTION TO FRACTION (3)
(scale)

Case II: Time units greater than DAY
YEAR (4) TO YEAR

(precision)

MONTH (2) TO MONTH

(precision)

Element Description
scale is the number of decimal digits to record fractions of a second in a span

of time. The default is 3 digits; the maximum is 5.
precision is the number of digits in the largest time units that the interval can

include. The maximum number of digits is 9; the default is 2 (except for
the number of years, whose default precision is 4).

Any intermediate time units between the first and last keywords that you
specify in an INTERVAL qualifier have the default precision of 2 digits.

Time Expressions

Data Types and Expressions 3-81

If the INTERVAL value can include more than one different time unit, specify
the largest time unit in the INTERVAL as the first keyword. After the TO,
specify the smallest time unit as the last keyword. If the first time unit
keyword is YEAR or MONTH, the last cannot be smaller than MONTH.

The following examples of an INTERVAL qualifier are both YEAR TO MONTH.
The first example can record a span of up to 999 years, because 3 is the
precision of the YEAR units. The second example uses the default precision
for the YEAR units; it can record a span of up to 9999 years and 11 months.

YEAR (3) TO MONTH
YEAR TO MONTH

When you intend for a value to contain only one kind of time unit, the first
and last keywords in the qualifier are the same. For example, an interval of
whole years that is qualified as YEAR TO YEAR can record a span of up to 9999
years, the default precision. Similarly, the qualifier YEAR (4) TO YEAR can
record a span of up to 9,999 years.

The following examples show several forms of INTERVAL qualifiers:

YEAR(5) TO MONTH
DAY (5) TO FRACTION(2)
DAY TO DAY
FRACTION TO FRACTION (4)

The option to specify a nondefault precision or y-precision (as distinct from
the scale) is a feature that INTERVAL variables do not share with DATETIME
variables. An error results if you attempt to do this when you declare a
DATETIME variable, specify DATETIME literal, or call the EXTEND operator.

An error also results if the first keyword represents a smaller time unit than
the last, or if you use the plural form of a keyword (such as “MONTHS”).

Time Expressions

3-82 HCL Informix 4GL Reference Guide

INTERVAL Literal
An INTERVAL literal represents a span of time as a numeric representation of
its chronological units, followed by an INTERVAL qualifier.

Element Description
dd is the number of days.
fffff is the fraction of a second, up to 5 digits, depending on the precision of

 the fractional portion in the INTERVAL qualifier.
hh is the number of hours.
mi is the number of minutes.
mo is the number of months, in 2 digits.
space is a blank space (ASCII 32), entered by pressing SPACEBAR.
ss is the number of seconds.
yyyy is the number of years.

INTERVAL () INTERVAL
Qualifier
p. 3-80

Case I: Time units smaller than MONTH

+

-

dd
space

hh

:
mi

:
ss

.
fffff

Case II: Time units greater than DAY

+
-

yyyy

-
mo

Numeric Time Interval

Numeric Time Interval

INTERVAL
Literal

Time Expressions

Data Types and Expressions 3-83

For all time units except years and fractions of a second, the maximum
number of digits allowed is two, unless this is the first time unit, and the
precision is specified differently by the INTERVAL qualifier. (For years, the
default maximum number of digits is four, unless some other precision is
specified by the INTERVAL qualifier.

Neither the numeric values nor the qualifier can combine units of time that
are smaller than month with month or year time units.

An error results if an INTERVAL literal omits any required field separator, or
includes values for units outside the range specified by the field qualifiers.
Some examples of INTERVAL literal values follow:

INTERVAL (3-6) YEAR TO MONTH
INTERVAL (09:55:30.825) HOUR TO FRACTION
INTERVAL (40-5) DAY TO HOUR

Arithmetic Operations on Time Values
Time expressions can be operands of some arithmetic operators. If the result
is within the range of valid DATE values, these expressions return a DATE
value.

All the other binary arithmetic operators (listed in “Arithmetic Operators” on
page 3-66) also accept DATE operands, equivalent to the count of days since
December 31, 1899, but the values returned (except from a DATE expression
as the left-hand MOD operand) are meaningless in most applications.

DATE and DATETIME values have no true zero point; they lie on interval
scales. Such scales can logically support addition and subtraction, as well as
relational operators (as described in “Relational Operators and Time Values”
on page 3-85), but multiplication, division, and exponentiation are
undefined.

DATE Expression
p. 3-74

- Integer
E n xpressio

Integer
Expression

p. 3-63

+
-

+

p. 3-63

DATE
Expression

p. 3-74

Time Expressions

3-84 HCL Informix 4GL Reference Guide

)

)

The difference between two DATE values is an INTEGER value, representing
the positive or negative number of days between the two calendar dates. You
must explicitly apply the UNITS DAY operator to the difference between DATE
values if you wish to store the result as an INTERVAL value.

This is the syntax for arithmetic expressions that return a DATETIME value.

Do not write expressions that specify the sum (+) of two DATE or DATETIME
values, or a difference (-) whose second operand is a DATE or DATETIME
value, and whose first operand is an INTERVAL value.

This is the syntax for arithmetic expressions that return an INTERVAL value.

The difference between two DATETIME values (or a DATETIME and a DATE
value, but not two DATE values) is an INTERVAL value.

DATETIME Expression
p. 3-74

DATE Expression
p. 3-74

-
+

INTERVAL Expression
p. 3-74

(INTERVAL Expression

INTERVAL Expression
p. 3-74

(+

p. 3-74

DATE Expression
p. 3-74

DATETIME Expression
p. 3-74

INTERVAL Expression
p. 3-74

INTERVAL Expression
p. 3-74

()
-

+

*
/
-

()

Number Expression
p. 3-66

DATE Expression
p. 3-74

DATETIME Expression
p. 3-74

DATETIME Expression
p. 3-74

- DATE Expression
p. 3-74

INTERVAL Expression
p. 3-74

INTERVAL
Expression

p. 3-74

INTERVAL Expression
p. 3-74

Time Expressions

Data Types and Expressions 3-85

An expression cannot combine an INTERVAL value of precision in the range
YEAR TO MONTH with another of precision in the DAY TO FRACTION range.
Similarly, you cannot combine an INTERVAL value with a DATETIME or DATE
value that has different qualifiers. You must use EXTEND to change the DATE
or DATETIME qualifier to match that of the INTERVAL value.

If the first operand of an arithmetic expression includes the UNITS operator
(page 5-119), you must enclose that operand in parentheses.

If any component of a time expression is a NULL value, 4GL evaluates the
entire expression as NULL.

DATETIME or INTERVAL operands in arithmetic cannot be quoted strings
representing numeric date and time (page 3-78) or numeric time interval
(page 3-82) values. Use instead DATETIME or INTERVAL literals that also
include appropriate DATETIME or INTERVAL qualifiers. For example, the
following LET statement that attempts to include an arithmetic expression

LET totalsec = "2002-01-01 00:00:00.000" - "1993-01-01 00:00:00.000"

in fact assigns a NULL value to the INTERVAL variable totalsec, rather than an
interval of 9 years, because the two operands have no qualifiers. Better is

LET totalsec = DATETIME (2002-01-01 00:00:00.000) YEAR TO FRACTION
- DATETIME (1993-01-01 00:00:00.000) YEAR TO FRACTION

Arithmetic with the UNITS operator or INTERVAL operands can return
invalid dates. For example, (5 UNITS MONTH) + DATETIME (1999-9 30)
YEAR TO DAY produces an error (-1267: The result of a datetime compu-
tation is out of range,) because the returned value (2000-2 30) is not
a valid calendar date.

Relational Operators and Time Values
Time expression operands of relational operators follow these rules:

■ Comparison x < y is TRUE when x is a briefer INTERVAL span than y,
or when x is an earlier DATE or DATETIME value than y.

■ Comparison x > y is TRUE when x is a longer INTERVAL span than y,
or when x is a later DATE or DATETIME value than y.

■ You cannot mix INTERVAL with DATE or DATETIME operands; but
you can compare DATE and DATETIME values with each other.

Field Clause

3-86 HCL Informix 4GL Reference Guide

Field Clause
The field clause specifies one or more screen fields or screen records.

Usage
A table reference cannot include table qualifiers. You must declare an alias in
the form specification file, as described in “Table Aliases” on page 6-24, for
any table reference that requires a qualifying prefix (such as database, server,
or owner). Here the FORMONLY keyword acts like a table reference for fields
that are not associated with a database column. For more information, see
“FORMONLY Fields” on page 6-29.

 ,

field

table

record
screen [line]
array

[1]

FORMONLY

screen . *

THRU

Notation
p. 3-92

Field Clause

field is a field name, as declared in the ATTRIBUTES section of the form
specification file.

line is an integer expression, enclosed within brackets, to specify a record
within the screen array. Here 1 ≤ line ≤ size, where size is the array
size that is declared in the INSTRUCTIONS section. If you omit the
[line] specification, the default is the first record.

screen array is the 4GL identifier that you declared for a screen array in the
INSTRUCTIONS section of the form specification file.

screen record is the 4GL identifier that you declared for a screen record, or else a
table reference (as the name of a default screen record).

table is the name, alias, or synonym of a database table or view.

Description Element

Usage

Data Types and Expressions 3-87

You can use an asterisk (*) to specify every field in a screen record.

Some contexts, such as the NEXT FIELD clause, support only a single-field
subset of this syntax. In these contexts, the THRU or THROUGH keyword,
asterisk notation, and comma-separated list of field names are not valid.

You can specify one or more of the following in the field clause:

■ A field name without qualifiers (field) if this name is unique in the
form

■ A field name, qualified by a table reference (FORMONLY.field or
table.field)

■ An individual member of a screen record (record.field)
■ An individual field within a screen array (array [line].field)
■ A set of consecutive fields in a screen record (by the THRU notation)
■ An entire screen record (record.*)
■ The first screen record in a screen array (array.*)
■ Any entire record within a screen array (array [line].*)

Important: Some 4GL statements support only a subset of these features. For
example, CONSTRUCT cannot specify a screen array line below the first. Similarly,
the FIELD_TOUCHED() operator in a CONSTRUCT or INPUT statement does not
support the [line] notation to specify a screen record within a screen array.

The field list of a SCREEN RECORD specification in the INSTRUCTIONS section
of a screen form can include the THRU or THROUGH keywords. (For details,
see “THRU or THROUGH Keywords and .* Notation” on page 3-92.)
Chapter 6 describes how to declare screen records and screen arrays.

The following INPUT statement illustrates how to specify a field name:

INPUT p_customer.fname, p_customer.lname FROM fname, lname

The following SCROLL statement moves the displayed values in all the fields
of the s_orders screen array downwards by two lines. Any values are cleared
from the first two screen records; any values in the two screen records that
are closest to the bottom of the 4GL screen or other 4GL windows are no
longer visible:

SCROLL s_orders.* DOWN 2

References

3-88 HCL Informix 4GL Reference Guide

The next SCROLL statement moves the displayed values in two of the fields
of the s_orders screen array towards the top of the 4GL screen for every screen
record. Any other fields of the s_orders array are not affected:

SCROLL s_orders.stock_num, s_orders.unit_descr UP 2

The following CLEAR statement clears one record of a screen array. In this
example, the integer value of the idx variable determines which screen record
is cleared:

CLEAR s_items[idx].*

References
CLEAR, CONSTRUCT, DISPLAY, INPUT, INPUT ARRAY, SCROLL, THRU

Table Qualifiers

Data Types and Expressions 3-89

Table Qualifiers
Statements that reference database tables, views, or synonyms (either alone
or as qualifiers of database column names) can include table qualifiers.

Usage
Table qualifiers can appear in SQL and other 4GL statements and in table alias
declarations in the TABLES section of form specifications. You cannot,
however, prefix a table alias or a field name with a table qualifier. Except in
table alias declarations within the TABLES section, you cannot include table
qualifiers anywhere in a form specification file.

Owner Naming
The qualifier can specify the login name of the owner of the table. You must
specify owner if table.column is not a unique identifier within its database.

In an ANSI-compliant database, you must qualify each table name with that
of the owner of the table (owner.table). The only exception is that you can omit
the owner prefix for any tables that you own.

IDS

database :
@server

owner.
"owner."
'owner.'

Table Qualifier

database is the name of a database containing the table, view, or synonym.
owner is the login name of the owner of the table, view, or synonym whose

identifier immediately follows the table qualifier.
server is the name of the host system where database resides. Blank spaces are

not valid after the @ symbol.

Element Description

ANSI

Table Qualifiers

3-90 HCL Informix 4GL Reference Guide

If the current database is ANSI-compliant, a runtime error results if you
attempt to query a remote database that is not ANSI-compliant. ♦

For example, if Les owns table t1, you own table t2, and Sasha owns table t3,
you could use the following statement to reference three columns in those
tables:

VALIDATE var1, var2, var3 LIKE les.t1.c1, t2.c2, sasha.t3.c3

You can include the owner name in a database that is not ANSI-compliant. If
owner is incorrect, however, 4GL generates an error. For more information, see
the discussion of the Owner Name segment in the Informix Guide to SQL:
Syntax.

Database References
The LIKE clause of 4GL statements like DEFINE, INITIALIZE, and VALIDATE
can use this database: or database@server: notation in table qualifiers to specify
tables in a database other than the default database (as described in “The
Default Database at Compile Time” on page 4-73). Without such qualifiers,
4GL looks for the table in the default database. Even if the table qualifier
includes a database reference, however, the LIKE clause will fail unless you
also include a DATABASE statement before the first program block in the
same module to specify a default database.

The current database is the database specified by the most recently executed
DATABASE statement in a MAIN or FUNCTION program block in the same
module. 4GL programs can include SELECT statements that query a table in
an Informix Dynamic Server database that is not the current database, but
they cannot insert, update, or delete rows from any table that is not in the
current database.

If the current database is supported by Informix Dynamic Server, a table
reference can also include @server to specify the name of another host system
on which a table resides.

LOAD FROM "fyl" INSERT INTO dbas@hostile:woody.table42

Only the databases stored in your current directory, or in a directory
specified in your DBPATH environment variable, are recognized. Table quali-
fiers cannot include references to an INFORMIX-SE database. ♦

SE

Table Qualifiers

Data Types and Expressions 3-91

References
DATABASE, DEFINE, INITIALIZE, LOAD, VALIDATE, UNLOAD

THRU or THROUGH Keywords and .* Notation

3-92 HCL Informix 4GL Reference Guide

THRU or THROUGH Keywords and .* Notation
To list consecutive set members in the order of their declaration, you can use
the .* notation to specify the entire set, or you can use the keyword THRU (or
THROUGH, its synonym) to specify a subset of consecutive members.

THRU
Notation

Table
Qualifier table .* p. 3-89

Program . first THROUGH last
or Screen
Record

THRU same .
Program
or Screen
Record

record

record .
 ,

1 array [3 Integer Expression] p. 3-63

 Element Description
array is the name of an ARRAY variable or screen array, or the keyword

FORMONLY. (But if array is not a variable, no loop is allowed.)
first is the name of some member variable or field of record.
last is a variable or field that was declared later than first.
record is the name of a program record or screen record.
same is the name of the same record that qualified first.
table is the name, alias, or synonym of a database table.

THRU or THROUGH Keywords and .* Notation

Data Types and Expressions 3-93

Usage
These notational devices in 4GL statements can simplify lists of structured
sets of fields of a screen record or member variables of a program record, or
can indicate all of the columns of a database table or view.

The columns of a database table can be referenced by the asterisk notation,
but you cannot use THRU or THROUGH to specify a partial list of columns.

The notation record.member refers to an individual member variable of a 4GL
program record, or a field of a 4GL screen record. The record.* notation refers
to the entire program record or screen record. Here record can be the name,
alias, or synonym of a table or view, or the name of a program record or
screen record, or the FORMONLY keyword.

The THRU (or equivalently, THROUGH) notation can specify a partial list of
the members of a program record or screen record. The notation record.first
THRU record.last refers to a consecutive subset of members of the record, from
first through last, where first appears sooner than last in the data type decla-
ration of a program record, or else in the ATTRIBUTES section of the form
specification file (for screen records).

These notations are a shorthand for writing out a full or partial list of set
members with commas separating individual items in the list; this is the form
to which 4GL expands these notations. Here are two examples:

INITIALIZE pr_rec.member4 THRU pr_rec.member8 TO NULL
DISPLAY pr_rec.* TO sc_rec.*

This INITIALIZE statement sets to null the values of 4GL variables
pr_rec.member4, pr_rec.member5, pr_rec.member6, pr_rec.member7, and
pr_rec.member8. The DISPLAY statement lists the entire record pr_rec in the
screen fields that make up the screen record sc_rec.

The order of record members within the expanded list is the same order in
which they were declared, from first to last. For a screen record, this is the
order of their field descriptions in the ATTRIBUTES section. For example,
suppose that the following lines appeared in the form specification file:

ATTRIBUTES
...
f002=tab3.aa;
f003=tab3.bb;
f004=tab3.cc;
f005=tab2.aa;
f006=tab2.bb;

THRU or THROUGH Keywords and .* Notation

3-94 HCL Informix 4GL Reference Guide

f007=tab1.aa;
f008=tab1.bb;
f009=tab1.cc;
...
INSTRUCTIONS
SCREEN RECORD sc_rec (tab3.cc THRU tab1.bb)

This implies the following order of field names within screen record sc_rec:

tab3.cc tab2.aa tab2.bb tab1.aa tab1.bb

The order of fields in the screen record depends on the physical order of field
descriptions in the ATTRIBUTES section and on the SCREEN RECORD specifi-
cation. The form compiler ignores the physical arrangement of fields in the
screen layout, the order of table names in the TABLES section, the
CONSTRAINED and UNCONSTRAINED keywords of the OPTIONS statement,
and the lexicographic order of the table names or field names when it
processes the declaration of a screen record. For more information about
default and nondefault screen records, see “Screen Records” on page 6-74.

The THRU, THROUGH, or .* notation can appear in any list of columns,
fields, or member variables, with the following exceptions:

■ THRU or THROUGH cannot reference columns of database tables.
There is no shorthand for a partial listing of columns of a table.

■ You cannot use THRU or THROUGH to indicate a partial list of screen
record members while the program displays or enters data in a form.

■ You cannot use THRU, THROUGH, or .* in a quoted string to specify
variables of a SELECT or INSERT clause in the PREPARE statement.

■ You cannot use THRU, THROUGH, or the .* notation to reference a
program record that contains an array member. (But these notations
can specify all or part of a record that contains records as members,
or a record that is an element of an array of records.)

■ An exception to the general rule of .* expanding to a list of all
column names occurs when .* appears in an UPDATE statement.
Here any columns of the SERIAL data type are excluded from the
expanded list. For example, the following UPDATE statement:

UPDATE table1 SET table1.* = program_rec.*

is equivalent to the expanded syntax:
UPDATE table1 SET table1.col1 = program_rec.member1,

table1.col2 = program_rec.member2, ...

and so forth to the last column, but with any SERIAL column omitted.

THRU or THROUGH Keywords and .* Notation

Data Types and Expressions 3-95

References
CLEAR, CONSTRUCT, DISPLAY, INPUT, INPUT ARRAY, REPORT, SCROLL

ATTRIBUTE Clause

3-96 HCL Informix 4GL Reference Guide

ATTRIBUTE Clause
The ATTRIBUTE clause assigns visual attributes in some 4GL statements.

Usage
Keywords listed at the left of this diagram specify color; those at the right
specify intensity. The ATTRIBUTE clause can appear in the following 4GL
statements:

CONSTRUCT
DISPLAY ARRAY
DISPLAY AT
DISPLAY BY NAME

DISPLAY FORM
DISPLAY TO
ERROR
INPUT

INPUT ARRAY
MESSAGE
PROMPT

Besides these statements, both the OPEN WINDOW statement (“OPEN
WINDOW” on page 4-280) and the OPTIONS statement (“OPTIONS” on
page 4-291) can include ATTRIBUTE clauses that support additional
keywords, as described in the sections about those statements in Chapter 4.

 ,

ATTRIBUTE (REVERSE)

BLACK BLINK

BLUE UNDERLINE

CYAN

GREEN

MAGENTA

RED BOLD

WHITE

YELLOW

DIM

INVISIBLE

NORMAL

ATTRIBUTE
Clause

ATTRIBUTE Clause

Data Types and Expressions 3-97

The DISPLAY ARRAY, INPUT ARRAY, and PROMPT statements support
additional attributes that are described in the next chapter.

You must include at least one keyword in the ATTRIBUTE clause. An attribute
clause in any statement except OPEN WINDOW or OPTIONS can specify zero
or more of the BLINK, REVERSE, and UNDERLINE attributes, and zero or one
of the other attributes. That is, all of the attributes except BLINK, REVERSE,
and UNDERLINE are mutually exclusive.

Color and Monochrome Attributes
Support for the REVERSE and INVISIBLE attributes does not depend on the
color versus monochrome status of the monitor. On any monitor, for example,
specifying INVISIBLE in an ATTRIBUTE clause prevents its 4GL statement from
displaying output on the screen, or else from echoing the user’s keystrokes
during data entry. (But the screen shows the character positions to which the
screen cursor moves while the user types.)

For other attributes, 4GL supports either color or monochrome monitors, but
not both. If you have a color monitor, you cannot display the monochrome
attributes (such as BOLD or DIM). If you have a monochrome monitor, you
cannot display the color attributes (such as RED or BLUE).

For all ATTRIBUTE clauses and field attributes, the following table shows the
effects of the color attributes on a monochrome monitor, as well as the effects
of the intensity attributes on a color monitor.

Color Attribute Monochrome Display Intensity Attribute Color Display

WHITE
YELLOW
RED
MAGENTA

Normal
Bold
Bold
Bold

NORMAL

BOLD

White

Red

BLUE Dim DIM Blue
GREEN Dim

CYAN Dim

BLACK Dim

If you specify the INVISIBLE attribute, 4GL does not display the data that the
user enters in the field. The data value, however, is stored in the input buffer,
and is also available by using the get_fldbuf() function.

ATTRIBUTE Clause

3-98 HCL Informix 4GL Reference Guide

The following example demonstrates using the ATTRIBUTE clause in an
ERROR statement. If the insert_items() function returns FALSE, 4GL rolls
back the changes to the database and displays the error message:

IF NOT insert_items() THEN
ROLLBACK WORK
ERROR "Unable to insert items."

ATTRIBUTE(RED, REVERSE, BLINK)
RETURN

END IF

If the terminal supports color, 4GL displays the error message in red,
blinking, reverse video. If the terminal screen is monochrome, 4GL displays
the error message in bold, blinking, reverse video.

Within its scope (which may be while a field, a form, or a 4GL window is
displayed, or while a statement executes), a color attribute overrides any
default colors specified for your terminal. (The next page describes the prece-
dence of 4GL attributes.)

Precedence of Attributes
You can assign different attributes to the same field. During execution of
field-related statements, however, 4GL uses these rules of precedence
(descending) to resolve any conflicts among attribute specifications:

1. The ATTRIBUTE clause of the current statement.
2. The attributes from the field descriptions in the ATTRIBUTES section

of the current form file. (See “Field Attribute Syntax” on page 6-33.)
3. The default attributes specified in the syscolatt table of any fields

linked to database columns. To modify the syscolatt table, use the
upscol utility. For information on using this utility, see Appendix B,
“INFORMIX-4GL Utility Programs.”

4. The ATTRIBUTE clause of the most recent OPTIONS statement.
5. The ATTRIBUTE clause of the current form in the most recent DISPLAY

FORM statement.
6. The ATTRIBUTE clause of the current 4GL window in the most recent

OPEN WINDOW statement.
7. The default reserved line positions and the default foreground color

on your terminal.

ATTRIBUTE Clause

Data Types and Expressions 3-99

The field-related statements of INFORMIX-4GL are these:

CONSTRUCT
DISPLAY

DISPLAY ARRAY
DISPLAY FORM

INPUT
INPUT ARRAY

You cannot override the attributes specified for the ERROR, MESSAGE, and
PROMPT statements, so precedence rules do not affect these statements.

Keywords of an ATTRIBUTES clause produce their documented effects only
when the termcap or terminfo files and the physical terminals support the
attribute. For more information on these files, see Appendix F,
“Modifying termcap and terminfo.”

On UNIX systems that use terminfo files rather than termcap, 4GL does not
support attributes that specify colors, and the only valid keywords are
REVERSE and UNDERLINE.

Important: Some terminal entries in termcap or terminfo include the sg#1 or
xmc#1 capabilities. If you are using one of these terminals and if the attributes
specified for the INPUT ARRAY statement are different than the attributes of the
current form or window, 4GL replaces the right and left square brackets that indicate
the input fields with blank characters. 4GL uses the blank character as a transition
character between the different attributes.

References
CONSTRUCT, DATABASE, DISPLAY, DISPLAY ARRAY, DISPLAY FORM, ERROR,
INPUT, INPUT ARRAY, MESSAGE, OPEN WINDOW, OPTIONS, PROMPT

INFORMIX-4GL Statements

In This Chapter ... 4-9

The 4GL Statement Set ... 4-9
Types of SQL Statements ... 4-9
Other Types of 4GL Statements .. 4-13

Statement Descriptions .. 4-15
CALL ... 4-16

Arguments ... 4-17
The RETURNING Clause ... 4-19
Restrictions on Returned Character Strings ... 4-20
Invoking a Function Without CALL ... 4-21

CASE ... 4-22
The WHEN Blocks .. 4-23
The OTHERWISE Block .. 4-24
The EXIT CASE Statement and the END CASE Keywords.................. 4-25

CLEAR .. 4-28
The CLEAR FORM Option .. 4-28
The CLEAR WINDOW Option ... 4-29
The CLEAR WINDOW SCREEN Option ... 4-29
The CLEAR SCREEN Option .. 4-29
The CLEAR Field Option ... 4-30

CLOSE FORM .. 4-31
CLOSE WINDOW ... 4-32
CONSTRUCT ... 4-34

The CONSTRUCT Variable Clause ... 4-37
The ATTRIBUTE Clause ... 4-41
The HELP Clause .. 4-43
The CONSTRUCT Input Control Blocks .. 4-44
The NEXT FIELD Clause .. 4-52
The CONTINUE CONSTRUCT Statement .. 4-53

Chapter

4

4-2 HCL Informix 4GL Reference Guide

The EXIT CONSTRUCT Statement ... 4-54
The END CONSTRUCT Keywords .. 4-55
Using Built-In Functions and Operators .. 4-55
Search Criteria for Query by Example.. 4-56
Positioning the Screen Cursor ... 4-61
Using WORDWRAP in CONSTRUCT ... 4-62
Editing During a CONSTRUCT Statement .. 4-63
Completing a Query ... 4-63

CONTINUE .. 4-66
CURRENT WINDOW... 4-68
DATABASE .. 4-71

The Database Specification .. 4-72
The Default Database at Compile Time .. 4-73
The Current Database at Runtime .. 4-74
The EXCLUSIVE Keyword .. 4-75
Testing SQLCA.SQLAWARN ... 4-75
Effects of the Default Database on Error Handling 4-76
Additional Facts About Connections .. 4-77

DEFER... 4-78
Interrupting Screen Interaction Statements .. 4-79
Interrupting SQL Statements ... 4-80

DEFINE ... 4-81
The Context of DEFINE Declarations ... 4-82
Indirect Typing .. 4-83
Declaring the Names and Data Types of Variables 4-84
Variables of Simple Data Types ... 4-85
Variables of Large Data Types ... 4-86
Variables of Structured Data Types .. 4-86

DISPLAY .. 4-90
Sending Output to the Line Mode Overlay ... 4-91
Sending Output to the Current 4GL Window 4-92
Sending Output to a Screen Form ... 4-96
The ATTRIBUTE Clause ... 4-99
Displaying Numeric and Monetary Values .. 4-100
Displaying Time Values .. 4-101

DISPLAY ARRAY ... 4-102
The ATTRIBUTE Clause .. 4-104
The ON KEY Blocks ... 4-106
The EXIT DISPLAY Statement .. 4-108
The END DISPLAY Keywords ... 4-108
Using Built-In Functions and Operators ... 4-109

INFORMIX-4GL Statements 4-3

Scrolling During the DISPLAY ARRAY Statement 4-111
Completing the DISPLAY ARRAY Statement 4-111

DISPLAY FORM 4-113
Form Attributes 4-113
Reserved Lines 4-114

END 4-116
ERROR 4-118

The Error Line 4-118
The ATTRIBUTE Clause 4-119
System Error Messages .. 4-120

EXIT .. 4-121
Leaving a Control Structure .. 4-121
Leaving a Function ... 4-122
Leaving a Report .. 4-122
Leaving the Program .. 4-123

FINISH REPORT ... 4-125
FOR ... 4-128

The TO Clause ... 4-128
The STEP Clause ... 4-129
The CONTINUE FOR Statement .. 4-129
The EXIT FOR Statement ... 4-130
The END FOR Keywords .. 4-130
Databases with Transactions ... 4-130

FOREACH ... 4-131
Cursor Names ... 4-133
The USING Clause ... 4-134
The INTO Clause .. 4-134
The WITH REOPTIMIZATION Keywords ... 4-135
The FOREACH Statement Block ... 4-136
The END FOREACH Keywords ... 4-138

FUNCTION ... 4-140
The Prototype of the Function .. 4-141
The FUNCTION Program Block ... 4-142
Executable Statements ... 4-142
Data Type Declarations .. 4-143
The Function as a Local Scope of Reference .. 4-143
Returning Values to the Calling Routine ... 4-144
The END FUNCTION Keywords ... 4-144

GLOBALS .. 4-145
Declaring and Exporting Global Variables .. 4-146
Importing Global Variables ... 4-147

4-4 HCL Informix 4GL Reference Guide

GOTO ... 4-151
IF ... 4-153
INITIALIZE ... 4-155

The LIKE Clause .. 4-156
INPUT .. 4-159

The Binding Clause .. 4-161
The ATTRIBUTE Clause .. 4-166
The HELP Clause ... 4-166
The INPUT Control Block ... 4-167
The CONTINUE INPUT Statement ... 4-177
The EXIT INPUT Statement .. 4-178
The END INPUT Keywords ... 4-178
Using Built-In Functions and Operators ... 4-178
Keyboard Interaction ... 4-180
Cursor Movement in Simple Fields ... 4-180
Multiple-Segment Fields ... 4-182
Using Large Data Types .. 4-185
Completing the INPUT Statement ... 4-185

INPUT ARRAY ... 4-187
The Binding Clause .. 4-189
The ATTRIBUTE Clause .. 4-191
The HELP Clause ... 4-196
The INPUT ARRAY Input Control Blocks .. 4-197
The CONTINUE INPUT Statement ... 4-214
The EXIT INPUT Statement .. 4-214
The END INPUT Keywords ... 4-215
Using Built-In Functions and Operators ... 4-215
Using Large Data Types .. 4-218
Keyboard Interaction ... 4-219
Completing the INPUT ARRAY Statement ... 4-221

LABEL.. 4-224
LET ... 4-226
LOAD ... 4-230

The Input File ... 4-231
The DELIMITER Clause .. 4-233
The INSERT Clause ... 4-234
Performance Issues with LOAD ... 4-238

LOCATE .. 4-239
The List of Large Variables ... 4-240
The IN MEMORY Option ... 4-241
The IN FILE Option ... 4-241

INFORMIX-4GL Statements 4-5

Passing Large Variables to Functions ... 4-243
Freeing the Storage Allocated to a Large Data Type 4-243

MAIN ... 4-245
Variables Declared in the MAIN Statement .. 4-246

MENU ... 4-248
The MENU Control Blocks ... 4-250
Invisible Menu Options .. 4-257
The CONTINUE MENU Statement... 4-259
The EXIT MENU Statement ... 4-259
The NEXT OPTION Clause .. 4-260
The HIDE OPTION and SHOW OPTION Keywords 4-260
Nested MENU Statements .. 4-262
The END MENU Keywords ... 4-263
Identifiers in the MENU Statement ... 4-263
Choosing a Menu Option ... 4-265
Scrolling the Menu Options ... 4-266
Completing the MENU Statement... 4-268
COMMAND KEY Conflicts.. 4-271

MESSAGE ... 4-273
The Message Line .. 4-273
The ATTRIBUTE Clause ... 4-274

NEED ... 4-276
OPEN FORM .. 4-278

Specifying a Filename ... 4-278
The Form Name ... 4-279
Displaying a Form in a 4GL Window ... 4-279

OPEN WINDOW ... 4-280
The 4GL Window Stack .. 4-281
The AT Clause .. 4-282
The WITH ROWS, COLUMNS Clause ... 4-282
The WITH FORM Clause ... 4-283
The OPEN WINDOW ATTRIBUTE Clause .. 4-284

OPTIONS .. 4-291
Features Controlled by OPTIONS Clauses ... 4-292
Positioning Reserved Lines .. 4-295
Cursor Movement in Interactive Statements .. 4-296
The OPTIONS ATTRIBUTE Clause ... 4-297
The HELP FILE Option ... 4-299
Assigning Logical Keys ... 4-299
Interrupting SQL Statements .. 4-301
Setting Default Screen Modes .. 4-307

4-6 HCL Informix 4GL Reference Guide

OUTPUT TO REPORT .. 4-308
PAUSE ... 4-311
PREPARE .. 4-312

Statement Identifier ... 4-313
Statement Text .. 4-314
Statements That Can or Must Be Prepared ... 4-315
Statements That Cannot Be Prepared .. 4-317
Using Parameters in Prepared Statements .. 4-319
Preparing Statements with SQL Identifiers ... 4-321
Preparing Sequences of Multiple SQL Statements 4-321
Runtime Errors in Multistatement Texts ... 4-322
Using Prepared Statements for Efficiency ... 4-323

PRINT .. 4-324
PROMPT .. 4-325

The PROMPT String .. 4-326
The Response Variable .. 4-327
The FOR Clause ... 4-327
The ATTRIBUTE Clauses .. 4-327
The HELP Clause ... 4-329
The ON KEY Blocks ... 4-329
The END PROMPT Keywords ... 4-331

REPORT ... 4-332
The Report Prototype .. 4-333
The Report Program Block .. 4-334
Two-Pass Reports ... 4-334
The Exit Report Statement .. 4-335
The END REPORT Keywords .. 4-336

RETURN .. 4-337
The Data Types of Returned Values .. 4-338

RUN ... 4-340
Screen Display Modes ... 4-341
The RETURNING Clause ... 4-341
The WITHOUT WAITING Clause ... 4-343

SCROLL ... 4-344
SKIP .. 4-346
SLEEP... 4-348
SQL ... 4-349
START REPORT .. 4-354

The TO Clause .. 4-355
Dynamic Output Configuration ... 4-356

INFORMIX-4GL Statements 4-7

TERMINATE REPORT ... 4-364
UNLOAD .. 4-367

The Output File .. 4-368
The DELIMITER Clause ... 4-369
Host Variables .. 4-370
The Backslash Escape Character .. 4-371

VALIDATE ... 4-372
The LIKE Clause .. 4-373
The syscolval Table .. 4-374

WHENEVER ... 4-376
The Scope of the WHENEVER Statement... 4-377
The ERROR Condition .. 4-378
The ANY ERROR Condition .. 4-378
The NOT FOUND Condition ... 4-379
The WARNING Condition .. 4-379
The GOTO Option ... 4-379
The CALL Option .. 4-380
The CONTINUE Option ... 4-381
The STOP Option ... 4-381

WHILE .. 4-382
The CONTINUE WHILE Statement .. 4-383
The EXIT WHILE Statement .. 4-383
The END WHILE Keywords .. 4-383

4-8 HCL Informix 4GL Reference Guide

INFORMIX-4GL Statements 4-9

In This Chapter
This chapter describes the INFORMIX-4GL statements, classifying them by
functional category and also providing alphabetized descriptions of the
individual statements of 4GL that are not SQL statements.

The 4GL Statement Set
4GL supports the SQL language, but it is sometimes convenient to distinguish
between SQL statements and other 4GL statement, as follows:

■ SQL statements operate on tables and their columns in a database.
■ 4GL statements operate on variables in memory.

Types of SQL Statements
SQL statements of 4GL can be classified among these functional categories:

■ Cursor manipulation statements
■ Data definition statements
■ Data manipulation statements
■ Dynamic management statements
■ Query optimization statements
■ Data access statements
■ Data integrity statements
■ Stored procedure statements
■ Client/server connection statements
■ Optical statements

Types of SQL Statements

4-10 HCL Informix 4GL Reference Guide

The SQL statements in each of these categories are listed in sections that
follow. SQL statements that are not listed here are not available in 4GL.

For syntax and usage information about SQL statements, see the Informix
Guide to SQL: Syntax. To use the SQL statements identified by the SQL icon
in a 4GL program, you must either put the statement in an SQL block, as
described in “SQL” on page 4-349, or else prepare the statement, as described
in “PREPARE” on page 4-312.

You must also prepare (or delimit with SQL…END SQL) any other SQL state-
ments that specify syntax that was not supported by Informix 4.1 database
servers. SQL statements that include only Informix 4.1 syntax can be directly
embedded or delimited with SQL…END SQL, but most SQL statements can
also be prepared and can appear in SQL blocks.

Types of SQL Statements

INFORMIX-4GL Statements 4-11

SQL Cursor Manipulation Statements

CLOSE FREE
DECLARE OPEN
FETCH PUT
FLUSH SQL SET AUTOFREE

SQL Data Definition Statements

 SQL ALTER FRAGMENT CREATE VIEW
 ALTER INDEX DATABASE
 ALTER TABLE DROP DATABASE
 CLOSE DATABASE DROP INDEX
 CREATE DATABASE DROP PROCEDURE
 SQL CREATE EXTERNAL TABLE SQL DROP ROLE
 CREATE INDEX DROP SYNONYM

 SQL

CREATE PROCEDURE FROM
CREATE ROLE

 SQL

DROP TABLE
DROP TRIGGER

 SQL CREATE SCHEMA DROP VIEW
 CREATE SYNONYM RENAME COLUMN
 CREATE TABLE SQL RENAME DATABASE
 SQL CREATE TRIGGER RENAME TABLE

SQL Data Manipulation Statements

 SQL

INSERT SELECT
DELETE UNLOAD
LOAD UPDATE
OUTPUT

SQL Dynamic Management Statements

EXECUTE PREPARE
EXECUTE IMMEDIATE
FREE

 SQL SET DEFERRED_PREPARE

Types of SQL Statements

4-12 HCL Informix 4GL Reference Guide

SQL

SQL Query Optimization Statements

SET EXPLAIN SQL SET RESIDENCY
 SQL
 SQL

SET OPTIMIZATION SET SCHEDULE LEVEL
SET PDQPRIORITY UPDATE STATISTICS

SQL Data Access Statements

GRANT SET LOCK MODE
 SQL GRANT FRAGMENT

LOCK TABLE
REVOKE

 SQL
 SQL
 SQL

SET ROLE
SET SESSION
SET TRANSACTION

 SQL REVOKE FRAGMENT UNLOCK TABLE
SET ISOLATION

SQL Data Integrity Statements
BEGIN WORK
COMMIT WORK
ROLLBACK WORK

SET PLOAD FILE
SET TRANSACTION MODE
START VIOLATIONS TABLE

 SQL
 SQL

SET DATABASE OBJECT MODE STOP VIOLATIONS TABLE
SET LOG WHENEVER

SQL Stored Procedure Statements

 SQL EXECUTE PROCEDURE SQL SET DEBUG FILE TO

SQL Client/Server Connection Statements

CONNECT SET CONNECTION
DISCONNECT

 SQL

SQL
SQL

Other Types of 4GL Statements

INFORMIX-4GL Statements 4-13

SQL
SQL

SQL Optical Subsystems Statements

 SQL ALTER OPTICAL CLUSTER SQL RELEASE
 SQL
 SQL

CREATE OPTICAL CLUSTER RESERVE
DROP OPTICAL CLUSTER SET MOUNTING TIMINOUT

Optical statements are only valid on Informix database servers that support
optical storage. No INFORMIX-SE database server, for example, supports
these features.

Other Types of 4GL Statements
Six other types of 4GL statements are available. (These are sometimes called
simply “4GL statements,” to distinguish them from SQL statements.)

■ Definition and declaration statements

■ Storage manipulation statements

■ Program flow control statements

■ Compiler directives

■ Screen interaction statements

■ Report execution statements

4GL Definition and Declaration Statements

DEFINE LABEL
FUNCTION MAIN
GLOBALS…END GLOBALS REPORT

4GL Storage Manipulation Statements

CLOSE FORM LET
FREE LOCATE
INITIALIZE VALIDATE

Other Types of 4GL Statements

4-14 HCL Informix 4GL Reference Guide

4GL Program Flow Control Statements

CALL GOTO
CASE IF
CONTINUE OUTPUT TO REPORT
DATABASE RETURN
END RUN
EXIT START REPORT
FINISH REPORT TERMINATE REPORT
FOR WHILE
FOREACH

4GL Compiler Directives

DEFER SQL…END SQL
GLOBALS filename WHENEVER

4GL Screen Interaction Statements

CLEAR INPUT ARRAY
CLOSE WINDOW MENU
CONSTRUCT MESSAGE
COPY ARRAY OPEN FORM
CURRENT WINDOW OPEN WINDOW
DISPLAY OPTIONS
DISPLAY ARRAY PROMPT
DISPLAY FORM REMOVE ARRAY
ERROR SCROLL
INPUT SLEEP

4GL Report Execution Statements

NEED PRINT
PAUSE SKIP

Statement Descriptions

INFORMIX-4GL Statements 4-15

Most 4GL statements are not sensitive to whether INFORMIX-SE or Informix
Dynamic Server supports the application. INFORMIX-SE cannot store values
in BYTE, TEXT, or VARCHAR columns, but any 4GL program can declare
variables of these data types.

Statement Descriptions
The following sections describe the 4GL statements that are not SQL state-
ments, and certain SQL statements. Each description includes these elements:

■ The name and a terse summary of the effect of the 4GL statement

■ A syntax diagram

■ Notes on usage, typically arranged by syntax elements

If a description is longer than a few pages, a bulleted list identifies the major
topical headings and their page numbers.

A list of related statements concludes most of these statement descriptions.

4-16 HCL Informix 4GL Reference Guide

CALL

CALL
The CALL statement invokes a specified function.

Usage
CALL can invoke the following types of functions from a 4GL application:

■ Programmer-defined 4GL functions

■ 4GL built-in functions

■ C language functions

It can also invoke ESQL/C functions. Programmer-defined 4GL functions are
defined in FUNCTION statements. These functions can appear in the same
source file as the MAIN statement, or they can be compiled in separate .4gl
modules (individually, or with other function and report definitions) and
linked later to the MAIN program block.

When 4GL encounters a CALL statement at runtime, it locates the specified
FUNCTION program block and executes its statements in sequence. If the
function is not a built-in function, a link-time error occurs unless exactly one
definition of that function exists in the modules that make up the program.

The program block containing the CALL statement is called the calling routine.
The RETURNING clause can specify the name of one or more variables that
function returns to the calling routine. This variable (or list of variables) has
the same syntax as a receiving variable in the LET statement.

CALL function)
, ,

RETURNING 4GL Expression
p. 3-49

Receiving
Variable
p. 4-226

function is the identifier of the function to be invoked.

Element Description

CALL

INFORMIX-4GL Statements 4-17

Tip: Unlike 4GL identifiers, the names of C functions are case sensitive and must
typically appear in lowercase letters within the function call. For more information,
see Appendix C, “Using C with INFORMIX-4GL.”

In this example, the CALL statement invokes the show_menu() function:

MAIN
...
CALL show_menu()
...

END MAIN
FUNCTION show_menu()

...
END FUNCTION

Chapter 5, “Built-In Functions and Operators,” provides more information
about functions. The following sections describe these topics:

■ “Arguments” on page 4-17

■ “The RETURNING Clause” on page 4-19

■ “Restrictions on Returned Character Strings” on page 4-20

■ “Invoking a Function Without CALL” on page 4-21

Arguments
The argument list after the function name specifies values for CALL to pass as
actual arguments to the function. These actual arguments can be any 4GL
expression (as described in “Expressions of 4GL” on page 3-49) if the
returned data types are compatible with the corresponding formal arguments
in the FUNCTION definition. Statements in the FUNCTION definition are
executed with the values of actual arguments substituted for the corre-
sponding formal arguments. (Parentheses are always required around the
list of argument, even if the list is empty because the function accepts no
arguments.)

CALL

4-18 HCL Informix 4GL Reference Guide

For example, the following program fragment passes the current values of
p_customer.fname and p_customer.lname to the print_name() function:

MAIN
...
CALL print_name(p_customer.fname, p_customer.lname)
...

END MAIN
FUNCTION print_name(fname, lname)

DEFINE fname, lname CHAR(15)
...

END FUNCTION

When passing arguments to a function, keep these considerations in mind:

■ Values in the argument list must correspond in number and position
(within the list) to the formal arguments that were specified in the
FUNCTION statement.

■ Data types of values must be compatible, but need not be identical,
to those of the formal arguments in the FUNCTION statement.

■ An argument can be an expression that contains variables of simple
data types, or simple members of records, or simple elements of
arrays. An argument can also be a BYTE or TEXT variable.

■ Results can be unpredictable if a variable that has not yet been
assigned a value is used as an argument in a CALL statement.

Passing Arguments by Value

How 4GL passes an argument between the calling routine and the function
depends on the data type of the argument. Except for variables of data type
BYTE or TEXT, arguments are passed to the function by value. That is, a copy
of the argument is passed. (In this case, changing the value of a formal
argument within the function has no effect in the calling routine.)

Passing Arguments by Reference

4GL passes arguments of data type BYTE and TEXT by reference. In this case,
the function works directly with the actual variable, rather than with a copy.
That is, changing a reference to a formal argument in a function changes the
corresponding variable in the calling routine. You can use this as a substitute
for the RETURNING clause, which does not permit BYTE or TEXT variables.

CALL

INFORMIX-4GL Statements 4-19

This example shows how to pass a BYTE or TEXT argument to a 4GL function:

MAIN
DEFINE resume TEXT
...
LOCATE resume IN MEMORY
CALL get_resume(resume)

END MAIN
FUNCTION get_resume(parm)

DEFINE parm TEXT
...

END FUNCTION

In this example, the LOCATE statement allocates memory for the TEXT
variable, and places a pointer to this variable in resume. Any change to parm
within the get_resume() function also changes the TEXT variable in MAIN.

The RETURNING Clause
The RETURNING clause assigns values returned by the function to variables
in the calling routine. To use this feature, you must do the following:

■ Determine how many values function returns. In the CALL statement,
specify that number of variables in the RETURNING clause.

■ If you write the function definition, include expressions in a RETURN
statement to specify values returned by the function. (For more infor-
mation, see “RETURN” on page 4-337.)

When returning values to the CALL statement, keep the following consider-
ations in mind:

■ The values in the RETURN statement of the FUNCTION definition
must correspond in number and position to the variables specified in
the RETURNING clause of the CALL statement. Data types of the
RETURNING variables must be compatible with the RETURN values,
but they need not be identical. (For more information, see “Summary
of Compatible 4GL Data Types” on page 3-46.)

■ It is an error to specify more variables in the RETURNING clause than
the number of values in the RETURN statement of the FUNCTION
definition. (If the RETURNING clause specifies fewer variables, any
additional returned values are ignored by the calling routine.)

CALL

4-20 HCL Informix 4GL Reference Guide

■ You can return simple or RECORD variables from a function. You
cannot, however, return RECORD members of ARRAY, BYTE, and
TEXT data types.

■ The RETURNING clause passes information by value. Because
variables of the BYTE and TEXT data types are passed by reference,
they cannot be included in the RETURNING clause. (For more infor-
mation, see “Passing Arguments by Reference” on page 4-18.)

Important: It is an error to specify a RETURNING clause in the CALL statement if
the function does not return anything. It is not an error to omit the RETURNING
clause when you invoke a function that returns values if no statement in the calling
routine references the returned values.

In the next example, the get_cust() function returns values of whole_price
and ret_price to the CALL statement. 4GL then assigns the whole_price and
ret_price variables to the wholesale and retail variables in the price record:

MAIN
DEFINE price RECORD

wholesale, retail MONEY
END RECORD

...
CALL get_cust() RETURNING price.*
...

END MAIN

FUNCTION get_cust()
DEFINE whole_price, ret_price MONEY
...
RETURN whole_price, ret_price

END FUNCTION

Restrictions on Returned Character Strings
A returned value that a CHAR variable receives cannot be longer than 32,767
bytes. (Earlier releases of 4GL allocated 5 kilobytes of memory to store
character strings returned by functions, in 10 blocks of 512 bytes, but this
restriction has been replaced in current releases by the 32,767 byte limit.)

You can also use TEXT variables to pass longer character values by reference,
rather than using the RETURNING clause.

CALL

INFORMIX-4GL Statements 4-21

Invoking a Function Without CALL
If a function returns a value, you can invoke it without using CALL by simply
including it (and any arguments) within an expression in contexts where the
returned value is valid. In the following example, the value returned by a
function call appears in an IF statement as a Boolean expression, and a LET
statement uses a function call as an operand within an arithmetic expression:

IF get_order() THEN
LET total = total + get_items()

END IF

For more information, see “Function Calls as Operands” on page 3-58.

The Comma and Double-Pipe Symbols
As the syntax diagram for “CALL” on page 4-16 indicates, if a function has
more than one actual argument, a comma (,) symbol is required between
successive arguments in the argument list.

The concatenation operator (||) can appear within character expressions in
the argument list, combining two operands (of any simple data type) as all or
part of a single argument to the function. The following example calls the
vitamin() function, which takes two character expressions as its arguments:

CALL vitamin(var1 || "A", "E") RETURNING varB[2]

This use of the concatenation operator is valid in calls to functions, regardless
of whether the CALL statement or an expression invokes the function.

Unlike in the LET statement, the comma and the concatenation operator are
not interchangeable in the argument list of a function call. In this context,
comma is the required separator and has no concatenation semantics.

References
DEFINE, FUNCTION, RETURN, WHENEVER

CASE

4-22 HCL Informix 4GL Reference Guide

CASE
The CASE statement specifies statement blocks to be executed conditionally,
depending on the value of an expression. Unlike IF statements, CASE does not
restrict the logical flow of control to only two branches.

CASE

Case I: (single criterion)

(4GL) WHEN

Expression
(subset)
p. 3-49

Case II: (multiple criteria)

WHEN Boolean

Expression
p. 3-60

4GL
Expression

(subset)
p. 3-49

statement

EXIT CASE

statement

EXIT CASE

END CASE

OTHERWISE
Block

p. 4-24

Element Description
statement is an SQL statement or other 4GL statement.

Usage
The CASE statement is equivalent to a set of nested IF statements. You can
specify two types of CASE statements:

■ If an expression follows the CASE keyword, you must specify INT,
SMALLINT, DECIMAL, CHAR(1), or VARCHAR(1) expressions in the
WHEN block. (The syntax diagram indicates a subset of general 4GL
expressions because of these data type restrictions.) 4GL executes the
statement block if both expressions return the same non-NULL value

■ If no expression follows the CASE keyword, the WHEN block must
specify a Boolean expression; if this returns TRUE, the WHEN block is
executed. (See “Boolean Expressions” on page 3-60.) This form of
CASE typically executes more quickly than the other.

CASE

INFORMIX-4GL Statements 4-23

There is an implicit EXIT CASE statement at the end of each WHEN block of
statements. An implicit or explicit EXIT CASE statement transfers program
control to the statement that immediately follows the END CASE keywords.

The WHEN Blocks
Each WHEN block specifies an expression and a block of one or more
associated statements. The WHEN block has the following syntax.

What data type can be returned by expression depends on what follows the
CASE keyword. If CASE (expression) precedes the first WHEN block as a
single criterion, an INTEGER, SMALLINT, DECIMAL, CHAR(1), or VARCHAR(1)
expression must follow the WHEN keyword, returning a data type that
is compatible with the (expression) term after CASE.

If a WHEN expression matches the value of CASE (expression), 4GL executes
the statements in that WHEN block and exits from the CASE statement.

In the following example, both customer_num and the WHEN expression
values are of data type SMALLINT:

CASE (p_customer.customer_num)
WHEN 101
...
WHEN 102
...

END CASE

Case I: (single criterion)

WHEN 4GL Expression
(subset) p. 3-49

statement

Case II: (multiple criteria)

WHEN

EXIT CASE

Boolean Expression
p. 3-60

WHEN Block

statement is an SQL statement or other 4GL statement.

Description Element

CASE

4-24 HCL Informix 4GL Reference Guide

If no (expression) term follows CASE, 4GL treats expression as a Boolean
(returning TRUE or FALSE) in each of the WHEN blocks. If this Boolean
expression returns TRUE (that is, neither zero nor NULL), 4GL executes the
corresponding block of statements, as in the following CASE statement:

CASE
WHEN total_price < 1000
...
WHEN total_price = 1000
...
WHEN total_price > 1000
...

END CASE

When more than one WHEN clause can satisfy your criteria, only the first of
these causes its statement block to be executed. In these cases, the lexical
order of the WHEN clauses in effect prioritizes your logical criteria.

4GL does not execute the statement block if the expression in the WHEN block
returns FALSE or NULL, or if CASE expression returns NULL. (The IF and
WHILE statements and the WHERE clause of a COLOR attribute also treat any
NULL value returned from a 4GL Boolean expression as FALSE.)

The OTHERWISE Block
The OTHERWISE keyword specifies statements to be executed when 4GL does
not find a matching WHEN block to execute. It has this syntax.

4GL executes the OTHERWISE block only if it cannot execute any of the WHEN
blocks. If you include the OTHERWISE block, it must follow the last WHEN
block.

OTHERWISE statement

EXIT CASE

OTHERWISE
Block

statement is an SQL statement or other 4GL statement.

Description Element

CASE

INFORMIX-4GL Statements 4-25

In the next example, if neither 4GL Boolean expression in the WHEN blocks
returns TRUE, 4GL invokes the retry() function:

WHILE question ...
CASE

WHEN answer MATCHES "[Yy]"
CALL process()
LET question = FALSE

WHEN answer MATCHES "[Nn]"
CALL abort()

OTHERWISE
CALL retry()

END CASE
END WHILE

An implied EXIT CASE statement follows the OTHERWISE block. Unless the
OTHERWISE block contains a valid GOTO statement, program control passes
to the statement that follows the END CASE statement. But the use of GOTO
to leave a WHEN block, rather than an implicit or explicit EXIT CASE
statement, can cause runtime error -4518, as described in the next section.

The EXIT CASE Statement and the END CASE Keywords
The EXIT CASE statement terminates processing of the WHEN or OTHERWISE
block. When it executes an EXIT CASE statement, 4GL skips any statements
between EXIT CASE and the END CASE keywords and resumes execution at
the first statement following the END CASE keywords.

The END CASE keywords indicate the end of the CASE statement. They must
follow either the last WHEN block or else the OTHERWISE block. In the next
example, quantity has a SMALLINT value. When quantity equals min_qty,
4GL executes the statement in the min_qty block. When quantity equals
max_qty, 4GL executes the statements in the max_qty block.

CASE (quantity)
WHEN min_qty
...
WHEN max_qty
...

END CASE

CASE

4-26 HCL Informix 4GL Reference Guide

In the following example, print_option is a CHAR(1) variable that determines
the destination of output from a REPORT program block:

CASE (print_option)
WHEN "f"

PROMPT " Enter file names for labels >"
FOR file_name

IF file_name IS NULL THEN
LET file_name = "labels.out"

END IF
MESSAGE "Printing mailing labels to ",

file_name CLIPPED," -- Please wait"
START REPORT labels_report TO file_name

WHEN "p"
MESSAGE "Printing mailing labels -- Please wait"
START REPORT labels_report TO PRINTER

WHEN "s"
START REPORT labels_report
CLEAR SCREEN

END CASE

Because WHEN blocks are logically disjunct, exactly one of the START REPORT
statements is executed within the CASE statement in this example.

Improper Use of Boolean Expressions with CASE
The 4GL compiler generally cannot detect the following improper syntax.

4GL Boolean
CASE (Expression) WHEN Expression statement END CASE

(subset) p. 3-60
p. 3-49 EXIT CASE

OTHERWISE
Block

p. 4-24

This is not valid because the expression that follows the WHEN keyword
must return a value of data type INT, SMALLINT, DECIMAL, CHAR(1), or
VARCHAR(1). Substituting a Boolean expression in this context tends to
produce unexpected runtime results. Boolean expressions are valid only in
Case II (multiple logical criteria).

CASE

INFORMIX-4GL Statements 4-27

For example, CASE statements with WHEN clauses of the following form
produce a false result.

CASE Statement Translates to:

CASE variable WHEN “A” OR “B” if (variable == (“A” or “B”))

CASE variable
WHEN (variable = “A” OR variable = “B”)

if (variable == (variable == “A”
or variable == “B”))

To produce the intended result when the appropriate action depends on the
value in the WHEN clause, omit the expression that immediately follows the
CASE keyword. Use simplified logic, as in the following code, typically by
associating each WHEN expression value with a function call:

CASE variable
WHEN "A"

...
WHEN "B"

...

References
FOR, IF, WHILE

CLEAR

4-28 HCL Informix 4GL Reference Guide

CLEAR
The CLEAR statement can clear any of these portions of the screen display:

■ The 4GL screen (excluding any open 4GL windows within it)
■ Any specified 4GL window
■ All of the fields in the current screen form
■ A list of one or more specified fields in the current screen form

Usage
The CLEAR statement clears the specified portion of the display. It does not
change the value of any 4GL variable.

The CLEAR FORM Option
Use CLEAR FORM to clear all fields of the form in the current 4GL window:

CLEAR FORM

The CLEAR FORM option has no effect on other parts of the screen display.

CLEAR FORM

WINDOW window

SCREEN

 ,

Field Clause
p. 3-86

is the name of the 4GL window to be cleared. window

Description Element

CLEAR

INFORMIX-4GL Statements 4-29

The CLEAR WINDOW Option
Use CLEAR WINDOW window to clear a specified 4GL window, where window
is a 4GL identifier that was declared in an OPEN WINDOW statement:

CLEAR WINDOW threshold

If the window that you specify has a border, the CLEAR WINDOW statement
does not erase the border. You can specify any 4GL window, including one
that is not the current window, but the CLEAR WINDOW statement does not
affect which 4GL window is the current 4GL window in the window stack.

The CLEAR WINDOW SCREEN Option
If you specify CLEAR WINDOW SCREEN, 4GL takes the following actions:

■ Clears the 4GL screen, except for the area occupied by any open 4GL
windows

■ Leaves any information in the open 4GL windows untouched
■ Does not change the current 4GL window setting

As in several other 4GL statements, the keyword SCREEN here specifies the
4GL screen.

The CLEAR SCREEN Option
Use the CLEAR SCREEN option to make the 4GL screen the current 4GL
window and to clear everything on it, including the Prompt, Message, and
Error lines. In the next example, choosing the Exit option clears the screen
and terminates the MENU statement:

MENU "ORDERS"
COMMAND "Add-order"

"Enter new order into database and print invoice"
HELP 301

CALL add_order()
...

COMMAND "Exit"
"Return to MAIN MENU"
HELP 305

CLEAR SCREEN
EXIT MENU

END MENU

CLEAR

4-30 HCL Informix 4GL Reference Guide

The CLEAR Field Option
Use the CLEAR field option to clear the specified field or fields in a form that
the current 4GL window displays. For the syntax of the field clause, see “Field
Clause” on page 3-86. The next example clears the fields named fname,
lname, address1, city, state, and zipcode:

CLEAR fname, lname, address1, city, state, zipcode

If you specify table.* (where table is a name or alias from the TABLE section of
the form specification file), CLEAR clears all the fields associated with
columns of that table. (See “INSTRUCTIONS Section” on page 6-74 for a
description of screen records and screen arrays that the record.* notation can
reference.)

For example, the following program fragment clears the orders screen record
and the first four records of the s_items screen array:

FOREACH order_list INTO p_orders.*
CLEAR s_orders
FOR idx = 1 TO 4

CLEAR s_items[idx].*
END FOR
DISPLAY p_orders.* TO orders.*
...

END FOREACH

If a screen form is in the current 4GL window, the following statement clears
all the screen fields that are not associated with database columns:

CLEAR FORMONLY.*

Any fields that you associated with database columns in the ATTRIBUTES
section of the form specification file are not affected by this statement.

References
CLOSE FORM, CLOSE WINDOW, CURRENT WINDOW, DISPLAY, DISPLAY
ARRAY, INPUT, INPUT ARRAY, OPEN FORM, OPEN WINDOW, OPTIONS

CLOSE FORM

INFORMIX-4GL Statements 4-31

CLOSE FORM
The CLOSE FORM statement releases the memory required for a form.

Usage
When it executes the OPEN FORM statement, 4GL loads the compiled screen
form into memory. The CLOSE FORM statement frees memory allocated to a
form. For example, this program fragment opens and displays the o_cust
form and then closes both the form and the 4GL window cust_w:

OPEN WINDOW cust_w AT 3,5 WITH 19 ROWS, 72 COLUMNS
OPEN FORM o_cust FROM "custform"
DISPLAY FORM o_cust ATTRIBUTE(MAGENTA)
...
CLOSE FORM o_cust
CLOSE WINDOW cust_w

If you open the form using the WITH FORM option of the OPEN WINDOW
statement, you do not need to use CLOSE FORM before closing the 4GL
window. In this case, CLOSE WINDOW closes both the form and the 4GL
window, releasing the memory allocated to the form and to the 4GL window.

CLOSE FORM affects memory use only, not the logic of the 4GL program. After
you use CLOSE FORM to release the memory allocated to a form, its name is
no longer associated with the form. If you subsequently try to redisplay the
form, an error message results. If you execute a new OPEN FORM or OPEN
WINDOW statement that specifies the same form name that an OPEN FORM
or OPEN WINDOW statement referenced previously, 4GL automatically closes
the previously opened form before opening the new form.

References
CLOSE WINDOW, DISPLAY FORM, OPEN FORM, OPEN WINDOW

CLOSE FORM form

is the name of the 4GL screen form to be cleared from memory. form

Element Description

CLOSE WINDOW

4-32 HCL Informix 4GL Reference Guide

CLOSE WINDOW
The CLOSE WINDOW statement closes a specified 4GL window.

Usage
The CLOSE WINDOW statement causes 4GL to take the following actions:

■ Clears the specified 4GL window from the 4GL screen and restores
any underlying display

■ Frees all resources used by the 4GL window and deletes it from the
4GL window stack

■ If the OPEN WINDOW statement included the WITH FORM clause,
closes both the form and the 4GL window

4GL maintains an ordered list of open 4GL windows, called the window stack.
When you open a new 4GL window, it is added to the stack and becomes the
current window, occupying the top of the stack. Closing the current window
makes the next 4GL window on the stack the new current window. If you
close any other window, 4GL deletes it from the stack, leaving the current
window unchanged. Closing a window has no effect on variables that were
set while the window was open. The following program fragment opens and
closes a 4GL window called stock_w:

OPEN WINDOW stock_w AT 7, 3 WITH 6 ROWS, 70 COLUMNS
CLOSE WINDOW stock_w

You cannot specify CLOSE WINDOW SCREEN. If window is currently being
used for input, CLOSE WINDOW generates a runtime error. For example, you
cannot close the current 4GL window while a CONSTRUCT, DISPLAY ARRAY,
INPUT, INPUT ARRAY, or MENU statement is executing.

CLOSE WINDOW window

is the identifier of the 4GL window to be closed. window

Description Element

CLOSE WINDOW

INFORMIX-4GL Statements 4-33

References
CLEAR, CLOSE FORM, CURRENT WINDOW, OPEN WINDOW, OPTIONS

CONSTRUCT

4-34 HCL Informix 4GL Reference Guide

CONSTRUCT
The CONSTRUCT statement stores in a character variable a 4GL Boolean
expression that corresponds to query by example criteria that a user specifies.
You can use this variable in the WHERE clause of a SELECT statement.

Usage
The CONSTRUCT statement is designed to enable users to perform a query by
example. Query by example enables a user to query a database by specifying
values (or ranges of values) for screen fields that correspond to database
columns. 4GL converts these values into a Boolean expression that specifies
search criteria that can appear in the WHERE clause of a prepared SELECT
statement.

CONSTRUCT
CONSTRUCT Variable

Clause
END CONSTRUCT

HELP number

Column List
BY NAME variable ON p. 4-37

variable ON Column List
p. 4-37 FROM Field List

p. 4-37

CONSTRUCT
Variable Clause

CONSTRUCT
Input Control Block

p. 4-44

ATTRIBUTE Clause
p. 3-96

number is a literal integer (as described in “Literal Integers” on page 3-65),
specifying a help message number.

variable is the identifier of a CHAR or VARCHAR variable that stores a 4GL
Boolean expression summarizing the user-entered search criteria.

Element Description

CONSTRUCT

INFORMIX-4GL Statements 4-35

The CONSTRUCT statement can also control the environment in which the
user enters search criteria, and can restrict the values that the user enters. To
use the CONSTRUCT statement, you must do the following:

■ Define fields linked to database columns in a form specification file.
■ Declare a character variable with the DEFINE statement.
■ Open and display the screen form with either of the following:

❑ OPEN FORM and DISPLAY FORM statements
❑ OPEN WINDOW statement with a WITH FORM clause

■ Use CONSTRUCT to store in the character variable a Boolean
expression that is based on criteria that the user enters in the fields.

The CONSTRUCT statement activates the current form. This is the form most
recently displayed or, if you are using more than one 4GL window, the form
currently displayed in the current window. You can specify the current
window by using the CURRENT WINDOW statement. When the CONSTRUCT
statement completes execution, the form is deactivated.

When it encounters the CONSTRUCT statement, 4GL takes the following
actions at runtime:

1. Clears all the screen fields of the CONSTRUCT field list
2. Executes the statements in the BEFORE CONSTRUCT control block, if

the CONSTRUCT statement includes that control block
3. Moves the screen cursor to the first screen field in that list
4. Waits for the user to enter some value as search criteria in the field

For fields where the user enters no value, any value in the corre-
sponding database column satisfies the search criteria.

After the user presses the Accept key (typically ESCAPE), CONSTRUCT uses
AND operators to combine field values as search criteria in a Boolean
expression, and stores this in the character variable. If no criteria were
entered, the TRUE expression ' 1=1' is assigned to the character variable.

CONSTRUCT

4-36 HCL Informix 4GL Reference Guide

By performing the following steps, you can use this variable in a WHERE
clause to search the database for matching rows:

1. Concatenate the variable that contains the Boolean expression with
other strings to create a string representation of an SQL statement to
be executed.
The Boolean expression generated by the CONSTRUCT statement is
typically used to create SELECT statements.

2. Use the PREPARE statement to create an executable SQL statement
from the character string that was generated in the previous step.

3. Execute the prepared statement in one of the following ways:
■ Use an SQL cursor with DECLARE and FOREACH statements (or

else OPEN and FETCH statements) to execute a prepared SELECT
statement that includes no INTO clause.

■ Use the EXECUTE statement to execute an SQL statement other
than SELECT, or to execute a SELECT…INTO statement.

When the CONSTRUCT statement completes execution, the form is cleared.
Environment variables that format data values, such as DBDATE, DBTIME,
DBFORMAT, DBFLTMASK, and DBMONEY, have no effect on the contents of
the Boolean expression.

The following topics are described in this section:

■ “The CONSTRUCT Variable Clause” on page 4-37
■ “The ATTRIBUTE Clause” on page 4-41
■ “The HELP Clause” on page 4-43
■ “The CONSTRUCT Input Control Blocks” on page 4-44
■ “The NEXT FIELD Clause” on page 4-52
■ “The END CONSTRUCT Keywords” on page 4-55
■ “Using Built-In Functions and Operators” on page 4-55
■ “Search Criteria for Query by Example” on page 4-56
■ “Positioning the Screen Cursor” on page 4-61
■ “Using WORDWRAP in CONSTRUCT” on page 4-62
■ “Editing During a CONSTRUCT Statement” on page 4-63
■ “Completing a Query” on page 4-63

CONSTRUCT

INFORMIX-4GL Statements 4-37

The CONSTRUCT Variable Clause
The CONSTRUCT variable clause specifies a character variable to store search
criteria that the user can enter in screen fields for database columns.

Element Description
column is the unqualified identifier of a database column in table.
database is the identifier of the database in which the table resides.
field is the identifier of a screen field.
line is an integer expression, identifying a record in screen array.
owner is the user name of the owner of the table containing the column.
screen array is the 4GL identifier of a screen array in the current form.
screen record is the 4GL identifier of a screen record or else a table reference

 (as the name of a default screen record).
server is the name of the host system where database resides.
table is the name, alias, or synonym of a database table or view.
variable is the identifier of a CHAR or VARCHAR variable.

BY NAME variable ON

variable ON

Column List

Column List FROM Field List

 ,

column

IDS @ server :
:

owner . table . *
database

 ,

field

table

screen
array

[1]
[line]

.

.
*

THRU
Notation
p. 3-92

screen
record

Field List

Column List

CONSTRUCT Variable Clause

CONSTRUCT

4-38 HCL Informix 4GL Reference Guide

The CONSTRUCT variable clause temporarily binds the specified screen fields
to database columns and specifies the database columns for which the user
can enter search criteria. You can map the fields implicitly (with the BY NAME
keywords) or explicitly (with the FROM keyword and field list). With either
method, each field and corresponding column must be of the same or
compatible data types. The order of fields in the FROM clause determines the
default sequence in which the screen cursor moves from field to field in the
form. Within a screen array, you can specify only one screen record.

Here the field list is a restricted subset of the field clause that some 4GL screen
interaction statements support (as described in “Field Clause” on page 3-86).
In a field list within the CONSTRUCT variable clause, a table reference cannot
include table qualifiers. You must declare an alias in the form specification
file, as described in “Table Aliases” on page 6-24, for any table reference that
requires a qualifying prefix (such as database, server, or owner).

4GL constructs a character variable by associating each column name in the
ON clause with search criteria that the user enters into the corresponding
field (as specified in the FROM clause, or implied by the BY NAME keywords).
You can use the information stored in character variable in the WHERE clause
of a prepared SELECT statement to retrieve rows from the database. To avoid
overflow, declare the length of variable as several times the total length of all
the fields, because the Boolean expression includes additional operators.

The BY NAME Keywords

You can use the BY NAME clause when the fields on the screen form have the
same names as the corresponding columns in the ON clause. The BY NAME
clause maps the form fields to columns implicitly. The user can query only
the screen fields implied in the BY NAME clause. The following CONSTRUCT
statement, for example, assigns search criteria to the variable query_1:

CONSTRUCT BY NAME query_1 ON company, address1, address2,
city, state, zipcode

The user can enter search criteria in the fields named company, address1,
address2, city, state, and zipcode. Because these fields have the same names
as the columns specified after the ON keyword, the statement uses the BY
NAME clause. If the field names do not match the column names, you must
use the FROM clause instead of the BY NAME clause.

CONSTRUCT

INFORMIX-4GL Statements 4-39

This functionally equivalent CONSTRUCT statement uses the FROM clause:

CONSTRUCT query_1
ON company, address1, address2, city, state, zipcode
FROM company, address1, address2, city, state, zipcode

If the column names in a CONSTRUCT BY NAME statement are associated
with field names in a screen array, the construct takes place in the first row of
the screen array. If you want the CONSTRUCT to take place in a different row
of the screen array, you must use the FROM clause, not the BY NAME clause.

You cannot preface column names with a qualifier that includes an owner
name, a database server name, or a pathname when you use the BY NAME
clause. Use the FROM clause to specify table aliases in the field list when the
qualifier of any column name requires an owner name, a database server
name, or a pathname.

The ON Keyword and Columns List

The ON clause specifies a list of database columns for which the user will
enter search criteria. Columns do not have to be from the same table. The
table can be in the specified database, in DBPATH, or in the current database
as specified by a DATABASE statement in this program block. (For more infor-
mation, see “The Current Database at Runtime” on page 4-74.)

If the CONSTRUCT statement includes the BY NAME keywords, be sure that
the fields on the screen form have the same names as the columns listed after
the ON keyword. If the CONSTRUCT statement includes a FROM clause, the
expanded list of columns in the ON clause must correspond in order and in
number to the expanded list of fields in the FROM clause.

You can use the notation table.* (as described in “THRU or THROUGH
Keywords and .* Notation” on page 3-92), meaning “every column in table,”
for all or part of the column list. The order of columns within table depends
on their order in the syscolumns system catalog table when you compile
your program. If the ALTER TABLE statement has changed the order, the
names, the data types, or the number of the columns in table since you
compiled your program, you might need to modify your program and its
screen forms that reference that table.

CONSTRUCT

4-40 HCL Informix 4GL Reference Guide

The following example uses the customer.* notation as a macro for listing all
columns in the customer table and cust.* as a macro for all the fields in the
customer screen record:

CONSTRUCT query_1 ON customer.* FROM cust.*

The FROM Keyword and Field List

The FROM clause specifies a list of screen fields or screen records in the form.
You cannot use the FROM clause if you include the BY NAME clause, but you
must use the FROM clause if any of the following conditions is true:

■ The names of fields on the screen form are different from the names
of the corresponding database columns in the ON clause.

■ You want to reference fields in a screen array beyond the first record.
■ You specify additional qualifiers for table.column in the ON clause (for

example, for external or non-unique table names, or to reference the
owner of a table if the database is ANSI-compliant).

■ You want to specify an order for the screen fields other than the
default order. (The order of the fields in the screen record determines
the default order of the screen fields.)

The user can position the cursor only in fields specified in the FROM clause.
The list of fields in the FROM clause must correspond in order and in number
to the list of database columns in the ON clause, as in this example:

CONSTRUCT query_1 ON stock_num, manu_code, description
FROM stock_no, m_code, descr

If you use the record.* notation in a field list, be sure that the implied order of
fields corresponds to the order of columns in the ON clause. (The order of
fields in a screen record depends on its definition in the form specification.)

In the following CONSTRUCT statement, the field list includes the stock_num
and manu_code fields, as well as the screen record s_stock.* that corresponds
to the remaining columns in the stock table:

CONSTRUCT query_1 ON stock.*
FROM stock_num, manu_code, s_stock.*

CONSTRUCT

INFORMIX-4GL Statements 4-41

The FROM clause is required when the field list includes an alias representing
a table, view, or synonym name that includes any qualifier. For example, in
the following CONSTRUCT statement, cust is a table alias declared in the form
specification file for the actg.customer table, where actg is an owner prefix.
This table alias must be prefixed to each field name in the FROM clause,
because the column qualifiers in the ON clause include an owner name:

CONSTRUCT query_1 ON
actg.customer.fname, actg.customer.lname,
actg.customer.company
FROM cust.fname, cust.lname, cust.company

To use screen-array field names in the FROM clause, you must use the
notation screen-record [line].field-name to specify the row in which the
construct takes place. Here line must be greater than zero, and the
CONSTRUCT takes place on the lineth record of the screen array. For example,
the following CONSTRUCT statement allows you to enter search criteria in the
third line of the screen array s_items:

CONSTRUCT query_1 ON items.* FROM s_items[3].*

If you reference a screen array in the field list with no [line] specification, the
default is the first screen record of the array.

The ATTRIBUTE Clause
For general information about the color and intensity attributes that can be
specified for the attribute clause, see “ATTRIBUTE Clause” on page 3-96.

Attributes in CONSTRUCT Statements

The ATTRIBUTE clause in a CONSTRUCT statement applies display attributes
to all the fields specified implicitly in the BY NAME clause or explicitly in the
FROM clause. If you use the ATTRIBUTE clause, the following attributes do not
apply to the fields:

■ Default attributes listed in syscolatt table
(See the description of “The upscol Utility” on page B-5.)

■ Default attributes in the form specification
■ The NOENTRY and AUTONEXT attribute in the form specification

CONSTRUCT

4-42 HCL Informix 4GL Reference Guide

Whether or not the CONSTRUCT statement includes the ATTRIBUTE clause,
when the user enters criteria into a field that has the AUTONEXT attribute and
keys past the field delimiter, the cursor does not enter the next field.

The CONSTRUCT statement ignores the AUTONEXT attribute so that users can
query for large ranges, alternatives, and so forth.

The CONSTRUCT attributes temporarily override any display attributes set by
the INPUT ATTRIBUTE clause of an OPTIONS or OPEN WINDOW statement.
Attributes in the ATTRIBUTE clause of CONSTRUCT apply to all the fields in
the field list, but only during the current activation of the form. When the
user deactivates the form, the form reverts to its previous attributes.

The following CONSTRUCT statement includes an ATTRIBUTE clause that
specifies CYAN and REVERSE for values entered in screen fields that have the
same names as the columns in the customer table:

CONSTRUCT BY NAME query_1 ON customer.*
ATTRIBUTE (CYAN, REVERSE)

These keywords can produce the effects indicated only when the termcap or
terminfo files and the physical terminals support the specified attribute. For
more information on using these files, see Appendix F, “Modifying termcap
and terminfo.” On UNIX systems that use terminfo files rather than termcap,
4GL does not support attributes that specify colors, and the only valid
keywords are REVERSE and UNDERLINE.

Some terminal entries in termcap or terminfo can include sg#1 or xmc#1
capabilities. If you are using one of these terminals and if the attributes
specified for the CONSTRUCT statement are different from the attributes of
the current form or window, 4GL replaces the right and left ([]) brackets
that indicate the input fields with blank characters. 4GL uses the blank
character as a transition character between the different attributes.

CONSTRUCT

INFORMIX-4GL Statements 4-43

The HELP Clause
The optional HELP clause specifies the number of a help message associated
with this CONSTRUCT statement. This might describe, for example, the role
of the user in query by example. The message appears in the Help window
when the user presses the Help key from any field in the field list. By default,
the Help key is CONTROL-W, but the OPTIONS statement can assign a different
physical key as the Help key.

You create help messages in an ASCII file. The number identifies the message
in the help file. The help file is a compiled message file whose name you
specify in the HELP FILE clause of the OPTIONS statement. The mkmessage
utility can create a compiled version of the help file. For details of how to
create a runtime version of the help file, see “The mkmessage Utility” on
page B-2. An error occurs if 4GL cannot open the help file, or if number is not
in the help file, or is greater than 32,767.

To provide field-level help, use an ON KEY clause (as described in “The ON
KEY Blocks” on page 4-47) with the INFIELD() operator and SHOWHELP()
function; both are described in Chapter 5. If you provide messages to assist
the user through an ON KEY clause, rather than by the HELP clause, the
message must be displayed in a 4GL window within the 4GL screen, rather
than in the separate Help window.

CONSTRUCT

4-44 HCL Informix 4GL Reference Guide

The CONSTRUCT Input Control Blocks
Each CONSTRUCT input control block includes a statement block of at least
one statement, and an activation clause that specifies when to execute the
block. The activation clause and statement block correspond respectively to
the left-hand and right-hand syntax elements in the following diagram.

CONSTRUCT
Input Control Block

1 BEFORE CONSTRUCT statement

 1 AFTER CONSTRUCT NEXT FIELD PREVIOUS

BEFORE FIELD , NEXT
Field Clause

AFTER FIELD field p. 3-86
 , CONTINUE CONSTRUCT

ON KEY (key) EXIT CONSTRUCT

Element Description
field is the name of a field that was either explicitly or implicitly

referenced in the CONSTRUCT variable clause (page 4-37).
key is a keyword listed in “The ON KEY Blocks” on page 4-47.
statement is an SQL statement or other 4GL statement.

You can use CONSTRUCT input control blocks to specify the following:

■ Statements to execute before and after the query by example
■ Statements to execute before and after a given field
■ Statements to execute if a user presses some key sequence
■ The next field to which to move the screen cursor
■ When to exit from the CONSTRUCT statement

CONSTRUCT

INFORMIX-4GL Statements 4-45

4GL executes the statements in the block according to the following events:

■ The fields into which and from which the user moves the cursor
■ The keys that the user presses

Statements can include CONTINUE CONSTRUCT and EXIT CONSTRUCT, the
NEXT FIELD clause, and most 4GL and SQL statements. See “Nested and
Recursive Statements” on page 2-31 for details of including CONSTRUCT,
PROMPT, INPUT, and INPUT ARRAY statements within an input control block.

4GL temporarily deactivates the form while executing statements in an input
control block. After executing the statements, 4GL reactivates the form,
allowing the user to continue modifying values in fields.

The Precedence of Input Control Blocks

The CONSTRUCT statement can list input control blocks in any order. You
should develop some consistent ordering, however, so that your code is more
readable than if the blocks were randomly ordered. When you use one or
more input control blocks, you must include the END CONSTRUCT statement
to terminate the CONSTRUCT statement. If you include several input control
blocks, 4GL processes them in the following sequence, regardless of the order
in which they appear in the CONSTRUCT statement:

1. BEFORE CONSTRUCT (executed before the user begins data entry)
2. BEFORE FIELD (executed before the user enters values in a specified

field)
3. ON KEY (executed after the user presses a specified key)
4. AFTER FIELD (executed after the user enters values in a specified

field)
5. AFTER CONSTRUCT (executed after the user has finished data entry)

If you include no input control blocks, the program waits while the user
enters values in the fields. When the user accepts the values in the form, the
CONSTRUCT statement terminates, the form is cleared, and control passes to
the next statement.

CONSTRUCT

4-46 HCL Informix 4GL Reference Guide

The BEFORE CONSTRUCT Block

The BEFORE CONSTRUCT control block specifies a series of actions to perform
before the user begins entering criteria into the screen fields. 4GL sets the
values of all the screen fields to blank spaces when the CONSTRUCT
statement begins execution. You can use the BEFORE CONSTRUCT block to
supply different initial default values for the fields.

CONSTRUCT executes the statements in the BEFORE CONSTRUCT block once
before it allows the user to perform the query by example. You can use
DISPLAY statements in the BEFORE CONSTRUCT block to populate the fields;
DISPLAY initializes the field buffers to the displayed values. (To specify the
first field where criteria can be entered, you can use the NEXT FIELD clause.)
For example, the following DISPLAY statement assigns the values in the rec
program record to the field buffers associated with the srec screen record:

BEFORE CONSTRUCT
DISPLAY rec.* TO srec.*
NEXT FIELD lname

The following CONSTRUCT statement displays the value HRO in the
manu_code field. If the user does not change the HRO value before pressing
the Accept key, the query by example selects rows of the database that have
the value HRO in the manu_code column:

CONSTRUCT query_1 ON stock.* FROM s_stock.*
BEFORE CONSTRUCT

LET p_stock.manu_code = "HRO"
DISPLAY p_stock.manu_code TO stock.manu_code

END CONSTRUCT

No more than one BEFORE CONSTRUCT block can appear in a CONSTRUCT
statement. The FIELD_TOUCHED() operator is not valid in this control block.

The BEFORE FIELD Blocks

This control block specifies a series of actions to execute before the cursor is
placed in a specified screen field. 4GL executes the BEFORE FIELD block of
statements whenever the screen cursor enters the field, and before the user
types search criteria. A field can have no more than one BEFORE FIELD block.

You can use a NEXT FIELD clause within a BEFORE FIELD block to restrict
access to a field. You can also use a DISPLAY statement within a BEFORE
FIELD block to display a default value in a field.

CONSTRUCT

INFORMIX-4GL Statements 4-47

The following example uses the BEFORE FIELD clause to display a message
when the cursor enters the state field:

BEFORE FIELD state
MESSAGE "Press F2 or CTRL-B to display a list of states"

The following program fragment defines two BEFORE FIELD blocks. The first
block uses the NEXT FIELD clause to limit access to the salary field to certain
users. The second block displays the current date in the q_date field:

CONSTRUCT BY NAME query_1 ON employee.*
BEFORE FIELD salary

IF (username <> "manager") AND (username <> "admin")
THEN NEXT FIELD NEXT

END IF
BEFORE FIELD q_date

LET query_date = TODAY
DISPLAY query_date TO q_date

END CONSTRUCT

The ON KEY Blocks

The ON KEY control blocks specify actions to take when the user presses
certain function or control keys. The statements in the appropriate ON KEY
block are executed if the user presses the activation key corresponding to one
of your key specifications.

The next example uses the ON KEY clause to call a help message. Here the
BEFORE CONSTRUCT clause informs you how to access help:

BEFORE CONSTRUCT
DISPLAY "Press F1 or CTRL-W for help"

ON KEY (f1, control-w)
CALL customer_help()

The following table lists the keywords that you can specify for key.

ACCEPT HELP NEXT or NEXTPAGE
DELETE INSERT PREVIOUS or PREVPAGE
DOWN INTERRUPT RETURN
ESC or ESCAPE LEFT TAB
F1 through F64
CONTROL-char (excep

RIGHT
t A, D, H, I, J, K, L, M, R,

UP
or X)

Like other keywords of 4GL, you can specify these in uppercase or lowercase
letters.

CONSTRUCT

4-48 HCL Informix 4GL Reference Guide

Some keys need special consideration if you assign them in an ON KEY block.

Key Special Considerations

ESC or ESCAPE You must use the OPTIONS statement to specify another key as
the Accept key, because ESCAPE is the default Accept key.

F3 You must use the OPTIONS statement to specify another key as
the Next key, because F3 is the default Next key.

F4 You must use the OPTIONS statement to specify another key as
the Previous key, because F4 is the default Previous key.

Interrupt

Quit

CTRL-char

A, D, H,
L, R, X

You must execute a DEFER INTERRUPT statement. When the
user presses the Interrupt key under these conditions, 4GL
executes the ON KEY block and sets int_flag to non-zero but does
not terminate the CONSTRUCT statement.
Similarly, 4GL executes the statements in the ON KEY block and
sets quit_flag to non-zero if the DEFER QUIT statement has been
executed when the user presses the Quit key.

4GL reserves these control keys for field editing; see “Positioning
the Screen Cursor” on page 4-61.

I, J, M The standard meaning of these keys (TAB, LINEFEED, and
RETURN, respectively) is not available to the user. Instead, the key
is trapped by 4GL and activates the commands in the ON KEY
block. For example, if CONTROL-M appears in an ON KEY block,
the user cannot press RETURN to advance the cursor to the next
field. If you specify one of these keys in an ON KEY block, be
careful to restrict the scope of the statement.

You might not be able to use other keys that have special meaning to your
version of the operating system. For example, CONTROL-C, CONTROL-Q, and
CONTROL-S respectively send the Interrupt, XON, and XOFF signals on many
systems.

If an ON KEY block is activated during data entry, 4GL takes these actions:

1. Suspends the input of the current field
2. Preserves the input buffer that holds the characters the user typed
3. Executes the statements in the corresponding ON KEY clause

CONSTRUCT

INFORMIX-4GL Statements 4-49

4. Restores the input buffer for the current screen field
5. Resumes input in the same field, with the cursor at the end of the

buffered list of characters

You can change this default behavior by including statements to perform the
following tasks in the ON KEY block:

■ Resume input in another field by using the NEXT FIELD keywords
■ Change the input buffer value for the current field by assigning a

new value to the corresponding variable and displaying the value

Version 4.12 of 4GL introduced a change in the output of CONSTRUCT state-
ments interrupted by the user pressing the Interrupt key (usually CTRL-C or
DEL) or the Quit key (usually CTRL-\). This applies only to programs that have
executed DEFER INTERRUPT and DEFER QUIT; otherwise, an Interrupt or Quit
signal terminates the 4GL application immediately.

In 4.10 and earlier releases, an Interrupt or Quit keystroke in a CONSTRUCT
statement produced an output query string that contained the contents of the
field buffer at the time the Interrupt keystroke was pressed. Therefore, if the
program did not carefully check the value of int_flag before proceeding, it
could miss the fact that the CONSTRUCT had been interrupted and proceed
with a query that was based on defective search criteria.

In Version 4.12 and later, a CONSTRUCT statement interrupted by an
Interrupt or Quit keystroke produces a NULL query string. This reduces the
risk of an Interrupt condition being undetected. The CONSTRUCT statement
can only produce a NULL query string if it was interrupted; thus, you can
detect an Interrupt or Quit without checking both int_flag and quit_flag.
(A successful CONSTRUCT statement for which no criteria were entered
before the Accept key was pressed produces the string ' 1=1' , not a NULL
string.)

CONSTRUCT

4-50 HCL Informix 4GL Reference Guide

The AFTER FIELD Blocks

4GL executes the AFTER FIELD block associated with a field when the screen
cursor leaves the field. The user can move the cursor from a field by pressing
any of the following keys:

■ Any arrow key
■ RETURN key
■ Accept key
■ TAB key

When the NEXT FIELD keywords appear in an AFTER FIELD block, 4GL places
the cursor in the specified field and ignores the Accept keystroke. If an AFTER
FIELD block exists for each field, and if a NEXT FIELD clause appears in every
AFTER FIELD block, the user is unable to leave the form.

The following program fragment checks for the Accept key and terminates
execution of CONSTRUCT if the Accept key was pressed:

AFTER FIELD status
IF NOT GET_LASTKEY() = ACCEPT_KEY THEN

LET p_stat = GET_FLDBUF(status)
IF p_stat MATCHES "married" THEN

NEXT FIELD spouse_name
END IF

END IF
END CONSTRUCT

The following AFTER FIELD control block displays a message after the cursor
leaves the state field, prompting the user to enter search criteria:

AFTER FIELD state
MESSAGE "Press ESC to begin search"

As noted in “Completing a Query” on page 4-63, the user can terminate the
CONSTRUCT statement by using Accept, Interrupt, or Quit, or by pressing the
TAB or RETURN key after the last form field. You can use the AFTER FIELD
clause with the NEXT FIELD keywords on the last field to override this default
termination. (Alternatively, you can specify INPUT WRAP in an OPTIONS
statement to achieve the same effect.)

A field can have no more than one AFTER FIELD control block.

CONSTRUCT

INFORMIX-4GL Statements 4-51

The AFTER CONSTRUCT Block

This control block specifies statements to execute after the user presses
Accept and before 4GL constructs the string containing the Boolean
expression. You can use the AFTER CONSTRUCT block to validate, save, or
alter the values of the screen field buffers. “Using Built-In Functions and
Operators” on page 4-55 describes some built-in functions and operators of
4GL that commonly appear in the AFTER CONSTRUCT block.

You can specify CONTINUE CONSTRUCT or NEXT FIELD in this block to
return the cursor to the form. If you include these keywords in the AFTER
CONSTRUCT block, be sure that they appear within a conditional statement.
Otherwise, the user cannot exit from the CONSTRUCT statement and leave the
form.

In the following program fragment, a CONTINUE CONSTRUCT statement
appears in an IF statement. If the user does not specify any selection criteria,
4GL returns the screen cursor to the form.

AFTER CONSTRUCT
IF NOT FIELD_TOUCHED(orders.*) THEN

MESSAGE "You must indicate at least one ",
"selection criteria."

CONTINUE CONSTRUCT
END IF

For more information, see “Searching for All Rows” on page 4-60.

4GL executes the statements in the AFTER CONSTRUCT block when the user
presses any of the following keys:

■ The Accept key
■ The Interrupt key (if DEFER INTERRUPT has executed)
■ The Quit key (if the DEFER QUIT statement has executed)

The AFTER CONSTRUCT block is not executed in the following situations:

■ The user presses the Interrupt or Quit key and the DEFER INTERRUPT
or DEFER QUIT statement, respectively, has not been executed. In
either case, the program terminates immediately, and no query is
performed.

■ The EXIT CONSTRUCT statement terminates the CONSTRUCT
statement.

CONSTRUCT

4-52 HCL Informix 4GL Reference Guide

The CONSTRUCT statement can include only one AFTER CONSTRUCT block.

The NEXT FIELD Clause
While the CONSTRUCT statement is executing, 4GL moves the screen cursor
from field to field in the order specified in the FROM clause, or in the order
implied by the ON clause of the CONSTRUCT BY NAME statement. You can
use the NEXT FIELD keywords, however, to override the default sequence of
cursor movement.

You can specify any of the following fields in the NEXT FIELD clause:

■ The next field, as defined by the explicit (FROM clause) or implicit (BY
NAME) order of fields in the field list of the CONSTRUCT variable
clause. In this case, specify the NEXT keyword.

■ The previous field, as defined by the same order of fields. In this case,
specify the PREVIOUS keyword.

■ Any other field in the current form. In this case, specify the name of
the field (from the ATTRIBUTES section of the form specification file).

The NEXT FIELD keywords can appear in a BEFORE CONSTRUCT block (for
example, to position the cursor at a different starting field) and in a BEFORE
FIELD block (for example, to restrict access to a field), but they are more
commonly used in AFTER FIELD, ON KEY, or AFTER CONSTRUCT blocks.

Use NEXT FIELD only if you want the cursor to deviate from the default field
order. 4GL immediately positions the cursor in the form when it encounters
the NEXT FIELD clause, without executing any statements that immediately
follow the NEXT FIELD clause in the same statement block.

In the following program fragment, function qty_help() cannot be invoked
because its CALL statement is positioned after the NEXT FIELD clause:

ON KEY (CONTROL_B, F4)
IF INFIELD(stock_num) OR INFIELD(manufact) THEN

CALL stock_help()
NEXT FIELD quantity
CALL qty_help() -- function is never called

END IF

CONSTRUCT

INFORMIX-4GL Statements 4-53

The following program fragment includes NEXT FIELD clauses in ON KEY
and AFTER FIELD blocks. The user triggers the ON KEY block by pressing
CONTROL-B or F4. If the cursor is in the stock_num field or manufact field, 4GL
calls the stock_help() function. When 4GL returns from the stock_help()
function, the NEXT FIELD clause moves the cursor to the quantity field.

The user executes the AFTER FIELD block by moving the cursor out of the
zipcode field. The FIELD_TOUCHED() operator checks whether the user
entered a value into the field. If this returns TRUE, GET_FLDBUF() retrieves
the value entered into the field during a query, and assigns it to the
p_zipcode variable. If the first character in the p_zipcode variable is not a 5,
4GL displays an error, clears the field, and returns the cursor to the field.

ON KEY (CONTROL_B, F4)
IF INFIELD stock_num) OR INFIELD(manufact) THEN

CALL stock_help()
NEXT FIELD quantity

END IF

AFTER FIELD zipcode
IF FIELD_TOUCHED(zipcode) THEN

LET p_zipcode = GET_FLDBUF(zipcode)
IF p_zipcode[1,1] <> "5" THEN

ERROR "You can only search area 5."
CLEAR zipcode
NEXT FIELD zipcode

END IF
END IF

Do not use NEXT FIELD clauses to move the cursor across every field in a
form. If you want the cursor to move in a specific order, list the fields in the
CONSTRUCT statement in the desired order. In most situations, NEXT FIELD
appears in a conditional statement. The NEXT FIELD clause must appear in a
conditional statement when it appears in an AFTER CONSTRUCT block;
otherwise, the user cannot exit from the query.

The CONTINUE CONSTRUCT Statement
You can use the CONTINUE CONSTRUCT statement to exit from a BEFORE
CONSTRUCT, AFTER CONSTRUCT, BEFORE FIELD, AFTER FIELD, or ON KEY
control block and return the cursor to the form, with the same CONSTRUCT
statement still in effect. The CONTINUE CONSTRUCT statement skips all
subsequent statements in the CONSTRUCT statement, and returns the cursor
to the screen form at the last field occupied.

CONSTRUCT

4-54 HCL Informix 4GL Reference Guide

This statement is useful where program control is nested within multiple
conditional statements and you want to return control to the user. It is also
useful in an AFTER CONSTRUCT block, where you can examine field buffers
and, depending on their contents, return the cursor to the form.

In this example, CONTINUE CONSTRUCT appears in an AFTER CONSTRUCT
clause. If the user enters N or n at the prompt, the cursor returns to the form:

CONSTRUCT BY NAME query1 ON customer.*
...

AFTER CONSTRUCT
IF NOT FIELD_TOUCHED(customer.*) THEN

PROMPT "Do you really want to see ",
"all customer rows? (y/n)" FOR CHAR answer

IF answer MATCHES "[Nn]" THEN
MESSAGE "Enter search criteria; ",

"press ESC to begin search."
CONTINUE CONSTRUCT

END IF
END IF

END CONSTRUCT

If no criteria are entered, the user is prompted to confirm that all customer
records are requested. If the user types N or n, CONTINUE CONSTRUCT
positions the cursor in the form, giving the user another chance to enter
selection criteria in the last field occupied. If the user types any other key, the
IF statement terminates, and control passes to the END CONSTRUCT
statement. Compare this method of detecting and handling the absence of
search criteria to the examples in “The AFTER CONSTRUCT Block” on
page 4-51 and “Searching for All Rows” on page 4-60.

When a test in an AFTER CONSTRUCT clause identifies a field that requires
action by the user, specify NEXT FIELD, rather than CONTINUE CONSTRUCT,
to position the cursor in the field.

The EXIT CONSTRUCT Statement
The EXIT CONSTRUCT statement causes 4GL to take the following actions:

■ Skip all statements between EXIT CONSTRUCT and END
CONSTRUCT.

■ Terminate the process of constructing the query by example.

CONSTRUCT

INFORMIX-4GL Statements 4-55

■ Create the Boolean expression and store it in the character variable.
■ Resume execution at the statement following the END CONSTRUCT

keywords.

If it encounters the EXIT CONSTRUCT statement, 4GL does not execute the
statements in the AFTER CONSTRUCT control block, if that block is present.

The END CONSTRUCT Keywords
The END CONSTRUCT keywords indicate the end of the CONSTRUCT
statement. These keywords should follow the last BEFORE CONSTRUCT,
AFTER CONSTRUCT, BEFORE FIELD, AFTER FIELD, or ON KEY control block.
If you do not include any of these control blocks, however, you do not need
to include the END CONSTRUCT keywords.

Using Built-In Functions and Operators
The CONSTRUCT statement supports the built-in functions and operators of
4GL. (For more information about the built-in 4GL functions and operators,
see Chapter 5.) These features access field buffers and keystroke buffers.

Feature Description

FIELD_TOUCHED() Returns TRUE when the user has touched (made a change to)
a screen field whose name is passed as an operand. Moving
the screen cursor through a field (with the RETURN, TAB, or
arrow keys) does not mark a field as touched. This feature
also ignores the effect of statements that appear in the
BEFORE INPUT control block. For example, you can assign
values to fields in the BEFORE INPUT control block without
having the fields marked as touched.

GET_FLDBUF() Returns the character values of the contents of one or more
fields in the currently active form.

(1 of 2)

CONSTRUCT

4-56 HCL Informix 4GL Reference Guide

Feature Description

FGL_GETKEY() Waits for a key to be pressed, and then returns an INTEGER
value corresponding to the raw value of the key that was
pressed.

FGL_LASTKEY() Returns an INTEGER value corresponding to the most
recent keystroke executed by the user in the screen form.

INFIELD() Returns TRUE if the name of the field that is specified as its
operand is the name of the current field.

(2 of 2)

Each field in a form has only one field buffer, and a buffer cannot be used by
two statements simultaneously. If a CONSTRUCT statement calls a function
that includes an INPUT, INPUT ARRAY, or CONSTRUCT statement, and both
statements use the same form, they might overwrite one or more of the field
buffers, unless you first close the form or window. (See, however, “Nested
and Recursive Statements” on page 2-31.)

If you plan to display the same form more than one time and will access the
form fields, open a new window and open and display a second copy of the
form. 4GL allocates a separate set of buffers to each form, and you can then be
certain that your program is processing the correct field values.

Search Criteria for Query by Example
The CONSTRUCT statement allows users of your application to specify search
criteria for retrieving rows from the database. The user does this by entering
values (or ranges of values) into the fields of the screen form. This process is
called a query by example. The user can use symbols to search for data values
less than, equal to, greater than, or within a range.

CONSTRUCT supports the following relational operator symbols.

Symbol Meaning Data Type Domain Pattern

= or == Equal to All simple SQL types ==x, =x, =

> Greater than All simple SQL types >x

< Less than All simple SQL types <x

(1 of 2)

CONSTRUCT

INFORMIX-4GL Statements 4-57

Symbol Meaning Data Type Domain Pattern

>= Not less than All simple SQL types >=x

<= Not greater than All simple SQL types <=x

<> or != Not equal to All simple SQL types !=x, <>x

: or . . Range All simple SQL types x:y, x..y,

* Wildcard for any string CHAR, VARCHAR *x, x*, *x*

? Single-character wildcard CHAR, VARCHAR ?x, x?, ?x?, x??

| Logical OR All simple SQL types a|b...

[] List of values (see next page) CHAR, VARCHAR [xy]*, [xy]?

(2 of 2)

The “. . “ form of the range operator is required for ranges of DATETIME or
INTERVAL literal values that include “:” symbols as time-unit separators.
Users cannot perform a query by example on BYTE, TEXT, or FORMONLY
fields. If the search criteria exceed the length of a field, 4GL opens a work
space on the Comment line. This action erases any comments present.

The following list explains the symbols in the preceding table:

x The x means any value appropriate to the data type of the field. The
value must immediately follow any of the first six symbols in the pre-
ceding table. Do not leave a space between a symbol and a value.

=x The equal sign (=) is the default symbol for non-character fields, and
for character fields in which the search value contains no wildcards. If
the user enters a character value that does not contain a wildcard char-
acter, CONSTRUCT produces the following Boolean expression:

char-column = "value"

= The equal sign (=) with no value searches for a NULL value. The user
must explicitly enter the equal sign to find any character value that is
also used as a search criteria symbol.

CONSTRUCT

4-58 HCL Informix 4GL Reference Guide

>, <,
>=,
<=,
<>

These symbols imply an ordering of the data. For character fields,
“greater than” means later in the ASCII sequence (where a > A > 1), as
listed in Appendix G, “Reserved Words.” For DATE or DATETIME
data, “greater than” means after. For INTERVAL data, it means a longer
span of time.

A query by example cannot combine these relational operators with the
range, wildcard, or logical operators that are described later. Any characters
that follow a relational operator are interpreted as literals.

In Version 4.11 and earlier releases, 4GL would put double quotation marks(")
characters around the field values entered during the CONSTRUCT statement
regardless of the data types. The resulting WHERE clause for the SQL
statement might not be compatible with non-Informix database servers
because of the double quotation marks.

In Version 4.12 and later releases, the CONSTRUCT statement puts single
quotation marks (') around values of the character and time data types:
CHAR, DATE, DATETIME, INTERVAL, and VARCHAR. Values of the number
data types are not enclosed in quotation marks: FLOAT, SMALLFLOAT,
DECIMAL, MONEY, INTEGER, SMALLINT, and SERIAL.

Double quotation marks are not used as delimiters in the constructed
variable to avoid incompatibility with non-Informix databases.

These changes allow 4GL programs to work with Informix Enterprise
Gateway for interoperability with DB2/400, DB2/MVS (also called, simply,
DB2) and DB2/VM (also called SQL/DS). These changes are known collo-
quially as the DRDA changes. The latest versions of the Informix Enterprise
Gateway product automatically convert the keyword MATCHES to LIKE and
generate an error if the MATCHES string contains a character range enclosed
in square brackets (for example, [a-z]).

CONSTRUCT

INFORMIX-4GL Statements 4-59

Besides the relational operators, the user can specify a range, or use syntax
like that of the MATCHES operator to search for patterns in character values:

■ Colon. The colon in x: y searches for all values between the x and y
value, inclusive. The y value must be larger than the x value. The
search criterion 1: 10 would find all rows with a value in that column
from 1 through 10. For character data, the range specifies values in
the ASCII collating sequence between x and y. (For DATETIME and
INTERVAL fields, use instead the .. symbol to specify ranges.)

■ Two periods. Sometimes you must substitute two periods (..) as a
synonym for the colon (:) in DATETIME and INTERVAL ranges to
avoid ambiguity with time-unit separators in hh:mm:ss values.

■ Asterisk. The asterisk (*) is a character string wildcard, representing
zero or more characters. Use the asterisk character as follows:
❑ The search value *ts* in a field specifies all strings containing

the letters ts, such as the strings "Watson" and "Albertson".
❑ The search value S* specifies all strings beginning with the letter

s, including the strings "S", "Sadler", and "Sipes".
❑ The search value *er specifies all strings that end in the letters er,

such as the strings "Sadler" and "Miller".
■ Question mark. The question mark (?) is the single-character

wildcard. The user can use the question mark to find values
matching a pattern in which the number of characters is fixed, as in
the following examples:
❑ Enter Eriks?n to find names like "Erikson" and "Eriksen".
❑ Enter New??n to find names like "Newton", "Newman", and

"Newson", but not "Newilsson".
■ Pipe. The pipe symbol between values a and b represents the logical

OR operator. The following entry specifies any of three numbers:
102|105|118

■ Brackets. The brackets ([]) delimit a set of values. When used in
conjunction with the * and ? wildcard characters, the brackets
enclose a list of characters, including ranges, to be matched.

CONSTRUCT

4-60 HCL Informix 4GL Reference Guide

■ Caret. A caret (^) as the first character within the brackets specifies
the logical complement of the set, and matches any character that is
not listed. For example, the search value [^AB]* specifies all strings
beginning with characters other than A or B.

■ Hyphen. A hyphen between characters within brackets specifies a
range. The search value [^d-f*] specifies all strings beginning with
characters other than lowercase d, e, or f. If you omit the * or ?
wildcard, 4GL treats the brackets as literal characters, not as logical
operators.

Searching for All Rows

If none of the fields contains search values when the user completes an entry
for the CONSTRUCT statement, 4GL uses ' 1=1' as the Boolean expression.
(Notice that this string begins with a blank character.) In a WHERE clause, this
search criterion causes 4GL to select all the rows of the specified tables.

Place a conditional statement after the CONSTRUCT statement to check for
this expression, or to examine the field buffers in the AFTER CONSTRUCT
control block, if you want to prevent users from selecting all rows. The next
fragment, for example, tests for the ' 1=1' expression. If this expression is
found, the LET statement limits the resulting query list by creating a Boolean
expression that searches only for customers with numbers less than or equal
to 110:

CONSTRUCT BY NAME query_1 ON customer.*
IF query_1 = ' 1=1' THEN

LET query_1 = " customer_num <= 110"
MESSAGE "You entered nothing. Here are customers ",

"with codes less than 111."
SLEEP 3

END IF

The FIELD_TOUCHED() operator describes an equivalent test.

CONSTRUCT

INFORMIX-4GL Statements 4-61

Positioning the Screen Cursor
When the user presses RETURN or TAB, the screen cursor moves from one field
to the next in the order specified in the FROM clause (as described in “The
FROM Keyword and Field List” on page 4-40), or in the order implied by the
column list in the BY NAME clause (as described in “The BY NAME
Keywords” on page 4-38). The user can also press the following arrow keys at
runtime to alter this behavior and to position the cursor explicitly.

Key Effect on Cursor

↓ By default, DOWN ARROW moves to the next field. If you specify the
FIELD ORDER UNCONSTRAINED option of the OPTIONS
statement, this key moves the cursor to the field below the current
field.

↑ By default, UP ARROW moves to the previous field. If you specify the
FIELD ORDER UNCONSTRAINED option of the OPTIONS
statement, this key moves the cursor to the field above the current
field.

← LEFT ARROW moves one space to the left within a field. It does not
erase the contents of the field. If this is the beginning of the field, the
cursor moves to the beginning of the previous field.

→ RIGHT ARROW moves one space to the right within a field. It does not
erase the contents of the field. If this is the end of the field, 4GL
creates a workspace at the bottom of the screen and places the cursor
there, so the user can continue entering values.

These arrow keys all operate non-destructively. That is, they move the screen
cursor without erasing any underlying character.

When the cursor moves to a new field, the CONSTRUCT statement clears the
Comment line and the Error line. The Comment line displays the text defined
with the COMMENTS attribute in the form specification file. The Error line
displays system error messages, output from the built-in ERR_PRINT() and
ERR_QUIT() functions, and ERROR statement messages.

CONSTRUCT

4-62 HCL Informix 4GL Reference Guide

If the user enters search criteria that exceed the length of the screen field, 4GL
automatically moves the cursor down to the Comment line and allows the
user to continue entry. When the user presses RETURN or TAB, 4GL clears the
Comment line. The field buffer contains all the criteria that the user entered,
even though only a portion is visible in the screen display.

Using WORDWRAP in CONSTRUCT
In Version 4.11 and earlier releases of 4GL, when CONSTRUCT operated on a
multi-segment field with the WORDWRAP attribute set, the initial input was
displayed in the first segment of the field. When the input no longer fit in the
first segment, it overflowed into the second and subsequent segments of the
field. This also cleared the overflow line at the bottom of the screen, however,
even though no data appeared in that line.

In Version 4.12 and later releases, multi-segment fields behave in the same
way as single-segment fields. When the first segment is full, the overflow line
displays the extra data. The CONSTRUCT statement uses only the first
segment and the overflow line of a WORDWRAP field; it does not use the extra
segments. This should provide sufficient space for query input.

A form field with the WORDWRAP attribute can span several lines. If the
segments of a multi-segment field are not aligned in a single column, moving
backwards from a later segment can cause the cursor to skip some segments
entirely, or leave the cursor in arbitrary locations inside the segment. (For
explanations of field segments and WORDWRAP fields, see Chapter 6,
“Screen Forms.”)

Avoid overly complex placement of multiple-segment fields, such as:

[f001][f001]
[f001]

A rectangular field configuration, however, produces predictable results:

[f001]
[f001]
[f001]

In a multiple-segment field (that is, one with the WORDWRAP attribute), 4GL
ignores any values that the user enters in any segment beyond the first
segment of the field. Similarly, in a screen array, the user can enter criteria
only in the first screen record of the array during a CONSTRUCT statement.

CONSTRUCT

INFORMIX-4GL Statements 4-63

Editing During a CONSTRUCT Statement
The user can employ these keys for editing during a CONSTRUCT statement.

Key Effect

CONTROL-A Toggles between insert and type-over mode

CONTROL-D Deletes characters from the cursor position to the end of the field

CONTROL-H Moves the cursor non-destructively one space to the left within a
field (This is equivalent to pressing left arrow.)

CONTROL-L Moves the cursor non-destructively one space to the right within a
field (This is equivalent to pressing right arrow.)

CONTROL-R Redisplays the screen

CONTROL-X Deletes the character beneath the cursor

Completing a Query
The following actions terminate the CONSTRUCT statement:

■ The user presses one of the following keys:
❑ The Accept key
❑ The RETURN or TAB key from the last field (when INPUT WRAP is

not set in the OPTIONS statement)
❑ The Interrupt or Quit key

■ 4GL executes the EXIT CONSTRUCT statement.

The user must press the Accept key to complete the query under these
conditions:

■ INPUT WRAP is specified in the OPTIONS statement.
■ An AFTER FIELD block for the last field includes a NEXT FIELD clause.

By default, the Accept, Cancel, Interrupt, and Quit keys terminate both the
query and the CONSTRUCT statement. (But pressing the Interrupt or Quit key
can also immediately terminate the program, unless the program has also
executed the DEFER INTERRUPT and DEFER QUIT statements.)

CONSTRUCT

4-64 HCL Informix 4GL Reference Guide

If 4GL previously executed a DEFER INTERRUPT statement in the program,
pressing the Interrupt key while CONSTRUCT is awaiting input causes 4GL to
take the following actions:

■ Set the global variable int_flag to TRUE.
■ Terminate the CONSTRUCT statement (except the AFTER

CONSTRUCT block, if any) but not the 4GL program.

If 4GL previously executed a DEFER QUIT statement in the program, pressing
the Quit key while CONSTRUCT is awaiting input causes 4GL to take the
following actions:

■ Set the global variable quit_flag to TRUE.
■ Terminate the CONSTRUCT statement (except the AFTER

CONSTRUCT block, if any) but not the 4GL program.

In both cases, the variable that stores the query criteria is set to NULL, a value
that causes an SQL error if you attempt to use it as the WHERE clause. To
avoid this problem, set any non-zero value of int_flag or quit_flag to zero
(FALSE) before the CONSTRUCT statement begins execution.

When the user terminates a CONSTRUCT statement, 4GL executes the state-
ments in the AFTER CONSTRUCT clause, unless the CONSTRUCT statement is
terminated by an EXIT CONSTRUCT statement. In this case, the statements in
the AFTER CONSTRUCT clause and in the AFTER FIELD clause of the current
field are not executed. When NEXT FIELD appears in either of these clauses,
4GL ignores the Accept keystroke, and focus moves to the specified field.

The following program segment uses a simple CONSTRUCT statement to
specify the search condition of a WHERE clause. The variable query_1 is
declared as CHAR(250), and the cursor_1 cursor executes the query.

CONSTRUCT BY NAME query_1
ON order_num, customer_num, order_date, ship_date
ATTRIBUTE(BOLD)

LET s1 = "SELECT * FROM orders
WHERE ", query_1 CLIPPED,
" ORDER BY order_date, order_num"

PREPARE s_1 FROM s1
DECLARE cursor_1 CURSOR FOR s_1
FOREACH cursor_1 INTO order_rec.*

...
END FOREACH

CONSTRUCT

INFORMIX-4GL Statements 4-65

The following program fragment demonstrates six CONSTRUCT input
control blocks:

CONSTRUCT BY NAME query_1 ON customer.*

BEFORE CONSTRUCT
MESSAGE "Enter search criteria; ",

"press ESC to begin search."
DISPLAY "Press F1 or CTRL-W for field help." AT 2,1

ON KEY (F1, CONTROL-W)
CALL customer_help() -- display field level help

BEFORE FIELD state
MESSAGE "Press F2 or CTRL-B ",

"to display a list of states."
ON KEY (F2, CONTROL-B)

IF INFIELD(state) THEN
CALL statehelp() -- display list of states

END IF
AFTER FIELD state

MESSAGE "Enter search criteria; ",
"press ESC to begin search."

AFTER CONSTRUCT -- check for blank search criteria
IF NOT FIELD_TOUCHED(customer.*) THEN

PROMPT "Do you really want to see ",
"all customer rows? (y/n) "
FOR CHAR answer

IF answer MATCHES "[Nn]" THEN
MESSAGE "Enter search criteria; ",

"press ESC to begin search."
CONTINUE CONSTRUCT -- reenter query by example
END IF

END IF
END CONSTRUCT

LET s1 = "SELECT * FROM customer WHERE ", query_1 CLIPPED
PREPARE s_1 FROM s1
DECLARE q_curs CURSOR FOR s_1
DISPLAY "" AT 2,1 -- clear line 2 of text
LET exist = 0

References
DECLARE, DEFER, DISPLAY FORM, EXECUTE, LET, OPEN FORM,
OPEN WINDOW, OPTIONS, SELECT, PREPARE

CONTINUE

4-66 HCL Informix 4GL Reference Guide

CONTINUE
The CONTINUE statement transfers control of execution from a statement
block to another location in the currently executing compound statement.

Usage
You can use CONTINUE within a statement block of the currently executing
compound statement that keyword specifies. This is a runtime instruction to
transfer control within the current statement. (Use the EXIT keyword, rather
than CONTINUE, to terminate the compound statement unconditionally.)

The use of CONTINUE in WHENEVER statements is described in “The
CONTINUE Option” on page 4-381.

CONTINUE in CONSTRUCT, INPUT, and INPUT ARRAY Control Blocks
The CONTINUE CONSTRUCT and CONTINUE INPUT statements cause 4GL to
skip all subsequent statements in the current control block. The screen cursor
returns to the most recently occupied field in the current form, giving the
user another chance to enter data in that field. For more information, see “The
EXIT CONSTRUCT Statement” on page 4-54 and “The CONTINUE INPUT
Statement” on page 4-214.

CONTINUE INPUT is valid in INPUT and INPUT ARRAY statements.

CONTINUE keyword

keyword specifies the current 4GL statement. You can choose from the keywords
CONSTRUCT, FOR, FOREACH, INPUT, MENU, and WHILE.

Element Description

CONTINUE

INFORMIX-4GL Statements 4-67

CONTINUE in FOR, FOREACH, and WHILE Loops
The CONTINUE FOR, CONTINUE FOREACH, or CONTINUE WHILE keywords
cause the current FOR, FOREACH, or WHILE loop (respectively) to begin a
new cycle immediately. If conditions do not permit a new cycle, however, the
looping statement terminates. For more information, see “The CONTINUE
FOR Statement” on page 4-129, “The CONTINUE FOREACH Keywords” on
page 4-137, and “The CONTINUE WHILE Statement” on page 4-383.

CONTINUE in MENU Control Blocks
The CONTINUE MENU statement causes 4GL to ignore the remaining
statements in the current MENU control block and redisplay the menu. The
user can then choose another menu option. (For more information, see
“MENU” on page 4-248.)

References
CONSTRUCT, FOR, FOREACH, GOTO, INPUT, INPUT ARRAY, MENU, WHILE,
WHENEVER

CURRENT WINDOW

4-68 HCL Informix 4GL Reference Guide

CURRENT WINDOW
The CURRENT WINDOW statement makes a specified 4GL window the
current window (that is, the top-most 4GL window in the window stack).

Usage
4GL maintains a list or stack of all open 4GL windows in the 4GL screen. The
OPEN WINDOW statement creates a new 4GL window that is added to the top
of this window stack, becoming the current window. When you close a 4GL
window, that 4GL window is removed from the stack. The top-most 4GL
window among those that remain open becomes the new current window. Its
values take effect for the positions of reserved lines like Prompt, Message,
Form, and Comment lines.

The current 4GL window is always completely visible and can obscure all or
part of any inactive 4GL windows. When you specify a new current window,
4GL adjusts the window stack by moving the new current 4GL window to the
top and closing the gap in the stack left by this 4GL window.

Programs with multiple 4GL windows might need to switch to a different
open window so that input and output occur in the appropriate 4GL window.
To make a 4GL window the current window, use the CURRENT WINDOW
statement. For example, this statement makes win1 the current 4GL window:

CURRENT WINDOW IS win1

When a program starts, the 4GL screen is the current 4GL window. Its name
is SCREEN. To make this the current 4GL window, specify the keyword
SCREEN instead of a window identifier:

CURRENT WINDOW IS SCREEN

CURRENT WINDOW IS window

SCREEN

window is the name of the open 4GL window to be made current.

Element Description

CURRENT WINDOW

INFORMIX-4GL Statements 4-69

If a 4GL window contains a form, that form becomes the current form when
a CURRENT WINDOW statement specifies the name of that 4GL window.

The CONSTRUCT, DISPLAY ARRAY, INPUT, INPUT ARRAY, and MENU
statements use only the current 4GL window for input and output. If the user
displays another form (for example, through an ON KEY clause) in one of
these statements, the 4GL window containing the new form becomes the
current window. When the CONSTRUCT, DISPLAY ARRAY, INPUT, INPUT
ARRAY, or MENU statement resumes, its original 4GL window becomes the
current window.

The next program fragment opens multiple 4GL windows, including one
called w2. Interactive statements that use the 4GL window w2 can follow the
CURRENT WINDOW statement within the do2() function. If the function
do2() terminates after assigning the modular variable next_win any value
but 2, the CALL statement in the WHILE loop invokes a different function. The
w2 4GL window remains current until another CURRENT WINDOW statement
specifies some other 4GL window, or until CLOSE WINDOW w2 is executed.

DEFINE next_win INTEGER
MAIN
OPEN WINDOW w1 AT 3,3 WITH FORM "cust1"
OPEN WINDOW w2 AT 9,15 WITH FORM "cust2"
OPEN WINDOW w3 AT 15,27 WITH FORM "cust3"

. . .
LET next_win = 1
WHILE next_win IS NOT NULL

CASE (next_win)
WHEN 1 CALL do1()
WHEN 2 CALL do2()
WHEN 3 CALL do3()

. . .
END CASE

END WHILE
CLOSE WINDOW w1
CLOSE WINDOW w2
CLOSE WINDOW w3

. . .
END MAIN
FUNCTION do2()

LET next_win = NULL
CURRENT WINDOW IS w2
. . .

END FUNCTION

CURRENT WINDOW

4-70 HCL Informix 4GL Reference Guide

References
CLEAR, CLOSE WINDOW, DISPLAY ARRAY, INPUT, INPUT ARRAY, MENU,
OPEN WINDOW, OPTIONS

DATABASE

INFORMIX-4GL Statements 4-71

DATABASE
The DATABASE statement opens a default database at compile time, or a
current database at runtime. (See also the description of the DATABASE
statement in the Informix Guide to SQL: Syntax.)

DATABASE Database
S n pecificatio

EXCLUSIVE

variable

database database @server

IDS

SE

"/ / server / database"
"/ pathname / database @ server "

"/ / server / pathname / database"

Database
Specification

database is the name of a database. Blank spaces are not valid between
quotation marks or after the @ symbol.

pathname is the path to the parent directory of the .dbs directory.
server is the name of the host system where database resides.
variable is a variable that contains the database specification (as described in

“The Database Specification” on page 4-72). You can specify variable
only in a MAIN or FUNCTION block.

Description Element

DATABASE

4-72 HCL Informix 4GL Reference Guide

Usage
This statement is not required if your 4GL program does not reference entities
in a database. You can use the DATABASE statement in two distinct ways,
depending on the context of the statement within its source code module:

■ You can specify the default database (as described in “The Default

Database at Compile Time” on page 4-73) for the compiler to
use in declaring data types indirectly in DEFINE statements, or
for INITIALIZE or VALIDATE to access syscolatt or syscolval.
(The default database is opened automatically at runtime.)

■ You can specify the current database (as described in “The Current
Database at Runtime” on page 4-74), so that SQL statements can
access data and other entities in that database at runtime.

The Database Specification
The DATABASE statement can specify any accessible database on the current
Informix database server (or on another server, if you also specify its name).
This becomes the default database at compile time, and the current database
at runtime. To reference entities in any other database, you must use the
CLOSE DATABASE statement and then another DATABASE statement or table
qualifiers. (For more information, see “Table Qualifiers” on page 3-89.)

The DATABASE statement closes any other open database on the same
database server. If a database is open on another server, you must first use
CLOSE DATABASE explicitly to close that current database, or an error occurs.
An error results if you specify a database that 4GL cannot locate or cannot
open or for which the user of your program does not have access privileges.

Only the databases stored in your current directory, or in a directory
specified in your DBPATH environment variable, are recognized.

To specify a database that does not reside in your current directory or in a
DBPATH directory, you must follow the DATABASE keyword with a complete
pathname, or with a program variable that evaluates to the full pathname of
the database (excluding the .dbs extension). ♦

SE

DATABASE

INFORMIX-4GL Statements 4-73

When the DATABASE statement establishes the database connection between
4GL and the database server, the locale categories for COLLATION and CTYPE
on the client system are transmitted with the request for database service. The
database server uses these settings to compare the user locale and the
database locale. If the user locale and database locale do not match, the
request for database service is rejected. This process is referred to as locale
consistency checking.

The CTYPE and COLLATION categories at the time of database creation are
stored with the database in a system table. These values are kept unchanged
throughout the life of the database to ensure the consistent use of collating
sequences, code sets, and formatting rules. You cannot change the character
set and collation settings for a database; you must unload and reload all the
data into a different database to change locales. For more information on
nondefault locales and locale-defined collation, see Appendix E, “Devel-
oping Applications with Global Language Support.” ♦

The Default Database at Compile Time
The DEFINE statement can specify that a record is LIKE a table, or that a
variable is LIKE a column in a database table. (For details, see “Indirect
Typing” on page 4-83.) Even if you qualify the name of the table with a
database name, this requires a DATABASE statement to specify a default
database at compile time. The compiler looks in this default database for the
schema of tables whose columns are to be used as templates for declaring
variables indirectly through the LIKE keyword.

To declare variables indirectly, the DATABASE statement must precede any
program block in each module that includes a DEFINE…LIKE declaration,
and must precede any GLOBALS…END GLOBALS statement (described in
“GLOBALS” on page 4-145). It must also precede any DEFINE…LIKE decla-
ration of module variables. Here the database name must be expressed
explicitly, and not as a variable. The EXCLUSIVE keyword is not valid in this
context. (The INITIALIZE…LIKE and VALIDATE…LIKE statements likewise
require that DATABASE specify a default database before the first program
block in the same module.)

GLS

DATABASE

4-74 HCL Informix 4GL Reference Guide

If you want different program blocks to use the same database, you can
repeat the same DATABASE statement in each program block in which entities
in the database are referenced or created. Alternatively, you can create a file
that includes only the DATABASE and the GLOBALS…END GLOBALS state-
ments, and then include GLOBALS "filename" statements at the beginning of
each module that requires the DATABASE statement.

The next example shows the contents of a file in which no global variables are
declared, but the zeitung database can be accessed by statements in any other
source modules that include the GLOBALS "filename" statement:

DATABASE zeitung
GLOBALS
END GLOBALS

Here GLOBALS…END GLOBALS can also include DEFINE statements.

The Current Database at Runtime
If your 4GL program is designed to interact with a database at runtime, the
DATABASE statement must specify a current database that subsequent SQL
statements can reference, until it is closed (by CLOSE DATABASE or by another
DATABASE statement, for example), or until the program terminates.

In this case, the DATABASE statement must occur in a FUNCTION or the MAIN
program block, and must follow any DEFINE statements in that block, or else
it must precede the MAIN program block. When DATABASE specifies the
current database, the database specification can be in a 4GL variable, and you
can include the EXCLUSIVE keyword. (For more information, see “The
EXCLUSIVE Keyword” on page 4-75.)

If a DATABASE statement (or a GLOBALS "filename" statement, where filename
includes the DATABASE statement) precedes the MAIN statement, then the
4GL compiler (in effect) inserts the same DATABASE statement into the
beginning of the MAIN program block, before the first executable statement,
if no other DATABASE statement precedes MAIN. In this special case, the same
DATABASE statement produces both compile-time and runtime effects.

You cannot include the DATABASE statement within a REPORT program
block. If a 4GL report definition requires a two-pass report (as described in
“The EXTERNAL Keyword” on page 7-27), an error occurs if no database is
open when the report is run, or if the report driver issues a DATABASE
statement while the report is running.

DATABASE

INFORMIX-4GL Statements 4-75

You cannot include the DATABASE statement in a multiple-statement
PREPARE operation. (See also the descriptions of the PREPARE statement and
the CLOSE DATABASE statement in the Informix Guide to SQL: Syntax.)

The EXCLUSIVE Keyword
The DATABASE statement with the EXCLUSIVE keyword opens the database
in exclusive mode but prevents access by anyone but the current user. It is
valid only in a FUNCTION or MAIN program block. To allow others to access
a database that was opened in EXCLUSIVE mode, you must execute the
CLOSE DATABASE statement. Then use DATABASE without the EXCLUSIVE
keyword to reopen the database, if appropriate.

The following statement opens the stores7 database on the mercado server in
exclusive mode:

DATABASE stores7@mercado EXCLUSIVE

If another user already has the specified database open, exclusive access is
denied, an error is returned, and no database is opened.

Testing SQLCA.SQLAWARN
You can determine the type of database that the DATABASE statement opens
by examining the built-in SQLCA.SQLAWARN variable (as described in
“Error Handling with SQLCA” on page 2-45) after the DATABASE statement
has executed successfully:

■ If the specified database uses transactions, SQLCA.SQLAWARN[2],
the second element of the SQLCA.SQLAWARN global record,
contains a W.

■ If the database is ANSI-compliant, SQLCA.SQLAWARN[3], the third
element of the SQLCA.SQLAWARN global record, contains a W.

■ If Informix Dynamic Server is the database server,
SQLCA.SQLAWARN[4], the fourth element of the SQLCA.SQLAWARN
global record, contains a W.

DATABASE

4-76 HCL Informix 4GL Reference Guide

Effects of the Default Database on Error Handling
The database specified in a DATABASE statement that appears outside of any
program block is the default database (as described in “The Default Database
at Compile Time” on page 4-73). If you specify a default database, then
runtime error handling is affected by whether or not this default database
complies with the ANSI/ISO standard for SQL.

Error behavior depends on what kind of database the DATABASE statement
references during compilation, rather than on the ANSI-compliant status at
runtime. For example, if you compile against a database that is not ANSI-
compliant but run against an ANSI-compliant database, the error behavior is
as though the current database were not an ANSI-compliant database.

The default responses to error conditions differ between the ANSI-compliant
method and the non-ANSI-compliant method as follows:

1. If ANSI compliance is requested and no WHENEVER ERROR
statement is in effect, the default action after an error is CONTINUE.
ANSI compliance is in effect if one of the following conditions exists:
■ There is a stated default database and it is ANSI-compliant.
■ The -ansi compilation flag is specified.
■ The DBANSIWARN environment variable is set.
In releases of RDS before 7.2, for the last two of these conditions, the
default error action was (improperly) STOP instead of CONTINUE.

2. If ANSI compliance is not in effect and no WHENEVER ERROR
statement is in effect:
■ If the -anyerr flag is used, the default action is STOP.
■ If, instead, the -anyerr flag is not used, the default action after

expression or data type conversion errors is CONTINUE; after
other categories of errors, it is STOP.

If you compile part of the application against an ANSI-compliant database
and part of it against a non-ANSI-compliant database, the parts of the appli-
cation compiled against the ANSI-compliant database have the default error
action of CONTINUE, and the parts compiled against the non-ANSI-compliant
database have the default error action of STOP.

DATABASE

INFORMIX-4GL Statements 4-77

Additional Facts About Connections
4GL can also directly embed the CONNECT, SET CONNECT, and DISCONNECT
statements of SQL. You cannot prepare these statements.

You must use a network connection, rather than a shared-memory
connection, to connect a 32-bit 4GL client to a 64-bit database server.

4GL supports the stream-pipe interprocess connection mechanism to local
hosts. You can use this mechanism to do distributed communication, if both
systems are on the same computer. Unlike shared-memory connections,
stream pipes do not pose the risk of being overwritten or being read by other
programs that explicitly access the same part of shared memory. Stream-pipe
connections, however, are slower than shared-memory connections and are
not available on some computers. A stream-pipe connection requires
onipcstr as the entry in the nettype field of the sqlhosts file.

Server nettype hostname Service

alpha onipcstr idcsun33 service1

References
DEFINE, FUNCTION, GLOBALS, INITIALIZE, MAIN, REPORT, VALIDATE

DEFER

4-78 HCL Informix 4GL Reference Guide

DEFER
The DEFER statement prevents 4GL from terminating program execution
when the user presses the Interrupt key or the Quit key.

Usage
DEFER is a method of intercepting asynchronous signals from outside the
program. Unless it includes the DEFER statement, the 4GL application termi-
nates whenever the user presses the Interrupt or Quit key. The Interrupt key
is CONTROL-C, and the Quit key is CONTROL-\. The DEFER statement tells 4GL
to set a built-in global variable to a non-zero value, rather than terminate,
when the user presses one of these keys:

■ If the user presses the Interrupt key when DEFER INTERRUPT has
been specified, 4GL sets the built-in global variable int_flag to TRUE.

■ If the user presses the Quit key when DEFER QUIT has been specified,
4GL sets the built-in global variable quit_flag to TRUE.

The DEFER INTERRUPT and DEFER QUIT statements can appear only in the
MAIN program block, and only once in any program. Once executed, the
DEFER statement remains in effect for the duration of the program; you
cannot restore the original function of the Interrupt key or the Quit key.

4GL programs can include code to check whether int_flag or quit_flag is
TRUE, and if so, to take appropriate action. Be sure also to reset int_flag or
quit_flag to FALSE (that is, to zero) so that subsequent tests are valid.

DEFER INTERRUPT

QUIT

DEFER

INFORMIX-4GL Statements 4-79

Interrupting Screen Interaction Statements
If DEFER INTERRUPT has executed, you can specify INTERRUPT to make the
Interrupt key the activation key in an ON KEY clause of CONSTRUCT, INPUT
ARRAY, and INPUT statements. If the user presses the Interrupt key, control
returns to the same field, unless the statement block includes the EXIT or
NEXT FIELD keywords.

Without the ON KEY (INTERRUPT) specification, an Interrupt signal transfers
control to the AFTER INPUT or AFTER CONSTRUCT control block, if these are
present, or else to END INPUT or END CONSTRUCT. Any AFTER FIELD clause
for the current field is ignored, and the int_flag is reset to TRUE. (After DEFER
QUIT, pressing the Quit key resets the quit_flag to TRUE, but the Quit key has
no effect on CONSTRUCT, INPUT ARRAY, and INPUT statements.)

To make sure that int_flag or quit_flag is reset, you can use the LET
statement to set both variables to FALSE immediately before the CONSTRUCT,
DISPLAY ARRAY, INPUT, MENU, and PROMPT statements. After DEFER
INTERRUPT has executed, if the user presses the Interrupt key during any
DISPLAY ARRAY or PROMPT statement, program control leaves the current
statement, and 4GL sets the int_flag to a non-zero value. (When a MENU
statement is executing, however, program control remains in the MENU
statement.)

To have the user terminate a statement with a key other than the Interrupt
key, use the ON KEY clause to define the action of the desired key sequence.

The next program fragment executes the DEFER INTERRUPT statement in the
MAIN program block, and then calls a function that prompts the user to enter
criteria for retrieving data from the stock table.

MAIN
...
DEFER INTERRUPT
...
CALL find_stock()
. . .

END MAIN

FUNCTION find_stock()
DEFINE

where_clause CHAR(200)
...
DISPLAY "Enter selection criteria for ",

"the stock items you want." AT 10,1
LET int_flag = FALSE

DEFER

4-80 HCL Informix 4GL Reference Guide

CONSTRUCT BY NAME where_clause
ON stock.* FROM s_stock.*

IF int_flag THEN
ERROR "Query cancelled."
RETURN

END IF
...

END FUNCTION

If the user decides not to enter any selection criteria, pressing the Interrupt
key terminates the CONSTRUCT statement without executing the query.

If int_flag flag is set to a non-zero value (TRUE), the program terminates the
function by executing a RETURN statement. Notice that the function resets
the value of int_flag to FALSE (zero) before beginning the CONSTRUCT
statement.

Here if int_flag is set to a non-zero value (evaluates to TRUE), a RETURN
statement terminates the function. Notice that in this example, the
find_stock() function explicitly resets the value of int_flag to FALSE (zero)
before beginning the CONSTRUCT statement.

Interrupting SQL Statements
To enable the Interrupt key to interrupt SQL statements, your program must
contain:

■ the DEFER INTERRUPT statement.
■ the OPTIONS statement with the SQL INTERRUPT ON option.

The keywords SQL INTERRUPT OFF restore the default of uninterruptable
SQL statements. “Interrupting SQL Statements” on page 4-301 describes this
feature in detail and its effect on the current database transaction.

References
CONSTRUCT, DISPLAY ARRAY, INPUT, INPUT ARRAY, MAIN, MENU,
OPTIONS, PROMPT, WHENEVER

DEFINE

INFORMIX-4GL Statements 4-81

DEFINE
The DEFINE statement declares the names and data types of 4GL variables.

Usage
A variable is a named location in memory that can store a single value, or an
ordered set of values. Except for predefined global variables like status,
int_flag, quit_flag, or the SQLCA record, you cannot reference any program
variable before it has been declared by the DEFINE statement.

Releases of 4GL prior to 7.3 supported a total of no more than 64,535 bytes in
all the names of variables in a single 4GL program, including record members
and redefined variables. In this release, however, the upper limit on global
string space (which includes variables, regardless of their scope, and certain
other named 4GL program entities) is now 2 gigabytes (= 2,048 megabytes).
Your available system resources might impose a lower limit. In programs
that are compiled to p-code, however, a single 4GL function or report can
have a total of no more than 32,767 bytes in the names of all its variables.

The GLOBALS "filename" statement can extend the visibility of module-scope
variables that you declare in filename to additional source code modules.

The following sections describe these topics:

■ “The Context of DEFINE Declarations” on page 4-82
■ “Indirect Typing” on page 4-83
■ “Declaring the Names and Data Types of Variables” on page 4-84
■ “Variables of Simple Data Types” on page 4-85
■ “Variables of Large Data Types” on page 4-86
■ “Variables of Structured Data Types” on page 4-86

 ,

DEFINE variable
Data Type

p. 4-84

variable is a name that you declare here as the identifier of a variable.

Element Description

DEFINE

4-82 HCL Informix 4GL Reference Guide

The Context of DEFINE Declarations
The DEFINE statement declares the identifier of one or more 4GL variables.
There are two important things to know about these identifiers:

■ Where in the program can they be used? The answer defines the
scope of reference of the variable. A point in the program where an
identifier can be used is said to be in the scope of the identifier. A
point where the identifier is not known is outside the scope of the
identifier.

■ When is storage for the variable allocated? Storage can be allocated
either statically, when the program is loaded to run (at load time), or
dynamically, while the program is executing (at runtime).

The context of its declaration in the source module determines where a
variable can be referenced by other 4GL statements, and when storage is
allocated for the variable in memory. The DEFINE statement can appear in
only two contexts:

1. Within a FUNCTION, MAIN, or REPORT program block, DEFINE
declares local variables, and causes memory to be allocated for them.
These DEFINE declarations of local variables must precede any
executable statements within the same program block.
■ The scope of reference of a local variable is restricted to the same

program block. Elsewhere, the variable is not visible.
■ Storage for local variables is allocated when its FUNCTION,

REPORT, or MAIN block is entered during execution. Functions
can be called recursively, and each recursive entry creates its
own set of local variables. The variable is unique to that
invocation of its program block. Each time the block is entered, a
new copy of the variable is created.

2. Outside any FUNCTION, REPORT, or MAIN program block, the
DEFINE statement declares names and data types of module variables,
and causes storage to be allocated for them. These declarations must
appear before any program blocks.
■ Scope of reference is from the DEFINE statement to the end of the

same module (but the variable is not visible within this scope in
program blocks where a local variable has the same identifier).

■ Memory storage for variables of module scope is allocated stati-
cally, in the executable image of the program.

DEFINE

INFORMIX-4GL Statements 4-83

Indirect Typing
You can use the LIKE keyword to declare a variable that has the same simple,
BYTE, or TEXT data type as a specified column in a database table.

If table is a view, then column cannot be based on an aggregate. If LIKE refer-
ences a SERIAL column, the new variable is of the INTEGER data type.

The DATABASE statement must specify a default database before the first
program block (or before the first DEFINE statement that uses LIKE to define
module-scope or global variables) in the current module. (For more infor-
mation, see “The Default Database at Compile Time” on page 4-73.) At
compile time, 4GL substitutes a data type for the LIKE declaration, based on
the schema of table. (If that schema is subsequently modified, recompile the
module to restore the correspondence between variables and columns.)

Any column in the LIKE declaration has either a simple or a large data type.
(These data types are described in sections that follow.) The table qualifier
must specify owner if table.column is not a unique column identifier within its
database, or if the database is ANSI-compliant and any user of your 4GL
application is not the owner of table.

In the demonstration database, the manufact table has three columns:

■ manu_code of data type CHAR(3)
■ manu_name of data type CHAR(15)
■ lead_time of data type INTERVAL DAY(3) TO DAY

 ,

DEFINE variable LIKE table . column

Table Qualifier
p. 3-89

column is the identifier of some column in table, as it appears in the syscolumns
table of the system catalog.

table is the identifier or synonym of a table or view in the default database
that was specified in the DATABASE statement.

variable is the 4GL identifier of a variable that you declare here.

Element Description

DEFINE

4-84 HCL Informix 4GL Reference Guide

The following declarations of variables are based on the manufact table:

DATABASE demo5
DEFINE codename RECORD LIKE manufact.*

-- equivalent to "manu_code char(3), manu_name char(15),
-- lead_time interval day(3) to day"
DEFINE hidden LIKE manufact.manu_code
-- equivalent to "hidden char(3)"
DEFINE leaden LIKE manufact.lead_time
-- equivalent to "lead_time interval day(3) to day"

The LIKE keyword cannot reference column names that violate the naming
rules for 4GL identifiers, such as restrictions on the character set or length.

Declaring the Names and Data Types of Variables
The DEFINE statement must declare the name and the data type of each new
variable, either explicitly or else implicitly (by using the LIKE keyword).

See “Data Types of 4GL” on page 3-6 for details of the various data types that
you can specify when you declare 4GL variables.

 ,

variable Data Type

LIKE
Table Qualifier

p. 3-89

table . column

Simple
Data Type

p. 4-85
RECORD Data Type

p. 4-88
Large Data Type

p. 4-86
ARRAY Data Type

p. 4-87

Data Type

Variable
Declaration

column is the name of a database column.
table is the name or synonym of a database table or view.
variable is the name of the variable. This name must be unique among variables

within the same scope of reference.

Element Description

DEFINE

INFORMIX-4GL Statements 4-85

Variables of Simple Data Types
The simple data types of 4GL have the following syntax.

INTEGER
INT

SMALLINT

DECIMAL
DEC

NUMERIC
MONEY
FLOAT

(16))
(precision ,scale) (16, 2)

(precision

, 2)
, scale)

DOUBLE PRECISION (precision) REAL

SMALLFLOAT

DATE

DATETIME

INTERVAL

CHARACTER

CHAR

NCHAR

VARCHAR

(1)
 (size)

(size)

NVARCHAR

, 0

, reserved

All of these declaration parameters must be literal integers.

precision is the number of significant digits. For FLOAT, the range is 1 ≤ precision
≤ 14. For DECIMAL and MONEY, the range is 1 ≤ precision ≤ 32.

reserved is an SQL parameter that 4GL does not use.
scale is the number of digits (≤ 32) in the fractional part of the number,

where 0 ≤ scale ≤ precision. The actual scale can be less than 32.
size is the maximum bytes that the data type can store. For CHAR, the range

is 1 ≤ size ≤ 32,766. For VARCHAR, the range is 1 ≤ size ≤ 255.

Element Description

INTERVAL Qualifier
p. 3-80

DATETIME Qualifier
p. 3-76

Simple Data Type

C
ha

ra
ct

er

Ti
m

e
N

um
be

r

DEFINE

4-86 HCL Informix 4GL Reference Guide

Variables of Large Data Types
4GL supports two data types for storing binary large object values, up to 231

bytes in size (or up to a limit imposed by your system resources):

■ TEXT, for character strings
■ BYTE, for any data that can be stored on your system

Unlike BYTE and TEXT declarations in SQL, DEFINE has no IN clause; in 4GL
the LOCATE statement supports the functionality of the IN clause.

The CALL and RUN statements cannot include the BYTE or TEXT keyword in
their RETURNING clauses. For more information, see “BYTE” on page 3-14
and “TEXT” on page 3-39.

Variables of Structured Data Types
4GL supports two structured data types for storing sets of values:

■ ARRAY, for arrays of values of any single data type except ARRAY

■ RECORD, for sets of values of any combination of data types

A database table cannot include a column of the ARRAY or RECORD data
types because these 4GL data types are not part of the SQL language. For
information on RECORD and ARRAY data types, see “ARRAY” on page 3-13
and “RECORD” on page 3-35. For information on using program arrays of
records in interactive statements, see “INPUT ARRAY” on page 4-187 and
“DISPLAY ARRAY” on page 4-102.

TEXT

BYTE

Large Data Type

RECORD Data Type

p. 4-88

ARRAY Data Type
p. 4-87

Structured Data Type

DEFINE

INFORMIX-4GL Statements 4-87

ARRAY Variables

The ARRAY keyword declares a structured variable that can store a 1-, 2-, or
3-dimensional array of values, all of the same data type.

The elements of an ARRAY variable can be of any data type except ARRAY, but
an element can be a record that contains an array member.

You cannot specify an ARRAY data type as an argument or as a returned
value of a 4GL function. The CALL and RUN statements cannot include the
ARRAY keyword in their RETURNING clauses. In the DEFINE section of a
REPORT statement, formal arguments cannot be declared as ARRAY data
types, nor as RECORD variables that contain ARRAY members. (Data types of
local variables that are not formal arguments are unrestricted.)

,
ARRAY [3 size] OF 4GL Simple Data Type

p. 4-87

RECORD Data Type
p. 4-88

BYTE

TEXT

ARRAY
Data Type

is the number (up to 32,767) of elements in a dimension. Dimensions can
be different sizes, up to the limit of your C compiler.

size

Element Description

DEFINE

4-88 HCL Informix 4GL Reference Guide

RECORD Variables

A 4GL program record is a collection of members, each of which is a variable.
The member variables of a record can be of any 4GL data type, including the
simple data types (described in “Declaring the Names and Data Types of
Variables” on page 4-84), the structured (ARRAY and RECORD) data types,
and the large (BYTE and TEXT) data types.

The DATABASE statement must specify a default database before the first
program block (or before the first DEFINE statement that uses LIKE to define
module-scope or global variables) in the current module. (For more infor-
mation, see “The Default Database at Compile Time” on page 4-73.)

Specify LIKE table.* to declare the record members implicitly, with identifiers
and data types that correspond to all the non-SERIAL columns of table.

You do not need the END RECORD keywords to declare a single record whose
members correspond to all the non-SERIAL columns of table:

recordname RECORD LIKE table.*

 ,

RECORD member Data Type
p. 4-84 END RECORD

LIKE column
Table Qualifier

p. 3-89 table.

LIKE table.*

column is a name of a column whose data type is the same as member.
member is a name that you declare here for a member variable of the new record;

this identifier must be unique within the record.
table is the identifier or synonym of a table or view in the default database

that was specified in the DATABASE statement.

Element Description

Table Qualifier
p. 3-89

RECORD Data
Type

DEFINE

INFORMIX-4GL Statements 4-89

In this context, table.* cannot be a view containing an aggregate column.

You can use multiple LIKE clauses in the same RECORD declaration, provided
that the LIKE keyword does not immediately follow the keyword RECORD:

DEFINE cust_ord_item
RECORD

cust_no LIKE customer.customer_num,
ord RECORD LIKE orders.*,-- row from "orders" table
it1 RECORD a1 LIKE items.item_num, -- subset of row

b1 LIKE items.order_num -- in "items"
END RECORD

item_quantity LIKE items.quantity, --an "items" column
it2 RECORD a2 LIKE items.total_price -- columns from

b2 LIKE stock.unit, -- various tables
c2 LIKE manufact.manu_name

END RECORD
END RECORD

A compilation error occurs, however, if a LIKE clause begins the declaration
of a record that is terminated by the END RECORD keywords. To declare a
record with members that mirror the data types of a database table, but that
also contains other members, declare one or more of the other members first.
Then you can mix LIKE clauses and explicit variable declarations to the end
of the record, as in the previous example.

Join columns often have the same name, but you must avoid the repetition of
column names when using two or more LIKE clauses in the same scope of
reference, so that both variables do not have the same name. In the demon-
stration database, both the orders and items tables include a column
order_num that can join them. In the previous example, the record members
declared LIKE the columns of items appear in the same order as in the table,
but the record member that is declared like the second order_num column is
called item_order_num.

Important: A scroll cursor cannot be used with a record that includes a member that
is declared LIKE a BYTE or TEXT column.

References
DATABASE, FUNCTION, GLOBALS, MAIN, REPORT

DISPLAY

4-90 HCL Informix 4GL Reference Guide

value

value

DISPLAY
The DISPLAY statement displays data values on the screen in line mode
overlay, in a specified line of the current 4GL window, or in a form.

Case I: (output in the line mode overlay)

DISPLAY

 ,
DISPLAY

Value

COLUMN left-offset

Case II: (in a specified line of the current window)
 ,

DISPLAY DISPLAY
Value

AT line , left
offset

ATTRIBUTE
Clause
p. 3-96

Case III: (in a screen form)
,

DISPLAY DISPLAY
Value

TO

,
Field

Clause
p. 3-86

text

BY NAME

,

variable

value

DISPLAY
Value

ATTRIBUTE
Clause
p. 3-96

left offset is an integer variable or a literal integer, specifying the horizontal
coordinate of the first character of the next item of output.

line is an integer variable or a literal integer, specifying the vertical
coordinate of a line of the screen or of the current window.

text is the name of a variable of the TEXT data type.
value is a quoted string, a simple variable, a literal value, or a character string

returned by a CLIPPED or USING expression.
variable is the name of a variable that is also the name of a field.

Element Description

DISPLAY

INFORMIX-4GL Statements 4-91

value

Usage
DISPLAY sends output directly to the screen, or to fields of a screen form.

DISPLAY cannot reference ARRAY or BYTE data types. After DISPLAY is
executed, changing the value of a displayed variable has no effect on the
current display until you execute the DISPLAY statement again. (To produce
output within a REPORT, you must use PRINT rather than DISPLAY.) The
following topics are described in this section:

■ “Sending Output to the Line Mode Overlay” on page 4-91

■ “Sending Output to the Current 4GL Window” on page 4-92

■ “Sending Output to a Screen Form” on page 4-96

■ “The ATTRIBUTE Clause” on page 4-99

■ “Displaying Numeric and Monetary Values” on page 4-100

Sending Output to the Line Mode Overlay
The DISPLAY statement without a qualifying TO, AT, or BY NAME clause (or
with the COLUMN operator) sends output to the line mode overlay.

Interactive 4GL statements produce screen output in either of two modes:

■ Formatted mode statements: INPUT, INPUT ARRAY, CONSTRUCT,
ERROR, MESSAGE, DISPLAY ARRAY, and DISPLAY (with any clause)

■ Line mode statements: DISPLAY (without any clause)

Case 1: (display output in the line mode overlay)

DISPLAY

 ,
DISPLAY Value

p. 4-90
left COLUMN

offset

left offset specifies the position of the first character of the next item of output
within the line mode overlay.

Element Description

DISPLAY

4-92 HCL Informix 4GL Reference Guide

value

The PROMPT statement produces output in whichever mode is current.
When 4GL executes a DISPLAY statement that has no qualifying clause, a new
4GL window opens, called the line mode overlay, that covers the entire 4GL
screen until another interactive statement produces formatted mode output.

If the next interactive statement is neither a line mode DISPLAY nor a PROMPT
statement, the line mode overlay disappears, revealing the 4GL screen.
Otherwise, any line mode DISPLAY statement continues the display in the
next line of the line mode overlay.

Sending Output to the Current 4GL Window
In Case 2, you can include the AT keyword and specify coordinates to display
output, beginning in the specified location in the current 4GL window.

Formatting Screen Output

The DISPLAY statement supports only a subset of the syntax of character
expressions (as described in “Character Expressions” on page 3-69). You can
use the record.* or the THROUGH or THRU notation to reference the member
variables of a record. (For more information, see “THRU or THROUGH
Keywords and .* Notation” on page 3-92.)

Case 2: (to a specified line of the current window)
 ,

DISPLAY DISPLAY
Value

p. 4-90

AT line, left
offset

ATTRIBUTE
Clause
p. 3-96

left offset is a literal integer that specifies the position of the first character of the
next item of output within the specified line.

line is an integer expression that returns a line number of the current 4GL
window (or the 4GL screen itself, if no other 4GL window is current).

Element Description

DISPLAY

INFORMIX-4GL Statements 4-93

You can refer to substrings of CHAR, VARCHAR, and TEXT variables by
following the identifier with the starting and ending positions of the
substring, separated by a comma and enclosed in brackets. For example, this
statement displays characters 8 through 20 of the full_name variable:

DISPLAY "name", full_name[8,20],"added to database" AT 9, 2

You can use the following keywords to format the screen output:

■ ASCII number (to display any ASCII character)

■ CLIPPED (to truncate trailing blanks)

■ COLUMN number (to begin output at a specified character position)

■ USING "string" (to format values of number or DATE data types)

Important: You cannot use the AT, ATTRIBUTE, BY NAME, or TO clause with the
COLUMN operator.

These operators are described in Chapter 5. No others are supported. If you
want to display the current time, for example, you must assign the value of
CURRENT to a program variable and then display that variable, rather than
include the CURRENT operator among the list of DISPLAY values.

The following statement displays the values of two character variables in the
format lname, fname on the next line, using the CLIPPED operator:

DISPLAY p_customer.lname CLIPPED, ", ", p_customer.fname

Unless you use the CLIPPED or USING operator, the DISPLAY statement
formats character representations of the values of program variables and
constants with display widths (including any sign) that depend on their
declared data types, as the following table indicates.

Data Type Default Display Width (in Characters)
CHAR The length from the data type declaration

DATE 10

DATETIME From 2 to 25, as implied in the data type declaration
DECIMAL (2 + m), where m is the precision from the data type declaration
FLOAT 14
INTEGER 11
INTERVAL From 3 to 25, as implied in the data type declaration

(1 of 2)

DISPLAY

4-94 HCL Informix 4GL Reference Guide

Data Type Default Display Width (in Characters)

MONEY (3 + m), where m is the precision from the data-type declaration
NCHAR The length from the data type declaration

NVARCHAR The maximum length from the data type declaration

SMALLFLOAT 14

SMALLINT 6
VARCHAR The maximum length from the data type declaration

(2 of 2)

When no field is referenced by the TO or BY NAME keywords, output begins
on the screen where the AT line, left-offset coordinates position it, or (if the AT
clause is omitted) it defaults to the line below the current cursor position.

Unless the COLUMN operator specifies a nondefault character position, the
output begins in the first character position, and successive output items
within the same DISPLAY statement are not separated by blank spaces.

For example, suppose the following program fragment runs on May 5, 1999:

DEFINE col INTEGER, cow DATE
LET col = 2
LET cow = CURRENT
DISPLAY COLUMN 3, "col", col, COLUMN 23, cow, cow

SLEEP 5

This DISPLAY statement would produce one line of output on May 5, 1999.

■ Two blank spaces (the COLUMN 3 specification)
■ The string col (the "col" string specification)
■ Ten blank spaces, followed by the character 2 (the col INTEGER

variable)
■ Seven blank spaces (the COLUMN 23 specification)
■ The string 05/05/199905/05/1999 (the cow, cow DATE variables)

col 2 05/05/199905/05/1999

left-offset = 3 left-offset = 23

DISPLAY

INFORMIX-4GL Statements 4-95

Each DISPLAY statement begins its output on a new line. You can also use the
AT clause to position output when no screen fields are specified by the TO or
BY NAME clause. If no fields are specified, you cannot include an ATTRIBUTES
clause in the DISPLAY statement, unless you also include the AT clause.

The AT Clause

You can use the AT clause to display text at a specified location in the current
4GL window, which can be the 4GL screen. The CLIPPED or USING operator
can format the displayed values. You cannot, however, include the COLUMN
operator in a DISPLAY statement that includes the AT clause.

The coordinates start with line 1 and character position 1 in the upper-left
corner of the 4GL screen or the current 4GL window. The line values increase
as you go down, and the character position values increase as you move from
left to right. An error occurs if either coordinate value exceeds the dimensions
of the 4GL screen or the current 4GL window. For example, the following
DISPLAY statement displays the value of record member total_price, starting
in line 22, at character position 5:

DISPLAY "TOTAL: ", p_items.total_price AT 22, 5

Text that you display remains on the screen until you overwrite it. If you use
the AT clause when the last variable is a NULL value of the CHAR data type,
4GL clears to the end of the line. If you execute a formatted-mode statement
when line mode output from a DISPLAY statement with no clause is visible,
4GL clears the screen or the current 4GL window before producing formatted-
mode display. (Formatted mode statements include ERROR, MESSAGE,
PROMPT, and DISPLAY with any AT, BY NAME, or TO clause.)

Do not use DISPLAY AT to display text where it could overwrite useful data.
Because INPUT clears the Comment line and the Error line when the cursor
moves between fields, it is often a good idea not to display text in the
following positions of the current 4GL window or the 4GL screen:

■ The last line of the current 4GL window (the default Comment line)
■ The last line of the 4GL screen (the default Error line)

To use these lines for text display, you must reposition the Comment and
Error lines. The OPEN WINDOW and OPTIONS statements can position the
Comment line, and OPEN WINDOW…COMMENT LINE OFF can hide the
Comment line. The OPTIONS statement can position the Error line.

DISPLAY

4-96 HCL Informix 4GL Reference Guide

value

If the displayed text exceeds the size of the current 4GL window, 4GL
truncates the text to fit the available space.

Sending Output to a Screen Form
You can use the TO clause or the BY NAME clause to display output in the
fields of a screen form, using the formatted mode of display.

Here you cannot use the COLUMN operator or the AT keyword to position
output because the locations of fields within the form are fixed.

If 4GL was in line mode, this form of the DISPLAY statement first clears the
screen before sending output to the fields of the form.

Character representations of values are displayed according to data type.

Type of Value Display

Number Right-justified. If the number does not fit in the field, 4GL fills the
field with asterisks (*) to indicate an overflow.

Literal string,
TEXT

Left-justified. If a character string does not fit in the field, 4GL
truncates the display of the value.

BYTE The field displays the message <byte value>, but actual BYTE
values do not appear in the field. (The PROGRAM attribute, as
described in Chapter 6, can display BYTE and TEXT values.)

Case III: (in a screen form)
 ,

DISPLAY DISPLAY Value
p. 4-90

text

BY NAME

TO

 ,
Field

Clause
p. 3-86

,

variable

ATTRIBUTE
Clause
p. 3-96

text is the name of a variable of the TEXT data type.
variable is the name of a variable that is also the name of a field.

Element Description

DISPLAY

INFORMIX-4GL Statements 4-97

Field attributes can change some of these default formats. For example, the
LEFT attribute (described in Chapter 6) left-justifies numbers, and the
FORMAT attribute can format DATE, DECIMAL, FLOAT, and SMALLFLOAT
values. See also the PICTURE attribute (in Chapter 6) and the USING operator
(in Chapter 5).

The BY NAME Clause

If the variables to be displayed have the same name as screen fields, you can
use the BY NAME clause. The BY NAME clause binds the fields to variables
implicitly. To use this clause, you must define variables with the same name
as the screen fields where they will be displayed. 4GL ignores any record
name prefix when matching the names. The names must be unique and
unambiguous. If not, this option results in an error, and 4GL sets status < 0.

For example, the following statement displays the values for the specified
variables in the screen fields with corresponding names (company, address1,
address2, city, state, and zipcode):

DISPLAY BY NAME p_customer.company, p_customer.address1,
p_customer.address2, p_customer.city, p_customer.state,
p_customer.zipcode

You can produce the same result by using the THRU or THROUGH notation
when listing the fields of the screen record:

DISPLAY BY NAME p_customer.company THRU p_customer.zipcode

This BY NAME clause displays data to the screen fields of the default screen
records. The default screen records are those having the names of the tables
defined in the TABLES section of the form specification file. To use a screen
array, you define a screen array in addition to the default screen record. This
default screen record holds only the first line of the screen array.

For example, the following DISPLAY statement displays the ordno variable
only in the first line of the screen array (the default screen record):

DISPLAY BY NAME p_stock[1].ordno

To display ordno in all elements of the array, you can use the DISPLAY ARRAY
statement, or DISPLAY and the TO clause, as in the next example:

FOR i = 1 TO 10
DISPLAY p_stock[i].ordno TO sc.stock[i].ordno
...

END FOR

DISPLAY

4-98 HCL Informix 4GL Reference Guide

The TO Clause

If the variables do not have the same names as the screen fields, the BY NAME
clause is not valid. Instead, you must use the TO clause to map variables to
fields explicitly. You can list the fields individually, or you can use the screen
record.* or screen record[n].* notation, where screen record[n].* specifies all
the fields in line n of a screen array.

In a DISPLAY TO statement, any screen attributes specified in the ATTRIBUTE
clause apply to all the fields that you specify after the TO keyword.

You can use the SCROLL statement to move such values up or down, but the
DISPLAY ARRAY statement is generally more convenient to use with screen
arrays. In the following example, the values in the p_items program record
are displayed in the first row of the s_items screen array:

DISPLAY p_items.* TO s_items[1].*

The expanded list of screen fields must correspond in order and in number to
the expanded list of identifiers after the DISPLAY keyword. Identifiers and
their corresponding fields must have the same or compatible data types. For
example, the next DISPLAY statement displays the values in the p_customer
program record in fields of the s_customer screen record:

DISPLAY p_customer.* TO s_customer.*

For this example, the p_customer program record and the s_customer screen
record require compatible declarations. The following DEFINE statement
declares the p_customer program record:

DEFINE p_customer RECORD
customer_num LIKE customer.customer_num,
fname LIKE customer.fname,
lname LIKE customer.lname,
phone LIKE customer.phone
END RECORD

This fragment of a form specification declares the s_customer screen record:

ATTRIBUTES
f000 = customer.customer_num;
f001 = customer.fname;
f002 = customer.lname;
f003 = customer.phone;
END

DISPLAY

INFORMIX-4GL Statements 4-99

INSTRUCTIONS
SCREEN RECORD s_customer (customer.customer_num,

customer.fname,
customer.lname,
customer.phone)

END

The ATTRIBUTE Clause
For general information, see “The ATTRIBUTE Clause” on page 4-41. This
section describes the ATTRIBUTE clause within the DISPLAY statement. The
ATTRIBUTE clause is valid only if you also use the BY NAME, TO, or AT clause.
At least one of the following keywords (no more than one of which can be a
color keyword) must appear in the ATTRIBUTE clause.

Intensity
Keyword

Interpretation

Color
Keyword

Interpretation

NORMAL White WHITE Normal
BOLD Red YELLOW Bold
DIM Blue MAGENTA Bold
INVISIBLE Non-printing RED Bold
REVERSE Reverse CYAN Dim
BLINK Blink GREEN Dim
UNDERLINE Underline BLUE Dim

 BLACK Dim

The ATTRIBUTE clause temporarily overrides any default display attributes
or any attributes specified in the OPTIONS or OPEN WINDOW statements for
the fields. When the DISPLAY statement completes execution, the default
display attributes are restored.

The column labeled “Interpretation” indicates how an attribute appears on a
color terminal (for the first four keywords) or on a monochrome terminal (for
the subsequent keywords). For example, on color terminals, NORMAL is
interpreted as WHITE, and BOLD is interpreted as RED.

The REVERSE, BLINK, INVISIBLE, and UNDERLINE attributes are not sensitive
to the color or monochrome status of the terminal, if the terminal is capable
of displaying these intensity modes.

The ATTRIBUTE clause can include zero or more of the BLINK, REVERSE,
and UNDERLINE attributes, and zero or one of the other attributes.

DISPLAY

4-100 HCL Informix 4GL Reference Guide

That is, all of the attributes except BLINK, REVERSE, and UNDERLINE are
mutually exclusive. For information about additional field attributes and
other form specifications, see Chapter 6.

These interpretations also apply to the ATTRIBUTE clause of the CONSTRUCT,
DISPLAY ARRAY, DISPLAY FORM, INPUT, and INPUT ARRAY statements. The
following DISPLAY statement specifies the attributes REVERSE and BLUE for
the message that will be displayed on line 12, starting in the first column:

DISPLAY " There are ", num USING "#####",
" items in the list" AT 12,1
ATTRIBUTE(REVERSE, BLUE)

While the DISPLAY statement is executing, 4GL ignores the INVISIBLE
attribute, regardless of whether you specify it in the ATTRIBUTE clause.

Displaying Numeric and Monetary Values
The MONETARY and NUMERIC categories of the locale files (respectively)
specify default display formats of number and currency data values; see the
descriptions of MONETARY and NUMERIC in the Informix Guide to GLS
Functionality. The DBFORMAT and DBMONEY environment variables (and
the USING operator) can affect the display of numeric and monetary data
values as follows:

■ A leading currency symbol (as set by DBFORMAT or DBMONEY) can
precede MONEY values. If the FORMAT attribute specifies a leading
currency symbol for other data types, 4GL displays that symbol.

■ 4GL omits the thousands separators in DISPLAY statements, unless
they are specified by a FORMAT attribute or by the USING operator.

■ 4GL displays the decimal separator, except for INT or SMALLINT
values.

■ 4GL displays the trailing currency symbol (as set by DBFORMAT or
DBMONEY) for MONEY values, unless you specify a FORMAT
attribute or the USING operator. In this case, 4GL ignores the trailing
currency symbol; the user cannot enter a trailing currency symbol,
and 4GL does not display it.

DISPLAY

INFORMIX-4GL Statements 4-101

� The MONETARY and NUMERIC categories of the locale files can
specify default display formats that are distinct for currency and
number values. In some locales, such as those that support the Italian
or Portuguese languages, it is conventional for currency values to be
displayed in a different format from other numeric values. ♦

For more information on DBFORMAT and DBMONEY, refer to Appendix D,
“Environment Variables.”

Displaying Time Values
The DBDATE, GL_DATE, and GL_DATETIME environment variables, and the
USING operator, can affect the display of DATE and DATETIME values.

For more information on DBDATE, refer to Appendix D, “Environment
Variables.” The GL_DATE, and GL_DATETIME environment variables are
described in “Informix Guide to GLS Functionality.”

The DBTIME environment variable is supported by some Informix products,
but has no effect on 4GL applications.

References
INPUT, DISPLAY ARRAY, DISPLAY FORM, OPEN WINDOW, OPTIONS, PRINT

GLS

DISPLAY ARRAY

4-102 HCL Informix 4GL Reference Guide

DISPLAY ARRAY
The DISPLAY ARRAY statement displays program array values in a screen
array, so that the user can scroll through the screen array.

Usage
The following steps describe how to use the DISPLAY ARRAY statement:

1. Define a screen array in the form specification file.
2. Use DEFINE to declare an array of program records whose members

correspond in name, data type, and order to the screen array fields.
3. Open and display the screen form with either of the following

statements:
■ The OPEN FORM and DISPLAY FORM statements
■ The OPEN WINDOW statement with the WITH FORM clause

4. Fill the program array with data to be displayed, counting the
number of program records being filled with retrieved data.

DISPLAY ARRAY record
array

ON KEY
Block

p. 4-106
END DISPLAY

TO screen . * array
ATTRIBUTE

Clause
p. 3-96

record array is the identifier of a program array of RECORD variables.
screen array is the identifier of a screen array. (For more information, see “Screen

Arrays” on page 6-77.)

Description Element

DISPLAY ARRAY

INFORMIX-4GL Statements 4-103

5. Call the SET_COUNT(x) function, where x is the number of filled
records.

6. Use the DISPLAY ARRAY statement to display the program array
values in the screen array fields.

The SET_COUNT() function sets the initial value of the ARR_COUNT()
function. If you do not call SET_COUNT(), 4GL cannot determine how much
data to display, and so the screen array remains empty. For a description of
the syntax of the built-in SET_COUNT() function, see Chapter 5.

The DISPLAY ARRAY statement binds the screen array fields to the member
records of the program array. The number of variables in each record of the
program array must be the same as the number of fields in each screen record
(that is, in a single row of the screen array). Each mapped variable must have
the same data type or a compatible data type as the corresponding field.

The size of the screen array (from the form specification file) determines the
number of program records that 4GL displays at one time on the screen. The
size of the program array determines how many retrieved rows of data the
program can store. The size of the program array can exceed the size of the
screen array. In this case, the user can scroll through the rows on the form.

When 4GL encounters a DISPLAY ARRAY statement, it takes the following
actions:

1. Displays the program array values in the screen array fields
2. Moves the cursor to the first field in the first screen record
3. Waits for the user to press a scroll key (by default, F3 or PAGE DOWN

to scroll forward, or F4 or PAGE UP to scroll backwards) or the Accept
key (ESCAPE by default)

Because the DISPLAY ARRAY statement does not terminate until the user
presses the Accept or Interrupt key, you might want to display a message
informing the user. By default, 4GL displays variables and constants as
follows:

■ Right-justifies number values in a screen field
■ Left-justifies character values in a screen field
■ Truncates the displayed value, if a character value is longer than the

field

DISPLAY ARRAY

4-104 HCL Informix 4GL Reference Guide

■ Fills the field with asterisks (*) to indicate an overflow, if a number
value is larger than the field can display

■ If the field contains a BYTE value, displays <byte value> in the field

The following topics are described in this section:

■ “The ATTRIBUTE Clause” on page 4-104

■ “The ON KEY Blocks” on page 4-106

■ “The EXIT DISPLAY Statement” on page 4-108

■ “The END DISPLAY Keywords” on page 4-108

■ “Using Built-In Functions and Operators” on page 4-109

■ “Scrolling During the DISPLAY ARRAY Statement” on page 4-111

■ “Completing the DISPLAY ARRAY Statement” on page 4-111

The ATTRIBUTE Clause
The ATTRIBUTE clause resembles the ATTRIBUTE clause of other form-based
statements like CONSTRUCT. Except for CURRENT ROW DISPLAY, as
described in the next section, attributes that you specify apply to all of the
fields in screen array. For example, the following DISPLAY ARRAY statement
displays items in RED:

DISPLAY ARRAY p_items TO s_items.* ATTRIBUTE (RED)

The ATTRIBUTE clause specifications override all default attributes and
temporarily override any display attributes that the OPTIONS or the OPEN
WINDOW statement specified for these fields. While the DISPLAY ARRAY
statement is executing, 4GL ignores the INVISIBLE attribute.

DISPLAY ARRAY

INFORMIX-4GL Statements 4-105

Highlighting the Current Row of the Screen Array

Besides the color and intensity attributes that are described in “ATTRIBUTE
Clause” on page 3-96, the ATTRIBUTE clause of the DISPLAY ARRAY statement
also supports the following syntax.

The comma-separated list of attributes within the quoted string is applied to
the current row of screen array.

For example, the following specification displays screen array as in the
previous example, but with the current row (the row that contains the screen
cursor) in reverse video and green:

DISPLAY ARRAY p_items TO s_items.*
ATTRIBUTE (RED, CURRENT ROW DISPLAY = "GREEN, REVERSE")

If the quoted string includes no keyword, an error is issued. If screen array has
only one row, the CURRENT ROW DISPLAY attributes are applied to that row.

 ,

 CURRENT ROW DISPLAY = " keyword "

keyword is zero or one of the color attribute keywords, and zero or more of the
intensity attribute keywords (except DIM, INVISIBLE, and NORMAL)
from the syntax diagram of “The ATTRIBUTE Clause” on page 4-41.

Description Element

DISPLAY ARRAY

4-106 HCL Informix 4GL Reference Guide

CONTROL-char (except A, D, H, I, J, L, M, R, or X)
statement is an SQL statement or some other 4GL statement.

key name is one or more of these keywords, in uppercase or lowercase letters,
separated by commas, to specify a key:

Description Element

The ON KEY Blocks
The ON KEY keywords specify a block of statements to be executed when the
user presses one of the specified keys.

ACCEPT HELP NEXT or NEXTPAGE
DELETE INSERT PREVIOUS or PREVPAGE
DOWN INTERRUPT RETURN
ESC or ESCAPE LEFT TAB
F1 through F64 RIGHT UP

For key name, you can substitute the NEXTPAGE keyword as a synonym for
NEXT, and PREVPAGE as a synonym for PREVIOUS.

4GL executes the statements specified in the ON KEY block when the user
presses one of the keys that you specify. 4GL deactivates the form while
executing statements in an ON KEY block. After executing the statements, 4GL
re-activates the form, allowing the user to continue viewing the fields.

ON KEY (

,
key

name) statement

EXIT DISPLAY

ON KEY
Block

DISPLAY ARRAY

INFORMIX-4GL Statements 4-107

You can enter uppercase or lowercase key specifications. The keys in the
following table require special consideration before you reference them in an
ON KEY clause.

Key Special Considerations

ESC or ESCAPE Specify another key as the Accept key in the OPTIONS statement,
because ESC is the default Accept key.

Interrupt

Quit

CONTROL-char

A, D, H,
L, R, and X

You must execute a DEFER INTERRUPT statement, so that when
the user presses the Interrupt key, 4GL executes the statements in
the ON KEY clause and sets int_flag to nonzero for the current
task, but does not terminate the DISPLAY ARRAY statement.
4GL also executes the statements in this ON KEY clause if the
DEFER QUIT statement has executed and the user presses the
Quit key. In this case, 4GL sets quit_flag to non-zero for the
current task.

4GL reserves these keys for field editing.

I, J, and M If you specify these keys in the ON KEY clause, the key is
“trapped” by 4GL to activate the ON KEY clause. The standard
effect of these keys (TAB, LINEFEED, and RETURN, respectively) is
not available to the user. For example, if CONTROL-M appears in an
ON KEY clause, the user cannot press RETURN to advance the
cursor to the next field.

You might not be able to use other keys that have special meaning to your
version of the operating system. For example, CONTROL-C, CONTROL-Q, and
CONTROL-S specify the Interrupt, XON, and XOFF signals on many systems.

After executing the statements in the ON KEY block, 4GL resumes the display
with the cursor in the same location as before the ON KEY block, unless it
encounters EXIT DISPLAY within the block. (In this case, program execution
resumes at the statement following the DISPLAY ARRAY statement.)

The following ON KEY clause specifies two keys to display a help message:

ON KEY (f1, control-w) CALL customer_help()

DISPLAY ARRAY

4-108 HCL Informix 4GL Reference Guide

The EXIT DISPLAY Statement
The EXIT DISPLAY statement terminates the DISPLAY ARRAY statement.
When it encounters an EXIT DISPLAY statement, 4GL takes the following
actions:

1. Skips all subsequent statements between the EXIT DISPLAY
keywords and the END DISPLAY keywords

2. Resumes execution at the statement after the END DISPLAY keywords

For example, the EXIT DISPLAY statement terminates the following DISPLAY
ARRAY statement if the user presses F5 and the value of amt_received in the
current program array record is greater than 1000:

DISPLAY ARRAY p_receipts TO s_receipts.*
ON KEY (F5)

LET x = arr_curr()
IF p_receipts[x].amt_received > 1000 THEN

CALL get_allocation(p_receipts[x].receipt_num)
EXIT DISPLAY

END IF
END DISPLAY

The END DISPLAY Keywords
The END DISPLAY keywords terminate the DISPLAY ARRAY statement. Each
of these conditions requires that you include the END DISPLAY keywords:

■ The DISPLAY ARRAY statement includes one or more ON KEY blocks.
■ The DISPLAY ARRAY statement is specified in a form management

block of a CONSTRUCT, INPUT, or INPUT ARRAY statement, and an
ON KEY block of the enclosing statement follows the DISPLAY ARRAY
statement.

■ The DISPLAY ARRAY statement is specified within an ON KEY block
in a PROMPT statement or in another DISPLAY ARRAY statement.

DISPLAY ARRAY

INFORMIX-4GL Statements 4-109

The following DISPLAY ARRAY statement must include the END DISPLAY
keywords because it immediately precedes an ON KEY block that belongs to
an INPUT statement:

INPUT BY NAME p_customer.*
AFTER FIELD company

...
DISPLAY ARRAY pa_array TO sc_array.*
END DISPLAY

ON KEY (CONTROL_B)
...

END INPUT

Otherwise, it would be ambiguous whether the ON KEY block were part of
the INPUT statement or part of the DISPLAY ARRAY statement.

Here the END DISPLAY keywords are required because of the ON KEY clause:

DISPLAY ARRAY p_items TO s_items.*ON KEY (CONTROL_W)
CALL get_help()

END DISPLAY

Using Built-In Functions and Operators
4GL provides several built-in functions to use in a DISPLAY ARRAY statement.
These functions are described in Chapter 5 and are summarized here.

You can use the following built-in functions to keep track of the relative
states of the screen cursor, the program array, and the screen array.

Function Description

ARR_CURR() Returns the number of the current record of the program array.
This corresponds to the position of the screen cursor at the
beginning of the ON KEY control block, not the line to which
the screen cursor moves after execution of the block

ARR_COUNT() Returns the current number of records in the program array.

SCR_LINE() Returns the number of the current line within the screen array.
This number can be different from the value returned by
ARR_CURR() if the program array is larger than the screen
array.

SET_COUNT() Takes the number of rows currently in the program array as an
argument, and sets the initial value of ARR_COUNT().

DISPLAY ARRAY

4-110 HCL Informix 4GL Reference Guide

DISPLAY ARRAY also supports the following built-in functions and operators
that allow you to access field buffers and keystroke buffers.

Feature Description

FIELD_TOUCHED() Returns TRUE when the user has touched (made a change to)
a screen field whose name is passed as an operand. Moving
the screen cursor through a field (with the RETURN, TAB, or
arrow keys) does not mark a field as touched.

GET_FLDBUF() Returns the character values of the contents of one or more
fields in the currently active form.

FGL_GETKEY() Waits for a key to be pressed, and then returns an INTEGER
corresponding to the raw value of the key that was pressed.

FGL_LASTKEY() Returns an INTEGER value corresponding to the most
recent keystroke executed by the user while in the screen
form.

INFIELD() Returns TRUE if the name of the field that is passed as its
operand is the name of the current field.

For more about these built-in 4GL functions and operators, see Chapter 5.
Each field in a form has only one field buffer, and a buffer cannot be used by
two different statements simultaneously. If you plan to display the same
form with data entry fields more than once, you can open a new 4GL window,
and then open and display in it a second copy of the form. 4GL allocates a
separate set of buffers to each form, and you can be certain that your program
is retrieving the correct field values.

DISPLAY ARRAY

INFORMIX-4GL Statements 4-111

Scrolling During the DISPLAY ARRAY Statement
Users can select these keys to scroll through the screen array.

Key Effect

↓, → Moves the cursor down one row at a time. If the cursor was on the last row
of the screen array before the user pressed one of these arrow keys, 4GL
scrolls the program array data up one row. If the last row in the program
array is already in the last row of the screen array, pressing one of these
keys generates a message that says there are no more rows in that
direction.

↑, ← Moves the cursor up one row at a time. If the cursor was on the first row
of the screen array before the user pressed one of these arrow keys, 4GL
scrolls the program array data down one row. If the first row in the
program array is already in the first row of the screen array, pressing one
of these keys generates a message that says there are no more rows in that
direction.

F3 Scrolls the display to the next full page of program array records. You can
reset this key by using the NEXT KEY option of the OPTIONS statement.

F4 Scrolls the display to the previous full page of program array records. You
can reset this key by using the PREVIOUS KEY option of the OPTIONS
statement.

Completing the DISPLAY ARRAY Statement
The following conditions terminate the DISPLAY ARRAY statement:

■ The user chooses any of the following keys:
❑ The Accept key
❑ The Interrupt key
❑ The Quit key

■ 4GL executes the EXIT DISPLAY statement.

By default, the Accept, Interrupt, and Quit keys terminate the DISPLAY
ARRAY statement. Each of these actions also deactivates the form. (But
pressing the Interrupt or Quit key can immediately terminate the program,
unless the program also includes the DEFER INTERRUPT and DEFER QUIT
statements.)

DISPLAY ARRAY

4-112 HCL Informix 4GL Reference Guide

If 4GL previously executed a DEFER INTERRUPT statement in the program,
pressing the Interrupt key causes 4GL to take the following actions:

1. Set the global variable int_flag to a nonzero value.
2. Terminate the DISPLAY ARRAY statement but not the 4GL program.

If 4GL previously executed a DEFER QUIT statement in the program, pressing
the Quit key causes 4GL to take the following actions:

1. Set the global variable quit_flag to a nonzero value.
2. Terminate the DISPLAY ARRAY statement but not the 4GL program.

The following program fragment displays a program array p_customer in
the fields of a screen array called s_customer:

OPEN FORM f_customer FROM "f_customer"
DISPLAY FORM f_customer
...
DECLARE c_custs CURSOR FOR

SELECT customer_num, company
FROM customer
WHERE state = "CA"

LET counter = 1
FOREACH c_custs INTO p_customers[counter].*

LET counter = counter + 1
END FOREACH
...
CALL SET_COUNT(counter - 1)
DISPLAY ARRAY p_customers TO s_customers.*

References
ATTRIBUTE, DISPLAY, INPUT ARRAY, OPEN WINDOW, OPTIONS, SCROLL

DISPLAY FORM

INFORMIX-4GL Statements 4-113

DISPLAY FORM
The DISPLAY FORM statement displays a compiled 4GL screen form.

Usage
Before you can use a compiled form, you must take these steps:

1. Use OPEN FORM to declare the name of the form.
2. Use DISPLAY FORM to display the form on the screen.

The form name specifies which screen form to display. DISPLAY FORM is not
required if you display a form by using the WITH FORM option of the OPEN
WINDOW statement (see “The WITH FORM Clause” on page 4-283). An error
occurs if the current 4GL window is too small to display the form.

Form Attributes
The DISPLAY FORM statement ignores the INVISIBLE attribute. 4GL applies
any other display attributes that you specify in the ATTRIBUTE clause to any
fields that have not been assigned attributes by the ATTRIBUTES section of the
form specification file, or by the syscolatt table, or by the OPTIONS statement.
If the form is displayed in a 4GL window, color attributes from the DISPLAY
FORM statement supersede any from the OPEN WINDOW statement. If subse-
quent CONSTRUCT, DISPLAY, or DISPLAY ARRAY statements that include an
ATTRIBUTE clause reference the form, however, their attributes take prece-
dence over those specified in the DISPLAY FORM statement.

DISPLAY FORM form
ATTRIBUTE Clause

p. 3-96

is the identifier of a 4GL screen form. form

Element Description

DISPLAY FORM

4-114 HCL Informix 4GL Reference Guide

Reserved Lines
DISPLAY FORM displays the specified form in the current 4GL window, or in
the 4GL screen itself, if no other 4GL window is open.

The form begins in the line that was indicated by the FORM LINE specification
of the OPEN WINDOW or OPTIONS statement. This specification positions the
first line of the form relative to the top of the current 4GL window. If you
provided no FORM LINE specification, the default Form line is 3. On a default
screen display, the reserved lines are positioned as follows.

Default Location Reserved for

First line Prompt line (output from PROMPT statement); also Menu
line (command value from MENU statement)

Second line Message line (output from MESSAGE statement; also the
description value output from MENU statement)

Third line Form line (output from DISPLAY FORM statement)

Second-to-last line Comment line (output from COMMENT attribute) when
SCREEN is the current 4GL window

Last line Error line (output from ERROR statement); also Comment
line in any 4GL window except SCREEN

For example, the following statements display the cust_form form in the 4GL
screen (or in the current 4GL window):

OPEN FORM cust_form FROM "customer"
DISPLAY FORM cust_form

The OPTIONS statement can change the default position of all the reserved
lines, including that of the Form line, for all 4GL windows, including the
entire 4GL screen (specified as SCREEN). You can also reposition the Form line
for a specific 4GL window only, by using an ATTRIBUTE clause in the OPEN
WINDOW statement.

The following statements make line 6 the Form line for all 4GL windows, and
then displays cust_form:

OPTIONS FORM LINE 6
OPEN FORM cust_for FROM "customer"
DISPLAY FORM cust_form

DISPLAY FORM

INFORMIX-4GL Statements 4-115

References
CLEAR, CLOSE FORM, OPEN FORM, OPEN WINDOW, OPTIONS

END

4-116 HCL Informix 4GL Reference Guide

END
The END keyword marks the end of a compound 4GL statement.

Usage
The END keyword marks the last line of a compound 4GL statement. This is
a compile-time indicator of the end of the statement construct. (Use the EXIT
keyword, rather than END, to terminate execution of a compound statement.)
The following compound statements of 4GL support END keywords to mark
the end of the statement construct within the source module.

CASE FOREACH INPUT PROMPT
CONSTRUCT FUNCTION INPUT ARRAY REPORT
DISPLAY ARRAY GLOBALS MAIN SQL
FOR IF MENU WHILE

The END DISPLAY keywords delimit the DISPLAY ARRAY statement, and END
INPUT delimits both INPUT and INPUT ARRAY. Unlike EXIT statement clauses,
no more than one END statement clause can appear within the specified
statement, but most compound statements of 4GL can be nested.

This statement fragment uses END MENU to delimit a MENU statement:

MENU "MAIN"
...

END MENU

The END keyword can also delimit RECORD declarations (as described in
“RECORD Variables” on page 4-88).

END keyword

keyword is a keyword that specifies the name of the 4GL statement to be
delimited, from among the keywords listed in this section.

Element Description

END

INFORMIX-4GL Statements 4-117

References
CASE, DISPLAY ARRAY, FOR, FOREACH, FUNCTION, GLOBALS, IF, INPUT,
INPUT ARRAY, MAIN, MENU, PROMPT, REPORT, SQL, WHILE

ERROR

4-118 HCL Informix 4GL Reference Guide

ERROR
The ERROR statement displays an error message on the Error line and rings
the terminal bell.

Usage
The string or variable value specifies all or part of the text of a screen message
to be displayed on the Error line.

You can specify any combination of character variables and literal character
strings for the message. 4GL generates the message to display by replacing
any variables with their values, and concatenating the returned strings. The
total length of this message must not be greater than the number of characters
that the Error line can display in a single line of the 4GL screen. The message
text remains on the screen until the user presses the next key.

The Error Line
The error message text appears in a borderless single-line 4GL window on
the Error line. This 4GL window opens to display your text when ERROR is
executed, and closes at the next keystroke by the user. When this 4GL
window closes, any underlying display on the same line becomes visible
again.

 ,

ERROR "string"
variable

Character
Expression

p. 3-69

string is a quoted string no longer than the number of characters that the Error
line of the current 4GL window can display.

variable is the name of a CHAR or VARCHAR variable whose contents are to be
displayed on the Error line of the 4GL screen.

Element Description

ATTRIBUTE
Clause
p. 3-96

ERROR

INFORMIX-4GL Statements 4-119

The position of the Error line is determined by the most recently executed
ERROR LINE specification in the OPTIONS statement. Otherwise, the default
Error line position is the last line of the screen. Because the Error line is
positioned relative to the screen, rather than to the current window, you
cannot use the OPEN WINDOW statement to reposition the Error line.

See “Reserved Lines” on page 4-114 for more information about the Error line
and its relationship to the other reserved lines of 4GL.

You can use the CLIPPED and USING operators in the ERROR statement, as
illustrated in the following examples:

ERROR p_orders.order_num USING "#####", " is not valid."

ERROR pattern CLIPPED, " has no match."

You can also use the ASCII and COLUMN operators, and other features of 4GL
character expressions. (For more information on the built-in functions and
operators of 4GL, see Chapter 5.)

The ATTRIBUTE Clause
The ATTRIBUTE clause syntax is described in “The ATTRIBUTE Clause” on
page 4-41. The default display attribute for the Error line is REVERSE. You can
use the ATTRIBUTE clause to specify some other attribute. 4GL ignores the
INVISIBLE attribute if you include it with another attribute in the ATTRIBUTE
clause of the ERROR statement. If the INVISIBLE attribute is the only attribute
that you specify, 4GL displays the ERROR text as NORMAL.

In the following example, if the insert_items() function returns FALSE, then
4GL rolls back the changes to the database and displays an error message:

IF NOT insert_items() THEN
ROLLBACK WORK
ERROR "Unable to insert items."

ATTRIBUTE(RED, REVERSE, BLINK)
RETURN

END IF

If the terminal supports color, then 4GL displays this error message in red,
blinking, reverse video. If the terminal screen is monochrome, then 4GL
displays the error message in bold, blinking, reverse video.

The next example specifies BLUE and BLINK attributes for the ERROR text:

ERROR "Unable to insert items" ATTRIBUTE(BLUE, BLINK)

ERROR

4-120 HCL Informix 4GL Reference Guide

System Error Messages
The Error line also displays system error messages. These can provide you with
useful diagnostic information while you are developing 4GL programs, but
they might not be helpful to users of your application.

One way to avoid displaying system error messages is to use the WHENEVER
statement to trap runtime errors. The WHENEVER statement can call a
function that executes an ERROR statement, displaying a screen message that
is more suitable for your users.

Some runtime errors cannot be trapped by the WHENEVER statement.
“Exception Handling” on page 2-40 includes a list of error messages that are
currently untrappable.

References
DISPLAY, MESSAGE, OPTIONS, PROMPT, WHENEVER

EXIT

INFORMIX-4GL Statements 4-121

EXIT
The EXIT statement transfers control out of a control structure (a block, a
loop, a CASE statement, an interface statement) or out of the program itself.

Usage
The EXIT PROGRAM statement terminates the program that is currently
executing. Other forms of EXIT transfer control from the current control
structure to whatever statement follows the corresponding END keyword
keywords.

Leaving a Control Structure
Some compound statements support EXIT statement to terminate execution of
the current statement and pass control of execution to the next statement.

EXIT CASE EXIT FOR EXIT MENU
EXIT CONSTRUCT EXIT FOREACH EXIT REPORT
EXIT DISPLAY EXIT INPUT EXIT WHILE

Case I: (terminating a program)

EXIT PROGRAM

Case II: (terminating a statement)

(ceoxdite)
exit
code

 keyword

exit code is an integer expression. For a description of this term, see “The Exit
Code Value” on page 4-123.

keyword is a keyword that specifies the current statement from which control of
execution is to be transferred, from among those in the list that appears
later in this section.

Element Description

EXIT

4-122 HCL Informix 4GL Reference Guide

Here EXIT DISPLAY exits from DISPLAY ARRAY (but not DISPLAY) statements,
and EXIT INPUT can exit from both INPUT ARRAY and INPUT statements.

Unlike EXIT PROGRAM, these other EXIT statements can only appear within
the specified statement. For example, EXIT FOR can occur only in a FOR loop;
if it is executed, it transfers control to the statement following the END FOR
keywords that mark the end of that FOR statement.

Similarly, EXIT MENU can appear only within a control block of a MENU
statement, where it transfers control to the first statement that follows the
END MENU keywords of the same MENU statement.

Leaving a Function
The RETURN statement exits from a FUNCTION definition. There is no EXIT
PROGRAM statement, because RETURN supports this functionality (and can
also pass zero or more values from the FUNCTION program block to the
calling statement).

You cannot use the GO TO or WHENEVER GO TO statements to transfer
control of execution from the currently executing function. (These statements
can only transfer control within the same program block.)

Leaving a Report
The EXIT REPORT statement exits from a REPORT definition. An error is
issued if RETURN is encountered within a REPORT definition. Unlike a
function, a report does not return anything to the calling routine, but a report
normally sends formatted output to some specified destination. Within the
report driver, you can terminate processing of a report by executing the
FINISH REPORT or TERMINATE REPORT statements.

You cannot use the GO TO or WHENEVER GO TO statements to transfer
control of execution from the currently executing report. (These statements
can only transfer control within the same program block.)

EXIT

INFORMIX-4GL Statements 4-123

Leaving the Program
The EXIT PROGRAM statement terminates execution of the 4GL program.
After 4GL encounters the EXIT PROGRAM statement anywhere within the
program, no subsequent statements are executed, and control returns to the
operating system (or to whatever process invoked the 4GL program).

For example, here EXIT PROGRAM appears in a MENU statement:

MENU "MAIN"
...
COMMAND "Quit" "Exit from the program"

CLEAR SCREEN
EXIT PROGRAM

END MENU

If 4GL encounters the END MAIN keywords in the MAIN block, END MAIN
terminates the program, as if you had specified EXIT PROGRAM (0). If you
are using the INFORMIX-4GL Interactive Debugger, a program that EXIT
PROGRAM terminates can be examined subsequently by the WHERE or
STACK commands of the Debugger, as if an abnormal termination had
occurred.

The Exit Code Value

The exit code value returns the status code when a process terminates. The
status code is a whole-number value, usually less than 256. The RETURNING
clause of the RUN statement instructs 4GL to save the exit code value from
the EXIT PROGRAM statement, if RUN invokes a 4GL program that EXIT
PROGRAM terminates. When the 4GL program that RUN specifies completes
execution, RUN can return an integer variable that contains two bytes of
termination status information:

■ The low byte contains the termination status of whatever RUN
executes. You can recover this by calculating the value of (integer
value modulo 256).

■ The high byte contains the low byte from the EXIT PROGRAM
statement of the 4GL program that RUN executes. You can recover
this returned code by dividing integer value by 256.

See “The RETURNING Clause” on page 4-341 for an example of using RUN
and EXIT PROGRAM to examine termination status and exit codes from 4GL
programs that RUN invoked and EXIT PROGRAM terminated.

EXIT

4-124 HCL Informix 4GL Reference Guide

References
CONTINUE, END, GOTO, LABEL, MAIN, RETURN, RUN

FINISH REPORT

INFORMIX-4GL Statements 4-125

FINISH REPORT
The FINISH REPORT statement completes processing of a 4GL report.

Usage
This statement indicates the end of a report driver and complete processing of
the report. (For more information, see “The Report Driver” on page 7-5.)
FINISH REPORT must follow a START REPORT statement and at least one
OUTPUT TO REPORT statement that reference the same report.

If the REPORT definition includes an ORDER BY section with no EXTERNAL
keyword, or specifies aggregates based on all the input records, 4GL makes
two passes through the input records. During the first pass, it uses the
database server to sort the data, and then stores the sorted values in a
temporary file. During the second pass, it calculates any aggregate values,
and produces output from data in the temporary files. For more information,
see “The EXTERNAL Keyword” on page 7-27 and “Aggregate Report
Functions” on page 7-60.

The FINISH REPORT statement performs the following actions:

■ Completes the second pass, if report is a two-pass report. These
“second pass” activities handle the calculation and output of any
aggregate values that are based on all the input records in the report,
such as COUNT(*) or PERCENT(*) with no GROUP qualifier.

■ Executes any AFTER GROUP OF control blocks (described in
Chapter 7, “INFORMIX-4GL Reports”).

■ Executes any PAGE HEADER, ON LAST ROW, and PAGE TRAILER
control blocks to complete the report, as described in Chapter 7.

FINISH REPORT report

is the name of a 4GL report, as declared in the REPORT statement. report

Element Description

FINISH REPORT

4-126 HCL Informix 4GL Reference Guide

■ Copies data from the output buffers of the report to the destination
in START REPORT or in the OUTPUT section of the report definition.
If no destination is specified, output goes to the Report window (as
described in “Sending Report Output to the Screen” on page 7-19).

■ Closes the Select cursor on any temporary table that was created to
order the input records or to perform aggregate calculations.

■ Deallocates memory for local BYTE or TEXT variables of the report.
■ Terminates processing of the 4GL report, and deletes from the

database any files that held temporary tables for a two-pass report.

The following program creates a report based on data in the orders table:

DATABASE stores7
MAIN

DEFINE p_orders RECORD LIKE orders.*
DECLARE q_ordcurs CURSOR FOR SELECT * FROM orders
START REPORT ord_list TO "ord_listing"
FOREACH q_ordcurs INTO p_orders

OUTPUT TO REPORT ord_list(p_orders)
END FOREACH
FINISH REPORT ord_list

END MAIN
REPORT ord_list(r_orders)

DEFINE r_orders RECORD LIKE orders.*
FORMAT EVERY ROW

END REPORT

The temporary tables that 4GL reports use for sorting input records or for
calculating aggregates in two-pass reports are stored in the current database.
If you do not open any database, or if the CLOSE DATABASE statement closes
the current database, then a runtime error occurs when 4GL cannot create or
access the temporary tables that are required for a two-pass report.

Similarly, the FINISH REPORT statement cannot access temporary tables in
more than one database. An error can occur if the DATABASE statement opens
a different database while a two-pass 4GL report is being processed. The
following program fragment, for example, produces a runtime error if the
produce report requires two passes:

DATABASE apples
...

START REPORT produce --database is apples
...

OUTPUT TO REPORT produce(input_rex)
...

DATABASE oranges --new database is oranges
FINISH REPORT produce --cannot access files in apples database

FINISH REPORT

INFORMIX-4GL Statements 4-127

References
OUTPUT TO REPORT, REPORT, START REPORT, TERMINATE REPORT

FOR

4-128 HCL Informix 4GL Reference Guide

FOR
The FOR statement executes a statement block a specified number of times.

Usage
The FOR statement executes the statements up to the END FOR statement a
specified number of times, or until EXIT FOR terminates the FOR statement.
(Use the WHILE statement, rather than FOR, if you cannot specify an upper
limit on how many times the program needs to repeat a statement block, but
you can specify a Boolean condition for leaving the block.)

The TO Clause
4GL maintains an internal counter, whose value changes on each pass through
the statement block. On the first iteration through the loop, this counter is set
to the initial expression at the left of the TO keyword. Thereafter, the value of
the increment expression in the STEP clause specification (or by default, 1) is
added to counter in each pass through the block of statements.

FOR counter = start TO finish statement END FOR

CONTINUE FOR

STEP increment EXIT FOR

counter is a variable of type INTEGER or SMALLINT that serves as an index
for the statement block.

finish is an integer expression to specify an upper limit for counter.
increment is an integer expression whose value is added to counter after each

iteration of the statement block.
start is an integer expression to set an initial counter value.
statement is an SQL statement or other 4GL statement. (This statement block is

sometimes called the FOR loop.)

Description Element

FOR

INFORMIX-4GL Statements 4-129

When the sign of the difference between the values of counter and the finish
expression at the right of the TO keyword changes, 4GL exits from the FOR
loop. Execution resumes at the statement following the END FOR keywords.
For example, this statement clears four records of the s_items screen array:

FOR counter = 1 TO 4
CLEAR s_items[counter].*

END FOR

The FOR loop terminates after the iteration for which the left- and right-hand
expressions are equal. If either returns NULL, the loop cannot terminate,
because here the Boolean expression "left = right" cannot become TRUE.

The STEP Clause
Use the STEP clause to tell 4GL the number by which to increment the counter.
For example, this FOR statement increments the counter by 2:

FOR idx = 1 TO 12 STEP 2
DISPLAY month_names[idx] TO sc_month[i]
LET i = i + 1

END FOR

If you use a negative STEP value, specify the second expression in the TO
clause as smaller than the first value in the range.

Before processing the block of statements, 4GL first tests the counter value
against the terminating value. For example, if the STEP value is positive and
the counter value is greater than the last value in the range, 4GL skips over
the statements in the loop without executing them.

The CONTINUE FOR Statement
Use the CONTINUE FOR statement to interrupt the current iteration and start
the next iteration of the statement block. To execute a CONTINUE FOR
statement, 4GL does the following:

■ Skips the remaining statements between the CONTINUE FOR and
END FOR keywords

■ Increments the counter variable and tests it
■ If the counter does not exceed the final value, goes back to the

beginning of the loop and performs another iteration; otherwise,
continues execution after the END FOR keywords

FOR

4-130 HCL Informix 4GL Reference Guide

The EXIT FOR Statement
Use the EXIT FOR statement to terminate the statement block. When 4GL
encounters this statement, it skips any statements between the EXIT FOR and
END FOR keywords. Execution resumes at the first statement immediately
after the END FOR keywords.

The END FOR Keywords
Use END FOR to indicate the end of the FOR loop. Upon encountering the END
FOR keywords, 4GL increments the counter and compares it with the
expression that immediately follows the TO keyword. If the counter exceeds
this value, then 4GL terminates the FOR loop and executes the statement
following the END FOR keywords.

Databases with Transactions
If your database has transaction logging, and the FOR loop includes one or
more SQL statements that modify the database, then it is advisable that the
entire FOR loop be within a transaction. Otherwise, if an error occurs after
some of the SQL statements within the FOR loop have executed, but before the
loop has terminated, the user might face two potential problems:

■ It might be difficult to determine the extent to which the integrity of
the database has been compromised.

■ If the database has been corrupted, it might be difficult to restore it
to its condition prior to the execution of the FOR loop.

The same data integrity considerations also apply to FOREACH and WHILE
loops that include SQL statements in 4GL programs. (See the Informix Guide to
SQL: Tutorial for more information about the SQL concepts and statements
that support data integrity through transactions.)

References
CONTINUE, FOREACH, WHILE

FOREACH

INFORMIX-4GL Statements 4-131

FOREACH
The FOREACH statement applies a series of actions to each row of data that
is returned from a query by a cursor.

Element Description
cursor is the name of a previously declared SQL cursor.
first is the name of a member variable in which to store a value.
last is a member of record that was declared later than first.
record is the name of a variable of the RECORD data type.
statement is an SQL statement or other 4GL statement.

FOREACH cursor statement END FOREACH

USING Variable
List CONTINUE FOREACH

EXIT FOREACH

INTO Variable
List WITH REOPTIMIZATION

,
Variable
p. 3-57

. . *
record . first THROUGH record . last

THRU

Variable
List

FOREACH

4-132 HCL Informix 4GL Reference Guide

Usage
Use the FOREACH statement to retrieve and process database rows that were
selected by a query. The FOREACH statement is equivalent to using the OPEN,
FETCH, and CLOSE statements.

The FOREACH statement has these effects:

1. Opens the specified cursor
2. Fetches the rows selected
3. Closes the cursor (after the last row has been fetched)

You must declare the cursor (by using the DECLARE statement) before the
FOREACH statement can retrieve the rows. A compile-time error occurs
unless the cursor was declared prior to this point in the source module. You
can reference a sequential cursor, a scroll cursor, a hold cursor, or an update
cursor, but FOREACH only processes rows in sequential order.

The FOREACH statement performs successive fetches until all rows specified
by the SELECT statement are retrieved. Then the cursor is automatically
closed. It is also closed if a WHENEVER NOT FOUND statement within the
FOREACH loop detects a NOTFOUND condition (that is, status = 100).

Implicit FETCH statements that FOREACH executes with a FOR UPDATE
cursor can support promotable locks. (See the Informix Guide to SQL: Syntax.)

The following topics are described in this section:

■ “Cursor Names” on page 133
■ “The USING Clause” on page 4-134
■ “The INTO Clause” on page 4-134
■ “The WITH REOPTIMIZATION Keywords” on page 4-135
■ “The FOREACH Statement Block” on page 4-136
■ “The END FOREACH Keywords” on page 4-138

FOREACH

INFORMIX-4GL Statements 4-133

Cursor Names
You must follow the FOREACH keyword with a cursor name that a DECLARE
statement declared earlier in the same module. A runtime error can occur if
the FOREACH statement does not specify a previously declared cursor.

The next example fetches values retrieved by the c_orders cursor. For each
retrieved row, 4GL increments the counter variable by 1, invokes a function
called scan(), and passes the values of ord_num, cust_num, and comp. If the
query does not return any rows, 4GL ignores the FOREACH loop and resumes
processing with the statement that immediately follows the END FOREACH
keywords. This IF statement examines the counter variable, and displays a
message on the Error line if the query returns no rows.

PROMPT "Enter cut-off date for orders: " FOR o_date
DECLARE c_orders CURSOR FOR

SELECT order_num, orders.customer.num, company
INTO ord_num, cust_num, comp FROM orders o, customer c
WHERE o.customer_num = c.customer_num

AND order_date < o_date
LET counter = 1
FOREACH c_orders

LET counter = counter + 1
CALL scan(ord_num, cust_num, comp)

END FOREACH
IF counter = 0 THEN

ERROR "No orders before ", o_date
END IF

FOREACH internally generates an OPEN statement, a FETCH loop (which
normally exits when NOTFOUND is returned), and a CLOSE statement. If a
FETCH returns an error other than NOTFOUND (error 100, the normal end-of-
data indication) and WHENEVER ERROR GOTO is in effect, the implicit CLOSE
statement is not executed. (Also, if you use WHENEVER ERROR CALL and the
called function terminates the program, the cursor is not closed before
entering the called function.) If you use WHENEVER ERROR GOTO to resume
execution elsewhere in the program, the cursor might remain open and
would need to be explicitly closed.

Because the internally generated CLOSE statement can change the values in
the SQLCA structure, the value of SQLCA.SQLERRD[3] after the END
FOREACH keywords are encountered does not represent the number of rows
fetched by the FOREACH. If you need to know the number of rows fetched,
you must maintain your own row counter.

FOREACH

4-134 HCL Informix 4GL Reference Guide

The USING Clause
The USING clause specifies a variable (or a comma-separated list of variables)
to provide values to be used as search criteria by the query.

The USING clause is required only if the cursor expects user-supplied values
to replace question (?) mark placeholders.

Just as with the OPEN statement of SQL, the number and data types of place-
holders in the prepared SELECT statement must correspond exactly to the
number and data types of the variables in the USING clause.

If both the USING and INTO clauses are used, the USING clause must precede
the INTO clause. (In embedded EXECUTE statements of SQL, however, 4GL
supports both the EXECUTE…INTO…USING and EXECUTE…USING…INTO
sequences of clauses, as a convenience to the programmer.)

The INTO Clause
The INTO clause specifies a variable (or a comma-separated list of variables)
in which to store values from each row that is returned by the query.

The number and order of variables in the INTO clause must match the
number and order of the columns in the active set of rows that are retrieved
by the cursor, and must be of compatible data types.

USING Variable List
p. 4-155

INTO Variable List
p. 4-155

FOREACH

INFORMIX-4GL Statements 4-135

For example, the following FOREACH statement stores the retrieved rows in
the p_items program array:

LET counter = 1
FOREACH my_curs INTO p_items[counter].*

LET counter = counter + 1
IF counter > 10 THEN

CALL mess ("Ten or more items.")
EXIT FOREACH

END IF
END FOREACH

You can include the INTO clause in the SELECT statement associated with the
cursor, or in the FOREACH statement, but not in both. To retrieve rows into a
program array, however, you must place the INTO clause in the FOREACH
statement, rather than in the SELECT-statement of a DECLARE statement.

The WITH REOPTIMIZATION Keywords
The WITH REOPTIMIZATION keywords enable you to reoptimize your query-
design plan. When you prepare a SELECT or EXECUTE PROCEDURE
statement, the Informix database server uses a query-design plan to optimize
the performance of that query.

If you subsequently modify the data values that are associated with the
SELECT or EXECUTE PROCEDURE statement, the plan might no longer be
efficient. To avoid this, you can prepare the SELECT or EXECUTE PROCEDURE
statement again, or you can use FOREACH or OPEN with the WITH REOPTI-
MIZATION keywords, so that a new query design plan can take into account
the modified data values.

Informix recommends that you specify WITH REOPTIMIZATION, rather than
reprepare the statement, because WITH REOPTIMIZATION rebuilds only the
query-design plan, rather than the entire statement. This process takes less
time and requires fewer resources than preparing the statement again.

FOREACH

4-136 HCL Informix 4GL Reference Guide

The FOREACH Statement Block
These statements are executed after each row of the active set is fetched.

This block is sometimes called the FOREACH loop. If the cursor returns no
rows, then no statements in this loop are executed, and program control
passes to the first statement that follows the END FOREACH keywords. If the
specified cursor is FOR UPDATE, the statement block can include statements
to modify retrieved rows. See the Informix Guide to SQL: Syntax.

Databases with Transactions

If your database has transaction logging, then it is advisable to put the entire
FOREACH statement block in a transaction. Otherwise, if an error occurs after
some of the SQL statements within the FOREACH statement block have
executed, but before the loop has terminated, the user might face two
potential problems:

■ It might be difficult to determine the extent to which the integrity of
the database has been compromised.

■ If the database has been corrupted, it might be difficult to restore it
to its condition prior to the execution of the FOREACH loop.

These considerations apply to FOR and WHILE loops that can change the
database. (See Informix Guide to SQL: Tutorial for information about the SQL
concepts and statements that support data integrity through transactions.)

 statement

CONTINUE FOREACH

EXIT FOREACH

statement is an SQL statement or other 4GL statement.

Description Element

FOREACH

INFORMIX-4GL Statements 4-137

If your database has transactions and the cursor was declared by DECLARE
FOR UPDATE but not DECLARE WITH HOLD, the FOREACH statement must
be executed within a transaction. (You can open an update cursor that was
declared with a DECLARE WITH HOLD via a FOREACH statement outside a
transaction, but you cannot roll back any changes that the cursor performs
outside the transaction. In this situation, each UPDATE WHERE CURRENT OF
is automatically committed as a singleton transaction.)

The CONTINUE FOREACH Keywords

CONTINUE FOREACH interrupts processing of the current row and starts
processing the next row. 4GL fetches the next row and resumes processing at
the first statement in the FOREACH statement block. For example, if
total_price is less than 1000 in the next example, 4GL increments
smallOrders, fetches the next row, and executes the IF statement. If
total_price is equal to or greater than 1000, 4GL proceeds to the next
statement in the FOREACH block, in this case, the OUTPUT TO REPORT
statement:

LET smallOrders = 1
FOREACH orderC

IF orderP.total_price < 1000 THEN
LET smallOrders = smallOrders + 1
CONTINUE FOREACH

END IF
OUTPUT TO REPORT order_list (orderR.*, smallOrders)
...

END FOREACH

The EXIT FOREACH Statement

Use the EXIT FOREACH statement to interrupt processing and ignore the
remaining rows of the active set. Upon encountering EXIT FOREACH, 4GL
skips the statements between the EXIT FOREACH and the END FOREACH
keywords. Execution resumes at the statement that follows the END
FOREACH keywords.

The next section provides a code example in which a message is displayed on
the screen and EXIT FOREACH is executed when a report driver detects an
error condition within a FOREACH statement block.

FOREACH

4-138 HCL Informix 4GL Reference Guide

The END FOREACH Keywords
Use the END FOREACH keywords to indicate the end of the FOREACH loop.
When 4GL encounters the END FOREACH keywords, it re-executes the loop
until no more rows returned by the query remain. Otherwise, it executes the
statement that follows the END FOREACH keywords.

For example, if the status variable is not equal to 0 in the following program
fragment, 4GL displays a message and exits from the FOREACH loop:

DECLARE orderC CURSOR FOR
SELECT * INTO orderR.* FROM orders
WHERE order_date BETWEEN start_date AND end_date

START REPORT order_list
LET smallOrders = 0
FOREACH orderC

IF orderR.total_price < 1000 THEN
LET smallOrders = smallOrders + 1
CONTINUE FOREACH

END IF
OUTPUT TO REPORT order_list (orderR.*, smallOrders)
IF status != 0 THEN

MESSAGE "Error on output to report."
EXIT FOREACH

END IF
END FOREACH
FINISH REPORT order_list

The next example creates a cursor c_query, based on search criteria entered
by the user.

For each row retrieved by the SELECT statement of the cursor, this example
displays the row on the screen and waits for the user to request the next row.
If no rows are selected, then 4GL displays a message.

DEFINE stmt1, query1 CHAR(300),
p_customer RECORD LIKE customer.*

CONSTRUCT BY NAME query1 ON customer.*
LET stmt1 = "SELECT * FROM customer ",

"WHERE ", query1 CLIPPED
PREPARE stmt_1 FROM stmt1
DECLARE c_query CURSOR FOR stmt_1
LET exist = 0
FOREACH c_query INTO p_customer.*

LET exist = 1
DISPLAY BY NAME p_customer.*
PROMPT "Do you want to see the next customer (y/n): "

FOR answer
IF answer MATCHES "[Nn]" THEN

FOREACH

INFORMIX-4GL Statements 4-139

EXIT FOREACH
END IF

END FOREACH
IF exist = 0 THEN

MESSAGE "No rows found."
END IF

If a query returns no rows, then none of the statements in the FOREACH block
is executed, and program control passes immediately to the first statement
following END FOREACH. If you need to know whether any rows were
returned, you can set up a flag or a counter as in the example that follows:

PROMPT "Enter cut-off date for query: "FOR o_date
DECLARE q_curs CURSOR FOR

SELECT order_num, o.customer_num, company
FROM orders o, customer c
WHERE o.customer_num = c.customer_num

AND order_date < o_date
LET counter = 0
FOREACH q_curs INTO ord_num, cust_num, comp

LET counter = counter + 1
CALL scan (ord_num, cust_num, comp)

END FOREACH
IF counter = 0 THEN

ERROR "No orders before ", o_date
END IF

References
CONTINUE, FETCH, FOR, OPEN, WHILE, WHENEVER

FUNCTION

4-140 HCL Informix 4GL Reference Guide

FUNCTION END FUNCTION

FUNCTION
The FUNCTION statement defines a FUNCTION program block.

 FUNCTION

Prototype
p. 4-141

 FUNCTION
Program Block

p. 4-142

Usage
As Chapter 5 explains, a 4GL function is a named block of statements. The
FUNCTION statement defines a 4GL function that can be invoked from any
module of your program. The FUNCTION statement has two effects:

■ It declares the name of a function and any formal arguments. 4GL

imposes no limit on the number or size of formal arguments.
■ It defines the corresponding FUNCTION program block.

The FUNCTION statement cannot appear within the MAIN statement, in a
REPORT statement, nor within another FUNCTION statement. If the function
returns a single value, it can be invoked as an operand within a 4GL
expression (as described in “Function Calls as Operands” on page 3-58).
Otherwise, you must invoke it with the CALL statement.

An error results if the list of returned values in the RETURN statement
conflicts in number or in data type with the RETURNING clause of the CALL
statement that invokes the function (as described in “The RETURNING
Clause” on page 4-19).

The following topics are described in this section:

■ “The Prototype of the Function” on page 4-141

■ “The FUNCTION Program Block” on page 4-142

■ “Executable Statements” on page 4-142

■ “Data Type Declarations” on page 4-143

■ “The Function as a Local Scope of Reference” on page 4-143

■ “Returning Values to the Calling Routine” on page 4-144

■ “The END FUNCTION Keywords” on page 4-144

FUNCTION

INFORMIX-4GL Statements 4-141

The Prototype of the Function
The FUNCTION statement both declares and defines a 4GL function. The
function declaration specifies the identifier of the function and the identifiers
of its formal arguments (if any). These specifications are sometimes called the
function prototype, as distinct from the function definition.

The Identifier of the Function

The function name must follow the rules for 4GL identifiers (as described in
“4GL Identifiers” on page 2-14) and must be unique among all the names of
functions or reports in the same program. If the name is also the name of a
built-in 4GL function, an error occurs at link time, even if the program does
not reference the built-in function. Like all 4GL identifiers, the name is not
case sensitive. For example, the function names unIonized() and
Unionized() are identical to 4GL.

The Argument List of the Function

The names specified (between parentheses) in the argument list define the
formal arguments, if any, as they will be received when the FUNCTION
program block is executed. Argument names must be unique within the
argument list of the current FUNCTION declaration. Their scope of reference
is local to the function; that is, they are not visible in other program blocks.

Important: If no argument is specified, an empty argument list must still be
supplied, enclosed between the parentheses.

 ,

function ()

argument

FUNCTION
Prototype

argument is the name of a formal argument to this function. This can be of any
data type except ARRAY. (See “Declaring the Names and Data Types of
Variables” on page 4-84 and “ARRAY Variables” on page 4-87.)

function is the identifier that you declare for this 4GL function.

Element Description

FUNCTION

4-142 HCL Informix 4GL Reference Guide

The FUNCTION Program Block
The statements between the argument list and the END FUNCTION keywords
make up the FUNCTION program block. These statements are executed
whenever the function is successfully invoked.

You can define a function whose statement block is empty. This enables you
to test other parts of a program before a function definition is written.

Executable Statements
Any executable statements in the statement block are executed when the
function is called. Here is a simple example of a function definition:

FUNCTION state_abbrev(state)
DEFINE st LIKE state.code,

state LIKE state.sname
SELECT state.code INTO st FROM state

WHERE state.sname MATCHES state
RETURN st

END FUNCTION

In this example, the function definition contains two executable statements:

■ DEFINE is a declarative statement that allocates storage in memory
for the local variables st and state.

■ SELECT is an executable SQL statement.
■ RETURN returns control (and the value of st) to the calling routine.
■ END FUNCTION marks the end of the program block.

statement

RETURN
Statement
p. 4-337

DEFINE
Statement

p. 4-81

FUNCTION
Program Block

statement is any SQL statement or other 4GL statement (but not GLOBALS,
DEFINE, DEFER, MAIN, FUNCTION, REPORT, EXIT REPORT, NEED,
PAUSE, PRINT, nor SKIP).

Element Description

FUNCTION

INFORMIX-4GL Statements 4-143

Here DEFINE and END FUNCTION are not executable statements, but they are
needed to declare the formal argument and another local variable, and to
delimit the function definition.

Data Type Declarations
The data type of each formal argument of the function must be specified by
a DEFINE statement that immediately follows the argument list. Any DEFINE
declarations within a function definition must occur before any other state-
ments within the FUNCTION program block. Just as in a MAIN or REPORT
program block, a compile-time error occurs if any executable statement
precedes a DEFINE declaration in the FUNCTION definition.

The actual argument in a call to the function need not be of the declared data
type of the formal argument. If both are of compatible data types, 4GL
converts the actual argument to the data type that the function requires. If
data type conversion is impossible, a runtime error occurs. For a discussion
of compatible data types, see “Data Type Conversion” on page 3-42.

Here is an example of a call for which data-type conversion is necessary. The
actual argument, the character string "105", must be converted to INTEGER.

DEFINE getStat INTEGER
LET getStat = getCustRec("105")

. . .
FUNCTION getCustRec(cno)

DEFINE cno, dno INTEGER
. . .
RETURN dno

END FUNCTION

The Function as a Local Scope of Reference
The same or a subsequent DEFINE statement must also declare any other local
variable that is referenced in the same FUNCTION definition. Two local
variables are declared in the previous example, the function argument cno,
and the variable named dno. The identifiers of local variables must be unique
among the variables that are declared in the same FUNCTION definition.
They are not visible in other program blocks.

Just as within MAIN or REPORT program blocks, statements in the function
can reference previously declared module or global variables.

FUNCTION

4-144 HCL Informix 4GL Reference Guide

Any global or module variable that has the same identifier as a local variable,
however, is not visible within the scope of the local variable.

For information about using the LIKE keyword during compilation to declare
the data types of local variables indirectly, see the description of the
DATABASE statement (in “The Default Database at Compile Time” on
page 4-73) .

You can also use DATABASE within a FUNCTION definition to specify a new
current database at runtime (as described in “The Current Database at
Runtime” on page 4-74).

Any GOTO or WHENEVER…GOTO statement in a function must reference a
statement label (described in “LABEL” on page 4-224) within the same
FUNCTION program block.

Returning Values to the Calling Routine
Any programmer-defined 4GL function that returns one or more values to the
calling routine must include the RETURN statement. Values specified in
RETURN must correspond in number and position, and must be of the same
or of compatible data types, to the variables in the RETURNING clause of the
CALL statement. (For more information, see “Summary of Compatible 4GL
Data Types” on page 3-46 and “The RETURNING Clause” on page 4-19.)

Unless it has the same name as a built-in operator (see Chapter 5), any built-
in or programmer-defined function that returns a single value of a simple
data type can appear in 4GL expressions (with its arguments, if any) if the
returned value is of a range and data type that is valid in the expression:

DISPLAY AT 2,2 ERR_GET(SQLCA.SQLCODE)

The END FUNCTION Keywords
The END FUNCTION keywords mark the end of the FUNCTION program
block. Only another FUNCTION definition or the REPORT statement can
follow the END FUNCTION keywords in the same source code module.

References
CALL, DEFINE, RETURN, WHENEVER

GLOBALS

INFORMIX-4GL Statements 4-145

GLOBALS
The GLOBALS statement declares modular variables that can be exported to
other program modules. It can also import variables from other modules.

Usage
In general, a program variable is in scope only in the same FUNCTION, MAIN,
or REPORT program block in which it was declared. To make its scope of
reference the entire source module, you must specify a modular declaration,
by locating the DEFINE statement outside of any program block.

To extend the visibility of one or more module variables beyond the source
module in which they are declared, you must take the following steps:

■ Declare variables in GLOBALS…END GLOBALS declarations (in files
containing only GLOBALS, DEFINE, and DATABASE statements).

■ Specify the files in GLOBALS “filename” statements in each additional
source module that includes statements referencing the variables.

Case I: (declaring and exporting variables)
 ,

GLOBALS
DEFINE

Statement
p. 4-81

END GLOBALS

Case II: (importing variables)

"filename.4gl"

filename is a quoted string that specifies the name of a file that contains the
GLOBALS…END GLOBALS statement (and optionally the DATABASE
statement) but no executable statements. The filename can include a
pathname. The .4gl file extension is required.

Element Description

GLOBALS

4-146 HCL Informix 4GL Reference Guide

These files must also be compiled and linked with the 4GL application.
(Earlier 4GL releases permitted no more than one GLOBALS…END GLOBALS
statement, but the number of globals files is now unrestricted.)

Declaring and Exporting Global Variables
To declare global variables, the GLOBALS statement must appear before the
first MAIN, FUNCTION, or REPORT program block, so that variables that you
declare in the GLOBALS statement are modular in their scope of reference.
You can include one or more DEFINE statements after the GLOBALS keyword.
The END GLOBALS keywords must follow the last DEFINE declaration.

If you use the LIKE keyword in the DEFINE declaration, a DATABASE
statement must precede the GLOBALS statement within the same module.

The following program fragment declares a global record, a global array, and
a simple global variable that are referenced by built-in and programmer-
defined functions within the same source code module:

DATABASE stores7
GLOBALS

DEFINE p_customer RECORD LIKE customer.*,
p_state ARRAY[50] OF RECORD LIKE state.*,
fifty, state_cnt SMALLINT

END GLOBALS

MAIN
...

END MAIN

FUNCTION get_states()
...
FOREACH c_state INTO p_state[state_cnt].*

LET state_cnt = state_cnt + 1
IF state_cnt > fifty THEN

EXIT FOREACH
END IF

END FOREACH
...

END FUNCTION
FUNCTION statehelp()

DEFINE idx SMALLINT
...
CALL SET _COUNT(state_cnt)
DISPLAY ARRAY p_state TO s_state.*

GLOBALS

INFORMIX-4GL Statements 4-147

LET idx = ARR_CURR()
CLOSE WINDOW w_state
LET p_customer.state = p_state[idx].code
DISPLAY BY NAME p_customer.state
RETURN

END FUNCTION

GLOBALS “filename” statements cannot reference this file because it includes
executable statements (besides GLOBALS, DEFINE, and DATABASE).

A compile-time error would occur if you declared a 4GL variable of modular
scope called fifty, p_customer, p_state, or state_cnt in the same module as
this GLOBALS statement. If you want, however, you can declare local
variables whose names match those of variables from GLOBALS declarations.

Although you can include multiple GLOBALS ... END GLOBALS statements
in the same 4GL application, do not declare the same identifier as the name of
a variable within the DEFINE statements of more than one GLOBALS decla-
ration. Even if several declarations of a global variable defined in multiple
places are identical, declaring any global variable more than once can result
in compilation errors, or in unpredictable runtime behavior.

The GLOBALS “filename” statement must occur earlier in every file than any
function that makes reference to a global variable. Within its source code file,
the GLOBALS statement must be outside the MAIN program block (and also
outside any FUNCTION or REPORT definition).

Importing Global Variables
A globals file is a source module that contains a GLOBALS ... END GLOBALS
statement. This can also contain a DATABASE statement (as described in “The
Default Database at Compile Time” on page 4-73), but no executable state-
ments. The scope of reference of variables declared in that file can be
extended to all the program blocks of any 4GL program module that includes
a GLOBALS “filename” statement.

GLOBALS

4-148 HCL Informix 4GL Reference Guide

To import global variables into other modules

1. Create a globals file called filename.4gl that includes the following
items:
■ If necessary, a DATABASE statement

This is required only if you use the LIKE keyword in the DEFINE
declaration. If present, the DATABASE statement must precede
the GLOBALS statement. For the syntax of LIKE in declarations of
variables, see “Indirect Typing” on page 4-83.

■ The GLOBALS keyword, followed by as many DEFINE statements
as necessary to declare your global variables
You cannot include any DEFINE statements if the GLOBALS “file-
name” statement is used only to apply a DATABASE statement to
several modules.

■ The END GLOBALS keywords
2. In any other module of the program that includes statements refer-

encing the global variables, include a GLOBALS “filename” statement
before the first MAIN, FUNCTION, or REPORT program block.
To import global variables, you specify the filename of the globals file,
but do not include the END GLOBALS keywords.

These two steps correspond, respectively, to Case I and Case II in the syntax
diagram at the beginning of this section. For example, the globals file
d4_glob.4gl in the stores7 demonstration application includes the following
DATABASE and GLOBALS statements:

DATABASE stores7
GLOBALS

DEFINE
p_customer RECORD LIKE customer.*,
p_orders RECORD

order_num LIKE orders.order_num,
order_date LIKE orders.order_date,
po_num LIKE orders.po_num,
ship_instruct LIKE orders.ship_instruct

END RECORD,
p_items ARRAY[10] OF RECORD

item_num LIKE items.item_num,
stock_num LIKE items.stock_num,
manu_code LIKE items.manu_code,
description LIKE stock.description,
quantity LIKE items.quantity,
unit_price LIKE stock.unit_price,
total_price LIKE items.total_price

GLOBALS

INFORMIX-4GL Statements 4-149

END RECORD,
p_stock ARRAY[30] OF RECORD

stock_num LIKE stock.stock_num,
manu_code LIKE manufact.manu_code,
manu_name LIKE manufact.manu_name,
description LIKE stock.description,
unit_price LIKE stock.unit_price,
unit_descr LIKE stock.unit_descr

END RECORD,
p_state ARRAY[fifty] OF RECORD LIKE state.*,
fifty, state_cnt, stock_cnt INTEGER,
print_option CHAR(1)

END GLOBALS

The next program fragment include a GLOBALS statement that specifies
d4_glob.4gl as the globals file that declares global variables:

GLOBALS "d4_glob.4gl"
MAIN

DEFER INTERRUPT
...
CALL get_states()
CALL get_stocks()
...

END MAIN

Here the database specified by the DATABASE statement in the globals file is
both the default database at compile time and the current database at
runtime, because the GLOBALS "d4_glob.4gl" statement includes the
DATABASE statement before the MAIN program block. (For more infor-
mation, see “The Default Database at Compile Time” on page 4-73 and “The
Current Database at Runtime” on page 4-74.)

If a local variable has the same name as another variable that you declare in
the GLOBALS statement, only the local variable is visible within its scope of
reference. Similarly, a modular variable takes precedence in the module where
it is declared over any variable of the same name whose declaration is in the
filename referenced by a GLOBALS statement. (A compile-time error occurs if
you declare another module variable with the same identifier as another
variable that the GLOBALS…END GLOBALS statement declares in the same
module.) For more information about the scope and visibility of 4GL identi-
fiers, see “4GL Identifiers” on page 2-14.

4GL does not check for the name conflicts between global variables and
system function calls. To avoid errors at runtime, do not use system function
names such as read(), open(), or stat(), as identifiers of global variables.

GLOBALS

4-150 HCL Informix 4GL Reference Guide

References
DATABASE, DEFINE, FUNCTION, INCLUDE, MAIN, REPORT

GOTO

INFORMIX-4GL Statements 4-151

GOTO
The GOTO statement transfers program control to a labeled line within the
same program block.

Usage
The GOTO statement transfers control of execution within a program block.
Upon encountering this statement, 4GL jumps to the statement immediately
following the specified LABEL statement, and resumes execution there,
skipping any intervening statements that lexically follow the GOTO
statement. These rules apply to the use of the GOTO and LABEL statements:

■ To transfer control to a labeled line, the GOTO statement must use the
same label name as the LABEL statement above the desired line.

■ Both statements must be in the same MAIN, FUNCTION, or REPORT
block. GOTO cannot transfer control into or out of a program block.

Excessive use of GOTO statements in 4GL (or any programming language) can
make your code difficult to read or to maintain, or can result in a loop that
has no termination. Many situations in which you need to transfer control of
program execution can be solved by using one of the following alternatives
to the GOTO statement:

■ Boolean expressions and the CASE, FOR, IF, and WHILE statements
■ The CALL, OUTPUT TO REPORT, or WHENEVER statement
■ The EXIT keyword in blocks within the following statements:

CASE
CONSTRUCT
DISPLAY ARRAY

FOR
FOREACH
INPUT

INPUT ARRAY
MENU
WHILE

GOTO label

:

is a statement label that you declare in a LABEL statement. label

Element Description

GOTO

4-152 HCL Informix 4GL Reference Guide

■ The CONTINUE keyword in blocks within the following statements:

CONSTRUCT FOR
FOREACH

INPUT
INPUT ARRAY

MENU
WHILE

It is convenient to use the GOTO and LABEL statements in some situations; for
example, to exit from deeply nested code:

FOR i = 1 TO 10
FOR j = 1 TO 20

FOR k = 1 To 30
...
IF pa_array3d[i,j,k] IS NULL THEN

GOTO :done
ELSE

...
END IF
...

END FOR
END FOR

END FOR

LABEL done:
ERROR "Cannot complete processing."
ROLLBACK WORK

More important than avoiding the GOTO statement, however, is to adhere to
the design principle that any block of statements (such as a function or a loop)
have only one entry point and one exit point, as in this program fragment:

CALL do_things(value) --invokes a FUNCTION block
...
FUNCTION do_things(arglist)--unique entry point

...
IF (exit_condition) THEN

GOTO :outofhere --jump within same program block
END IF
...
LABEL outofhere:
CALL clean_up()
RETURN ret_code --unique exit point

END FUNCTION --marks end of FUNCTION construct

You can optionally place a colon before label name in the GOTO statement.
This conforms to the ANSI/ISO standard for embedded SQL syntax.

References
CASE, FOR, IF, FOR, FUNCTION, LABEL, MAIN, REPORT, WHENEVER, WHILE

IF

INFORMIX-4GL Statements 4-153

Boolean
expression

IF
The IF statement executes a group of statements conditionally. It can switch
program control conditionally between two blocks of statements.

Usage
If the Boolean expression is TRUE, then 4GL executes the block of statements
following the THEN keyword, until it reaches either the ELSE keyword or the
END IF keywords. 4GL then resumes execution after the END IF keywords.

If the Boolean expression is FALSE, 4GL executes the block of statements
between the ELSE keyword and the END IF statement. If ELSE is absent,
execution after the END IF keywords. The Boolean expression returns FALSE
if it contains a NULL value (except as the operand of the IS NULL operator).

You can nest IF statements up to a limit (around 20) that also depends on the
number of FOR and WHILE loops. If nested IF statements all test the same
value, consider using the CASE statement. In the next example, if the value of
direction matches the string "BACK", 4GL decrements p_index by one. If
direction matches the string "FORWARD", 4GL increments p_index by one.

IF direction = "BACK" THEN
LET p_index = p_index - 1
DISPLAY dp_stock[p_index].* TO s_stock.*
ELSE IF direction = "FORWARD" THEN

LET p_index = p_index + 1
DISPLAY dp_stock[p_index].* TO s_stock.*

END IF
END IF

IF
Boolean

Expression
p. 3-60

THEN statement END IF

ELSE statement

statement is an SQL statement or other 4GL statement.

Description Element

IF

4-154 HCL Informix 4GL Reference Guide

References
CASE, FOR, WHENEVER, WHILE

INITIALIZE

INFORMIX-4GL Statements 4-155

INITIALIZE
The INITIALIZE statement assigns initial NULL or default values to
variables.

 ,

INITIALIZE LIKE table .column

.*
TO NULL

 ,

variable

 .

record

. *
. first

 ,
THROUGH record . last

THRU

array [3]

Element Description
array is the name of a variable of the ARRAY data type.
column is the name of a column of table for which a DEFAULT value exists.
first is the name of a member variable to be initialized.
last is another member of record that was declared later than first.
record is the name of a variable of the RECORD data type.
table is the name or synonym of the table or view that contains column.
variable is the name of a variable of a simple data type.

Integer
Expression

p. 3-63

Variable
List

Variable
List

Table Qualifier
p. 3-89

INITIALIZE

4-156 HCL Informix 4GL Reference Guide

Usage
After you declare a variable with a DEFINE statement, the compiler allocates
memory to that variable. The contents of the variable, however, is whatever
occupies that memory location.

INITIALIZE can specify initial values for 4GL variables in either of two ways:

■ The LIKE keyword assigns the default values of a specified database
column, using default values from the syscolval table.

■ You can use the TO NULL keywords to assign NULL values, using the
representation of NULL for the declared data type of each variable.

The LIKE Clause
The LIKE clause specifies default values from one or more syscolval columns.
Just as in the DEFINE or VALIDATE statement, the LIKE clause requires a
DATABASE statement to specify a default database (as described in “The
Default Database at Compile Time” on page 4-73). The DATABASE statement
to specify a default database must precede the first program block in the
same module as the INITIALIZE statement.

When initializing variables with the default values of database columns, the
variables must match the columns in order, number, and data type. You must
prefix the name of each column with the name of its table. For example, the
following statement assigns to three variables the default values from three
database columns in table tab1:

INITIALIZE var1, var2, var3
LIKE tab1.col1, tab1.col2, tab1.col3

The table.* notation specifies every column in the specified table. If tab1 has
only the three columns (col1, col2, and col3), the following statement is
equivalent to the previous one:

INITIALIZE v_cust.* LIKE customer.*

In an ANSI-compliant database, you must qualify each table name with that
of its owner (owner. table), if the application will be run by a user who does
not own the table. For example, if you own tab1, and Lydia owns tab2, and
Boris owns tab3, the following statement is valid:

INITIALIZE var1, var2, var3
LIKE tab1.var1, lydia.tab2.var2, boris.tab3.var3 ♦

ANSI

INITIALIZE

INFORMIX-4GL Statements 4-157

You can include the owner name as a prefix in a database that is not ANSI-
compliant, but if the owner name that you specify is incorrect, you receive an
error. For additional information, see the Informix Guide to SQL: Syntax. The
INITIALIZE statement looks up the default values for database columns in the
DEFAULT column of the syscolval table in the default database.

Any changes to syscolval after compilation have no effect on the 4GL
program, unless you recompile the program. To enter default values in this
table, use the upscol utility, as described in Appendix B. If a column has no
default value in the syscolval table, 4GL assigns NULL values to any variables
initialized from that column. If the database is not ANSI-compliant, upscol
creates a single syscolval table.

In an ANSI-compliant database, each user can create an owner.syscolval
table, which sets the default values only for the tables owned by that user. If
you omit the owner of the table and you own the table, your syscolval table
becomes the source for the defaults when you compile the program. If the
owner.syscolval table does not exist, the LIKE clause of the INITIALIZE
statement sets the values of the specified variables to NULL. ♦

You cannot use upscol to specify attributes or validation criteria for TEXT or
BYTE columns. Therefore, you cannot use the LIKE clause of the INITIALIZE
statement to assign non-NULL values to variables of these large data types.

Use the TO NULL clause to assign a NULL value to a variable. The following
statement initializes all variables in the v_orders record to NULL:

INITIALIZE v_orders.* TO NULL

You might wish to initialize variables to NULL for the following reasons:

■ To assign an initial value to a variable that has no assigned value.
■ To discard some existing value of a variable, which might be conve-

nient if you want to reuse the same variable later in a program

To optimize performance, you might wish to limit the use of this statement.
For example, the next program fragment uses INITIALIZE once to create a
NULL record, and then uses the LET statement to initialize another record:

DATABASE stores2
MAIN
DEFINE p_customer, n_customer RECORD LIKE customer.*

INITIALIZE n_customer.* TO NULL
LET p_customer.* = n_customer.*

ANSI

INITIALIZE

4-158 HCL Informix 4GL Reference Guide

References
DATABASE, DEFINE, GLOBALS, LET, VALIDATE

INPUT

INFORMIX-4GL Statements 4-159

INPUT
The INPUT statement supports data entry into fields of a screen form.

Binding
INPUT Clause p. 4-161

ATTRIBUTE

Clause HELP number
INPUT Input END INPUT p. 3-96 Control Block

p. 4-167

Element Description

number is a literal integer to specify a help message number.

Usage
The INPUT statement assigns to one or more variables the values that users
enter into the fields of a screen form. INPUT can include statement blocks
to be executed under conditions that you specify, such as screen cursor
movement, or other user actions. The following steps describe how to use this
statement:

1. Specify fields in a form specification file, and compile the form.
2. Declare variables with the DEFINE statement.
3. Open and display the screen form in either of the following ways:

■ The OPEN FORM and DISPLAY FORM statements
■ An OPEN WINDOW statement that uses a WITH FORM clause

4. Use the INPUT statement to assign values to the variables from data
that the user enters into fields of the screen form.

INPUT

4-160 HCL Informix 4GL Reference Guide

When the INPUT statement is encountered, 4GL takes the following actions:

1. Displays any default values in the screen fields, unless you specify
the WITHOUT DEFAULTS keywords (as described in “The WITHOUT
DEFAULTS Keywords” on page 4-163)

2. Moves the cursor to the first field explicitly or implicitly referenced
in the binding clause, and waits for the user to enter data in the field

3. Assigns the user-entered field value to a corresponding program
variable when the user moves the cursor from the field or presses the
Accept key

The INPUT statement activates the current form (the form that was most
recently displayed, or the form in the current 4GL window). When the INPUT
statement completes execution, the form is deactivated. After the user presses
the Accept key, the INSERT statement of SQL can insert values from the
program variables into the appropriate database tables.

The following topics are described in this section:

■ “The Binding Clause” on page 4-161
■ “The ATTRIBUTE Clause” on page 4-166
■ “The HELP Clause” on page 4-166
■ “The INPUT Control Block” on page 4-167
■ “The CONTINUE INPUT Statement” on page 4-177
■ “The EXIT INPUT Statement” on page 4-178
■ “The END INPUT Keywords” on page 4-178
■ “Using Built-In Functions and Operators” on page 4-178
■ “Keyboard Interaction” on page 4-180
■ “Cursor Movement in Simple Fields” on page 4-180
■ “Multiple-Segment Fields” on page 4-182
■ “Using Large Data Types” on page 4-185
■ “Completing the INPUT Statement” on page 185

INPUT

INFORMIX-4GL Statements 4-161

field

The Binding Clause
The binding clause temporarily associates form fields with 4GL variables, so
that the 4GL program can manipulate values that the user enters in the form.

Binding
Clause , ,

 variable FROM Field Clause
(subset)

 , WITHOUT DEFAULTS p. 3-86

BY NAME variable

WITHOUT DEFAULTS

Element Description
variable is the name of a variable to store values entered in the field.

Here variable supports the syntax of a receiving variable in the LET statemen
but you can also use record.* or the THRU or THROUGH notation to specify a
or some of the members of a program record.

The field names are declared in the ATTRIBUTES section of the form specif
cation. These can be simple fields, members of screen records, WORDWRA
fields, and FORMONLY fields, but cannot include records from screen arrays.

INPUT statements supports two types of binding clauses:

■ In the special case where all of the variables have names that are
identical (apart from qualifiers) to the names of fields, you can
specify INPUT BY NAME variable list to bind the specified variables to
their namesake fields implicitly. (See also “The BY NAME Clause” on
page 4-164.)

■ In the general case, you can specify INPUT variable list FROM field list
to bind variables explicitly to fields.

INPUT

4-162 HCL Informix 4GL Reference Guide

The Correspondence of Variables and Fields

The total number of variables in the variable list must equal the total number
of fields that the FROM clause specifies (or that the BY NAME clause implies).

The order in which the screen cursor moves from field to field in the form is
determined by the order of the field names in the FROM clause, or else by the
order of variable names in the BY NAME clause. (See also “The NEXT FIELD
Keywords” on page 4-176, and the WRAP and FIELD ORDER options of the
OPTIONS statement described in “Cursor Movement in Interactive State-
ments” on page 4-296.)

Each screen field and its corresponding variable must have the same (or a
compatible) data type. When the user enters data in a field, 4GL checks the
value against the data type of the variable, not that of the field. You must first
declare all the variables before using the INPUT statement.

The binding clause can specify variables of any 4GL data type. If a variable is
declared LIKE a SERIAL column, however, 4GL does not allow the screen
cursor to stop in the field. (Values in SERIAL columns are maintained by the
database server, not by 4GL.)

Displaying Default Values

If you omit the WITHOUT DEFAULTS keywords, 4GL displays default values
from the program array when the form is activated. 4GL determines the
default values in the following way, in descending order of precedence:

1. The DEFAULT attribute (from the form specification file)
2. The DEFAULT column value (from the syscolval table)

INPUT

INFORMIX-4GL Statements 4-163

4GL assigns NULL values to all variables for which no default is set. But if you
include the WITHOUT NULL INPUT option in the DATABASE section of the
form specification file, 4GL assigns the following default values.

Field Type Default Field Type Default

Character Blank (= ASCII 32) INTERVAL 0

Number 0 MONEY $0.00

 DATE

DATETIME

12/31/1899

1899-12-31 23:59:59.99999

The WITHOUT DEFAULTS Keywords

If you specify the WITHOUT DEFAULTS option, however, the screen displays
the current values of the variables when the INPUT statement begins. This
option is available with both the BY NAME and the FROM binding clauses.

The following outline describes how to display initialized values, rather than
defaults:

1. Initialize the variables with whatever values you want to display.
2. Call the built-in SET_COUNT() function so that 4GL can determine

how many rows of data are currently stored in the program array.
3. Use INPUT…WITHOUT DEFAULTS to display the current values of

the variables and to allow the user to change those values.

The following INPUT statement causes 4GL to display the character string
"Send via air express" in the ship_instruct field:

LET pr_orders.ship_instruct = "Send via air express"
INPUT BY NAME pr_orders.order_date THRU pr_orders.paid_date

WITHOUT DEFAULTS
END INPUT

INPUT

4-164 HCL Informix 4GL Reference Guide

The WITHOUT DEFAULTS option is useful when you want the user to be able
to make changes to existing rows of the database. You can display the
existing database values on the screen before the user begins editing the data.
The FIELD_TOUCHED() operator (described briefly in “Using Built-In
Functions and Operators” on page 4-178, and in detail on
“FIELD_TOUCHED()” on page 5-84) can help you to determine which fields
have been altered and which ones therefore require updates to the database.

If you omit the WITHOUT DEFAULTS clause, 4GL determines default values
by looking in the following sources of information, in the order indicated:

1. The DEFAULT attribute from the form specification
2. The DEFAULT column as stored in the syscolval table

4GL assigns NULL values for all variables for which no default is set.

The BY NAME Clause

The BY NAME clause implicitly binds the fields to the 4GL variables that have
the same identifiers as field names. You must first declare variables with the
same names as the fields from which they accept input. 4GL ignores any
record name prefix when making the match.

The unqualified names of the variables and of the fields must be unique and
unambiguous within their respective domains. If they are not, 4GL generates
a runtime error, and sets the status variable to a negative value. (To avoid this
error, use the FROM clause instead of the BY NAME clause when the screen
fields and the variables have different names.)

The user can enter values only into fields that are implied in the BY NAME
clause. For example, the INPUT statement in the following example specifies
variables for all the screen fields except customer_num:

DEFINE pr_customer RECORD LIKE customer.*
...
INPUT BY NAME pr_customer.fname, pr_customer.lname,

pr_customer.company, pr_customer.address1,
pr_customer.address2, pr_customer.city, pr_customer.state,
pr_customer.zipcode, pr_customer.phone

INPUT

INFORMIX-4GL Statements 4-165

Because pr_customer.customer_num does not appear in the list of variables,
the user cannot enter a value for it. A functionally equivalent statement is:

DEFINE pr_cust RECORD LIKE customer.*
...
INPUT BY NAME pr_cust.fname THRU pr_cust.phone

The FROM Clause

When variables and fields do not have the same names, you must use the
FROM clause to bind the screen fields to program variables of a program
array of records. The user can position the cursor only in fields that are listed
explicitly or implicitly in the FROM clause. These fields must correspond both
in order and in number to the list of variables, and must be of the same or
compatible data types as the corresponding variables:

DEFINE pr_cust RECORD LIKE customer.*
...
INPUT pr_cust.fname, pr_cust.lname FROM fname, lname

The THRU (or THROUGH) keyword implicitly includes the variables between
two specified member variables of a program record. For example, the next
statement maps fields to all member variables from fname to phone:

INPUT pr_cust.fname THRU pr_cust.phone
FROM fname, lname, company, address1,

address2, city, state, zipcode, phone

If the form specification file declared a screen record as fname THRU phone,
you can abbreviate this statement even further:

INPUT pr_cust.fname THRU pr_cust.phone FROM sc_cust.*

You cannot use the THRU or THROUGH keywords in the FROM clause.

INPUT

4-166 HCL Informix 4GL Reference Guide

The ATTRIBUTE Clause
For the syntax of the ATTRIBUTE clause, see “The ATTRIBUTE Clause” on
page 4-41. This section describes the use of the ATTRIBUTE clause within an
INPUT statement.

If you specify form attributes with the INPUT statement, the new attributes
apply only during the current activation of the form. When actions of the user
deactivate the form, the form reverts to its previous attributes. The following
INPUT statement assigns the RED and REVERSE attributes:

INPUT p_addr.* FROM sc_addr.* ATTRIBUTE (RED, REVERSE)

This statement assigns the WHITE attribute:

INPUT BY NAME p_items ATTRIBUTE (WHITE)

The ATTRIBUTE clause overrides display attributes specified in a DISPLAY
FORM, OPTIONS, or OPEN WINDOW statement, and suppresses any default
attributes specified in the syscolatt table of the upscol utility.

The HELP Clause
The HELP clause includes a literal integer to specify the number of the help
message to display. (For more information, see “Literal Integers” on
page 3-65.) The help message is displayed in the Help window, as described
in “The Help Window” on page 2-30. This window appears if the user
presses the Help key while the screen cursor is in any field that you listed in
the FROM clause, or that you implied in the BY NAME clause.

The default Help key is CONTROL-W, but you can specify a different Help key
by using the OPTIONS statement (as described in “The OPTIONS
ATTRIBUTE Clause” on page 4-297).

This example specifies help message 311 if the user requests help from any
field in the s_items screen array:

INPUT p_items.* FROM s_items.* HELP 311

The next example tells 4GL to display message 12 if the user presses the Help
key when the screen cursor is in either of two fields:

INPUT cust.fname, cust.lname FROM fname, lname HELP 12

INPUT

INFORMIX-4GL Statements 4-167

You create help messages in an ASCII file whose filename you specify in the
HELP FILE clause of the OPTIONS statement. Use the mkmessage utility, as
described in Appendix B, to create a runtime version of the help file. A
runtime error occurs in the following situations:

■ 4GL cannot open the help file.
■ You specify a number that is not in the help file.
■ You specify a number outside the range from -32,767 to 32,767.

The help message corresponding to your HELP clause specification applies to
the entire INPUT statement. To override this with field-level help messages,
specify the Help key in an ON KEY block that invokes the INFIELD() operator
and SHOWHELP() function. (For more information, see “The ON KEY Block”
on page 4-171.)

If you provide messages to assist the user through an ON KEY clause, rather
than by the HELP clause, the messages must be displayed in a 4GL window
within the 4GL screen, rather than in the separate Help window.

The INPUT Control Block
Each INPUT control block includes a statement block of at least one statement,
and an activation clause that specifies when to execute the statement block.
An input control block can specify any of the following items:

■ The statements to execute before or after visiting specific screen
fields

■ The statements to execute when the user presses a key sequence
■ The statements to execute before or after the INPUT statement
■ The next field to which to move the screen cursor
■ When to terminate execution of the INPUT statement

The activation clause can specify any one of the following items:

■ Pre- and post-INPUT actions (the BEFORE or AFTER INPUT clause)
■ Keyboard sequence conditions (the ON KEY clause)
■ Cursor movement conditions (the BEFORE or AFTER FIELD clause)

INPUT

4-168 HCL Informix 4GL Reference Guide

The statement block can include any SQL or 4GL statements, as well as the
following items:

■ Cursor movement instructions (the NEXT FIELD clause)
■ Termination of the INPUT statement (the EXIT INPUT statement)
■ Returning control to the user without terminating the INPUT

statement (the CONTINUE INPUT statement)

The activation clause and the statement block correspond respectively to the
left-hand and right-hand elements in the following syntax diagram.

INPUT Input
Control Blocks ,

BEFORE FIELD Field Clause statement
p. 3-86

AFTER INPUT NEXT FIELD field
 , NEXT

ON KEY (key) EXIT PREVIOUS

CONTINUE INPUT

 Element Description
field is the name of a field (as described in “Field Clause” on page 3-86) in

the current form.
key is one or more keywords to specify physical or logical keys. For details,

see “The ON KEY Block” on page 4-171.
statement is an SQL statement or other 4GL statement.

After BEFORE FIELD, AFTER FIELD, or NEXT FIELD, the field clause specifies
field that the binding clause referenced implicitly (in the BY NAME clause, o
as record.* or array [line].*) or explicitly. You can qualify a field name by a tab
reference, or the name of a screen record or a screen array or array [line].

If you include one or more control blocks, the END INPUT keywords must
terminate the INPUT statement. If no control block is included, 4GL waits
while the user enters values into the fields. When the user accepts the values
in the form, the INPUT statement terminates.

INPUT

INFORMIX-4GL Statements 4-169

If you include a control block, 4GL executes or ignores the statements in that
statement block, depending on the following items:

■ Whether you specify the BEFORE INPUT or AFTER INPUT keywords
■ The fields to which and from which the user moves the screen cursor
■ The keys that the user presses

4GL deactivates the form while executing statements in a control block. After
executing the statements, 4GL reactivates the form, allowing the user to
continue entering or modifying the data values in fields.

The Precedence of Input Control Blocks

This is the order in which 4GL executes the statements from control blocks:

1. BEFORE INPUT

2. BEFORE FIELD

3. ON KEY
4. AFTER FIELD

5. AFTER INPUT

You can list these blocks in any order. If you develop some consistent
ordering, however, your code will be easier to read.

Within these control blocks, you can include the NEXT FIELD keywords and
the CONTINUE INPUT and EXIT INPUT statements, as well as most 4GL and
SQL statements. See “Nested and Recursive Statements” on page 2-31 for
information about including CONSTRUCT, PROMPT, INPUT, and INPUT
ARRAY statements within an input control block.

The activation clauses that you can specify in control blocks are described in
their order of execution by 4GL. Descriptions of NEXT FIELD and EXIT INPUT
follow the discussions of these activation clauses. No subsequent INPUT
control block statements are executed if EXIT INPUT executes.

INPUT

4-170 HCL Informix 4GL Reference Guide

The BEFORE INPUT Block

You can use the BEFORE INPUT block to display messages on how to use the
INPUT statement. For example, the following INPUT statement fragment
displays a message informing the user how to enter data into the table:

INPUT BY NAME p_customer.*
BEFORE INPUT

DISPLAY "Press ESC to enter data" AT 1,1

4GL executes the BEFORE INPUT block after displaying the default values in
the fields and before letting the user enter any values. (If you included the
WITHOUT DEFAULTS clause, 4GL displays the current values of the variables,
not the default values, before executing the BEFORE INPUT block.)

An INPUT statement can include no more than one BEFORE INPUT block. You
cannot include the FIELD_TOUCHED() operator in the BEFORE INPUT block.

The BEFORE FIELD Block

4GL executes the statements in the BEFORE FIELD block associated with a field
whenever the cursor moves into the field, but before the user enters a value.
You can specify no more than one BEFORE FIELD block for each field.

The following program fragment defines two BEFORE FIELD blocks. When
the cursor enters the fname or lname field, 4GL displays a message:

BEFORE FIELD fname
MESSAGE "Enter first name of customer"

BEFORE FIELD lname
MESSAGE "Enter last name of customer"

You can use a NEXT FIELD clause within a BEFORE FIELD block to restrict
access to a field. You can also use a DISPLAY statement within a BEFORE
FIELD block to display a default value in a field.

INPUT

INFORMIX-4GL Statements 4-171

The following statement fragment causes 4GL to prompt the user for input
when the cursor is in the stock_num, manu_code, or quantity field:

INPUT p_items.* FROM s_items.*
BEFORE FIELD stock_num

MESSAGE "Enter a stock number."
BEFORE FIELD manu_code

MESSAGE "Enter the code for a manufacturer."
BEFORE FIELD quantity

MESSAGE "Enter a quantity."
...

END INPUT

The ON KEY Block

Statements in the ON KEY block are executed if the user presses some key that
you specify by the keywords in the following table (in lowercase or
uppercase letters).

ACCEPT HELP NEXT or NEXTPAGE
DELETE INSERT PREVIOUS or PREVPAGE
DOWN INTERRUPT RETURN
ESC or ESCAPE LEFT TAB
F1 through F64
CONTROL-char (excep

RIGHT
t A, D, H, I, J, K, L, M, R,

UP
or X)

For example, the following ON KEY block displays a help message. The
BEFORE INPUT clause informs the user how to access help:

BEFORE INPUT
DISPLAY "Press CONTROL-W or CTRL-F for Help"

ON KEY (CONTROL-W, CONTROL-F)
CALL customer_help()

The next statement defines an ON KEY block for the CONTROL-B key.
Whenever the user presses CONTROL-B, 4GL determines if the screen cursor is
in the stock_num or manu_code field. If it is in either one of these fields, 4GL
calls the stock_help() function and sets quantity as the next field.

INPUT p_items.* FROM s_items.*
ON KEY (CONTROL-B)

IF INFIELD(stock_num) OR INFIELD(manu_code) THEN
CALL stock_help()
NEXT FIELD quantity

END IF

INPUT

4-172 HCL Informix 4GL Reference Guide

Some keys require special consideration if specified in an ON KEY block.

Key Special Considerations

ESC or ESCAPE You must specify another key as the Accept key in the OPTIONS
statement, because this is the default Accept key.

Interrupt

Quit

CTRL-char

A, D, H, K,
L, R, X

You must execute a DEFER INTERRUPT statement. If the user
presses the Interrupt key under these conditions, 4GL executes
the statements in the ON KEY block and sets int_flag to non-zero,
but does not terminate the INPUT statement.
4GL also executes the statements in this ON KEY block if the
DEFER QUIT statement has executed and the user presses the
Quit key. In this case, 4GL sets quit_flag to non-zero.

4GL reserves these control keys for field editing; see “Cursor
Movement in Simple Fields” on page 4-180.

I, J, M The standard meaning of these keys (TAB, LINEFEED, and
RETURN, respectively) is not available to the user. Instead, the key
is trapped by 4GL and activates the commands in the ON KEY
block. For example, if CONTROL-M appears in an ON KEY block,
the user cannot press RETURN to advance the cursor to the next
field. If you specify one of these keys in an ON KEY block, be
careful to restrict the scope of the statement.

You might not be able to use other keys that have special meaning to your
version of the operating system. For example, CONTROL-C, CONTROL-Q, and
CONTROL-S specify the Interrupt, XON, and XOFF signals on many systems.

If you use the OPTIONS statement to redefine the Accept or Help key, the keys
assigned to these sequences cannot be used in an ON KEY clause. For
example, if you redefine the Accept key by using the following statement,
you should not define an ON KEY block for the key sequence CONTROL-B:

OPTIONS ACCEPT KEY (CONTROL-B)

When the user presses CONTROL-B, 4GL will always perform the Accept key
function, regardless of the presence of an ON KEY (CONTROL-B) block.

INPUT

INFORMIX-4GL Statements 4-173

If the user activates an ON KEY block while entering data in a field, 4GL takes
the following actions:

1. Suspends input to the current field
2. Preserves the input buffer that contains the characters the user has

typed
3. Executes the statements in the current ON KEY block
4. Restores the input buffer for the current screen field
5. Resumes input in the same field, with the screen cursor at the end of

the buffered list of characters

You can change this default behavior by performing the following tasks in
the ON KEY block:

■ Resuming input in another field by using the NEXT FIELD statement
■ Changing the input buffer value for the current field by assigning a

new value to the corresponding variable, and then displaying this
value

This block can support accelerator keys for common functions, such as saving
and deleting. You can use the INFIELD() operator in the ON KEY clause to
support field-specific actions. For example, you can implement field-level
help by using the INFIELD() operator and the built-in SHOWHELP() function.

INPUT

4-174 HCL Informix 4GL Reference Guide

The AFTER FIELD Block

4GL executes the statements in the AFTER FIELD block associated with a field
every time the cursor leaves the specified field. Any of the following keys can
cause the cursor to leave the field:

■ The HOME or END key
■ Any arrow key
■ The RETURN or TAB key
■ The Accept key
■ The Interrupt or Quit key (if a supporting DEFER statement was

included)

You can specify only one AFTER FIELD block for each field.

This AFTER FIELD block checks if the stock_num and manu_code fields
contain values. If they contain values, 4GL calls the get_item() function:

AFTER FIELD stock_num, manu_code
LET pa_curr = ARR_CURR()
IF p_items[pa_curr].stock_num IS NOT NULL

AND p_items[pa_curr].manu_code IS NOT NULL THEN
CALL get_item()
IF p_items[pa_curr].quantity IS NOT NULL THEN

CALL get_total()
END IF

END IF

The following INPUT statement performs a NULL test to determine whether
the user entered a value in the address1 field, and returns to that field if no
value was entered:

INPUT p_addr.* FROM sc_addr.*
AFTER FIELD address1

IF p_addr.address1 IS NULL THEN
NEXT FIELD address1

END IF
END INPUT

The user terminates the INPUT statement by pressing the Accept key when
the cursor is in any field, or by pressing the TAB or RETURN key after the last
field. You can use the AFTER FIELD block on the last field to override this
default termination. (Including the INPUT WRAP in the OPTIONS statement
produces the same effect.)

INPUT

INFORMIX-4GL Statements 4-175

When the NEXT FIELD keywords appear in an AFTER FIELD block, the cursor
moves to in the specified field. If an AFTER FIELD block appears for each field,
and NEXT FIELD keywords are in each block, the user cannot leave the form.

The AFTER INPUT Block

4GL executes the AFTER INPUT block when the user presses the Accept key.
You can use the AFTER INPUT block to validate, save, or alter the values the
user entered by using the built-in GET_FLDBUF() or FIELD_TOUCHED()
operator within the AFTER INPUT clause. (Use of these operators in an INPUT
statement is described in“Using Built-In Functions and Operators” on
page 4-178.)

The next example uses the AFTER INPUT block to require that a first name be
specified for any customers with the last name Smith:

INPUT BY NAME p_customer.fname THRU p_customer.phone
AFTER INPUT

IF p_customer.lname="Smith" THEN
IF NOT FIELD_TOUCHED(p_customer.fname) THEN

CALL mess("You must enter a first name.")
NEXT FIELD fname

END IF
END IF

END INPUT

4GL executes the AFTER INPUT block only when the INPUT statement is
terminated by the user pressing one of the following keys:

■ The Accept key
■ The Interrupt key (if the DEFER INTERRUPT statement has executed)
■ The Quit key (if the DEFER QUIT statement has executed)

The AFTER INPUT clause is not executed in the following situations:

■ The user presses the Interrupt or Quit key when the DEFER
INTERRUPT or DEFER QUIT statement, respectively, has not
executed. In either case, the program terminates immediately.

■ The EXIT INPUT statement terminates the INPUT statement.

You can place the NEXT FIELD clause in this block to return the cursor to the
form. If you place a NEXT FIELD clause in the AFTER INPUT block, use it in a
conditional statement. Otherwise, the user cannot exit from the form.

INPUT

4-176 HCL Informix 4GL Reference Guide

No more than one AFTER INPUT block can appear in an INPUT statement.

The NEXT FIELD Keywords

The NEXT FIELD keywords specify the next field to which 4GL moves the
screen cursor. If you do not specify a NEXT FIELD clause, by default the cursor
moves among the screen fields according to the explicit or implicit order of
fields in the INPUT binding clause. The user can control movement from field
to field by using the arrow keys, TAB, and RETURN. By using the NEXT FIELD
keywords, however, you can explicitly position the screen cursor.

You must specify one of the following options with the NEXT FIELD
keywords.

Clause Effect

NEXT FIELD NEXT Advances the cursor to the next field

NEXT FIELD PREVIOUS Returns the cursor to the previous field

NEXT FIELD field-name Moves the cursor to field-name

For example, this NEXT FIELD clause places the cursor in the previous field:

NEXT FIELD PREVIOUS

The following INPUT statement includes a NEXT FIELD clause in an ON KEY
block. If the user presses CONTROL-B when the cursor is in the stock_num or
manu_code field, 4GL moves the cursor to quantity as the next field:

INPUT p_items.* FROM s_items.*
ON KEY (CONTROL-B)

IF INFIELD(stock_num) OR INFIELD(manu_code) THEN
CALL stock_help()
NEXT FIELD quantity

END IF
...

END INPUT

4GL immediately positions the cursor in the form when it encounters the
NEXT FIELD clause; it does not execute any statements that follow the NEXT
FIELD clause in the control block.

INPUT

INFORMIX-4GL Statements 4-177

For example, 4GL cannot invoke function qty_help() in the next example:

ON KEY (CONTROL-B, F4)
IF INFIELD(stock_num) OR INFIELD(manufact) THEN

CALL stock_help()
NEXT FIELD quantity
CALL qty_help() -- function is never called

END IF

You can use the NEXT FIELD clause in any INPUT input control block. The
NEXT FIELD clause typically appears in a conditional statement. In an AFTER
INPUT clause, the NEXT FIELD statement must appear in a conditional
statement; otherwise, the user cannot exit from the form. To restrict access to
a field, use the NEXT FIELD statement in a BEFORE FIELD clause.

The following example demonstrates using the NEXT FIELD clause in an ON
KEY control block. 4GL executes the ON KEY block if the user presses
CONTROL-W. If the cursor is in the city field, 4GL displays San Francisco in
the city field and CA in the state field, and then moves the cursor to the
zipcode field.

ON KEY (CONTROL-W)
IF INFIELD(city) THEN

LET p_addr.city = "San Francisco"
DISPLAY p_addr.city TO city
LET p_addr.state = "CA"
DISPLAY p_addr.state TO state
NEXT FIELD zipcode

END IF

To wrap from the last field of a form to the first field of a form, use the NEXT
FIELD statement after an AFTER FIELD clause for the last field of the form.
(The INPUT WRAP option of the OPTIONS statement has the same effect.)

The CONTINUE INPUT Statement
The CONTINUE INPUT statement causes 4GL to skip all subsequent state-
ments in the current control block. The screen cursor returns to the most
recently occupied field in the current form.

The CONTINUE INPUT statement is useful when program control is nested
within multiple conditional statements, and you want to return control to the
user. It is also useful in an AFTER INPUT control block that examines the field
buffers; depending on their contents, you can return the cursor to the form.

INPUT

4-178 HCL Informix 4GL Reference Guide

The EXIT INPUT Statement
The EXIT INPUT statement terminates input. 4GL performs the following
tasks:

■ Skips all statements between the EXIT INPUT and END INPUT
keywords

■ Deactivates the form
■ Resumes execution at the first statement after the END INPUT

keywords

4GL ignores any statements in an AFTER INPUT control block if the EXIT
INPUT statement is executed.

The END INPUT Keywords
The END INPUT keywords indicate the end of the INPUT statement. These
keywords should follow the last control block. If you do not include any
control blocks, the END INPUT keywords are not required.

Using Built-In Functions and Operators
The INPUT statement supports built-in functions and operators of 4GL. (For
more about these built-in 4GL functions and operators, see Chapter 5.) The
following features allow you to access field buffers and keystroke buffers.

Feature Description

FIELD_TOUCHED() Returns TRUE if the user has “touched” (made a change to)
a screen field whose name is passed as an operand. Moving
the screen cursor through a field (with the RETURN, TAB, or
arrow keys) does not mark a field as touched. This operator
also ignores the effect of statements that appear in the
BEFORE INPUT control block. For example, you can assign
values to fields in the BEFORE INPUT control block without
having the fields marked as touched.

GET_FLDBUF() Returns the character values of the contents of one or more
fields in the currently active form

(1 of 2)

INPUT

INFORMIX-4GL Statements 4-179

Feature Description

FGL_GETKEY() Waits for a key to be pressed, and then returns an INTEGER
corresponding to the raw value of the key that was pressed.

FGL_LASTKEY() Returns an INTEGER corresponding to the most recent
keystroke executed by the user while in the screen form.

INFIELD() Returns TRUE if the name of the field that is specified as its
operand is the name of the current field.

(2 of 2)

Each field has only one field buffer, and a buffer cannot be used by two
different statements simultaneously. If you plan to display the same form
with data entry fields more than once, you should open a new 4GL window
and open and display a second copy of the form. 4GL allocates a separate set
of buffers to each form, so this avoids overwriting field buffers when more
than one INPUT, INPUT ARRAY, or CONSTRUCT statement accepts input.

The next example of an INPUT statement uses the INFIELD() operator
to determine if the cursor is in the stock_num or manu_code field.

If the cursor is in one of these fields, 4GL calls the stock_help() function and
sets quantity as the next field:

INPUT p_items.* FROM s_items.*
ON KEY (CONTROL-B)

IF INFIELD(stock_num) OR INFIELD(manu_code) THEN
CALL stock_help()
NEXT FIELD quantity

END IF

The INFIELD(field) expression returns TRUE if the current field is field and
FALSE otherwise. Use this function for field-dependent actions when the user
presses a key in the ON KEY block. In the following INPUT statement, the
BEFORE FIELD clause for the city field displays a message advising the user
to press a control key to enter the value San Francisco into the field:

INPUT p_customer.fname THRU p_customer.phone
FROM sc_cust.* ATTRIBUTE(REVERSE)
BEFORE FIELD city

MESSAGE "Press CONTROL-F to enter San Francisco"
ON KEY (CONTROL-F)

IF INFIELD(city) THEN
LET p_customer.city = "San Francisco"

INPUT

4-180 HCL Informix 4GL Reference Guide

DISPLAY p_customer.city TO city
LET p_customer.state = "CA"
DISPLAY p_customer.state TO state
NEXT FIELD zipcode

END IF
END INPUT

If the user presses CONTROL-F while the cursor is in the city field, the ON KEY
clause in this example changes the screen display in three ways:

1. Displays the value San Francisco in the city field
2. Displays CA in the state field
3. Moves the cursor to the first character position in the zipcode field

Keyboard Interaction
The user of the 4GL application can position the visual cursor during the
INPUT statement by keyboard actions.

Some keys are sensitive to what kind of field the cursor occupies:

■ A simple field
■ A segment of a multiple-segment field

Subsequent sections describe cursor movement in both environments.

Cursor Movement in Simple Fields
In a simple field, when the user presses TAB or RETURN, the cursor moves from
one screen field to the next in an order based on the binding clause:

■ For INPUT BY NAME, 4GL uses the order implied by the sequence of
program variables specified in the binding clause.

■ Otherwise, 4GL uses the order of the screen fields specified in the
FROM clause of the INPUT statement.

INPUT

INFORMIX-4GL Statements 4-181

The user can press the arrow keys to position the screen cursor.

Arrow Effect

↓ By default, DOWN ARROW moves the cursor to the next field. If you
specify FIELD ORDER UNCONSTRAINED in the OPTIONS statement,
this key moves the cursor to the field below the current field. If no field is
below the current field and a field exists to the left of the current field, 4GL
moves the cursor to the field to the left.

↑ By default, UP ARROW moves the cursor to the previous field. If you
specify the FIELD ORDER UNCONSTRAINED option of the OPTIONS
statement, this key moves the cursor to the field above the current field. If
no field is above the current field and a field exists to the left of the current
field, 4GL moves the cursor to the field to the left.

→ RIGHT ARROW moves the cursor one space to the right inside a screen
field, without erasing the current character. At the end of the field, 4GL
moves the cursor to the first character position of the next screen field.
RIGHT ARROW is equivalent to the CONTROL-L editing key.

← LEFT ARROW moves the cursor one space to the left inside a screen field
without erasing the current character. At the beginning of the field, 4GL
moves the cursor to the first character position of the previous field. LEFT
ARROW is equivalent to the CONTROL-H editing key.

Unless a field has the NOENTRY attribute, the user can press the following
keys during an INPUT statement to edit values in a screen field.

Editing Key Effect

CONTROL-A Toggles between insert and type-over mode

CONTROL-D Deletes characters from the current cursor position to the end of
the field

CONTROL-H Moves the cursor nondestructively one space to the left; equivalent
to pressing left arrow

(1 of 2)

INPUT

4-182 HCL Informix 4GL Reference Guide

Editing Key Effect

CONTROL-L Moves the cursor nondestructively one space to the right;
equivalent to pressing right arrow

CONTROL-R Redisplays the screen

CONTROL-X Deletes the character beneath the cursor

(2 of 2)

Multiple-Segment Fields
For an explanation of how you can create a multiple-segment field to display
long character strings, see “Multiple-Segment Fields” on page 6-31. These
fields superficially resemble a screen array, but the successive lines are
segments of the same field, rather than screen records.

If the data string is too long to fit in the first segment, 4GL divides it at a blank
character (if possible), padding the rest of the segment on the right with blank
(ASCII 32) characters, and continues the display in the next field segment. If
necessary, this process is repeated until all of the segments are filled, or until
the last text character is displayed (whichever happens first).

If the user inserts or deletes characters while editing a multiple-segment field,
the WORDWRAP attribute can move down subsequent characters as needed.
Blank characters that the WORDWRAP editor uses as padding are called editor
blanks. The COMPRESS keyword in the form specification can prevent storage
of editor blanks in the database. Characters that users enter or that 4GL
retrieves from the database are called intentional characters.

If the cursor enters a multiple-segment field, additional features of a multiple
line editor become available to the user. The user must press CONTROL-M for
NEWLINE, because RETURN moves the cursor to the next field.

INPUT

INFORMIX-4GL Statements 4-183

WORDWRAP Editing Keys

When values are entered or updated in a multiple-segment field, the user can
press keys to move the screen cursor over the data, and to insert, delete, and
type over the data. The cursor never pauses on editor blanks.

The WORDWRAP editor has two modes, insert (to add data at the cursor) and
type-over (to replace the displayed data with entered data). Users cannot
overwrite a NEWLINE. If the cursor is in type-over mode and encounters a
NEWLINE character, the mode automatically changes to insert, “pushing” the
NEWLINE character to the right. Some keystrokes behave differently in the
two modes.

When it first enters a multiple-segment field, the cursor is positioned on the
first character of the first field segment, and the editing mode is set to type-
over. The cursor movement keys are as follows.

Key Effect

RETURN Leaves the entire multiple-segment field, and goes to the first
character of the next field.

BACKSPACE or
LEFT ARROW

Moves left one character, unless at the left edge of a field
segment. From the beginning of the first segment, these move to
the first character of the preceding field (if INPUT WRAP is in
effect), or beep (if INPUT NO WRAP; see the OPTIONS
statement). From the left edge of a lower field segment, these
keys move to the last intentional character of the previous field
segment.

RIGHT ARROW Moves right one character, unless at the right-most intentional
character in a segment. From the right-most intentional
character of the last segment, this either moves to the first
character of the next field, or only beeps, depending on INPUT
WRAP mode. From the last intentional character of a higher
segment, this moves to the first intentional character in a lower
segment.

UP ARROW Moves from the top-most segment to the first character of the
preceding field. From a lower segment, this moves to the
character in the same column of the next higher segment,
jogging left, if required, to avoid editor blanks, or if it
encounters a tab.

(1 of 2)

INPUT

4-184 HCL Informix 4GL Reference Guide

Key Effect

DOWN ARROW Moves from the lowest segment to the first character of the next
field. From a higher segment, moves to the character in the
same column in the next lower segment, jogging left if required
to avoid editor blanks, or if it encounters a tab.

TAB Enters a tab character, in insert mode, and moves the cursor to
the next tab stop. This can cause following text to jump right to
align at a tab stop. In type-over mode, this moves the cursor to
the next tab stop that falls on an intentional character, going to
the next field segment if required.

(2 of 2)

The character keys enter data. Any following data shifts right, and words can
move down to subsequent segments. This can result in characters being
discarded from the final field segment. These keystrokes can also alter data.

Key Effect

CONTROL-A Switches between type-over and insert mode.

CONTROL-X Deletes the character under the cursor, possibly causing words to be
pulled up from subsequent segments.

CONTROL-D Deletes all text from the cursor to the end of the multiple-line field
(not merely to the end of the current field segment).

CONTROL-N Inserts a NEWLINE character, causing subsequent text to align at
the first column of the next segment of the field, and possibly
moving words down to subsequent segments. This can result in
characters being discarded from the final segment of the field.

The editing keys (described in “Editing Keys” on page 4-220) have the same
effect in a multiple-segment field, except that CONTROL-H can move to the last
intentional character of the previous segment of the same field, if the cursor
is on the first intentional character. Also, CONTROL-L can move to the first
intentional character of the next segment of the same field from the last inten-
tional character of a segment.

INPUT

INFORMIX-4GL Statements 4-185

Using Large Data Types
4GL displays values of large data types (BYTE or TEXT) as follows.

Field Type Screen Display

TEXT As much of the TEXT data as fit within the screen field.

BYTE The string "<BYTE value>". 4GL cannot display the actual BYTE
value in a screen field.

Use a simple field. (You can display part of a TEXT value in a multiple-
segment field, but the WORDWRAP editor cannot process a TEXT value.)

If the form specification file assigns an appropriate attribute to a BYTE or TEXT
field, the user can invoke an external program by pressing the exclamation
point (!) key when the cursor is in the field. This external program is
typically an editor to allow the user to edit character (TEXT) or graphics
(BYTE) data. To implement this feature, specify the PROGRAM attribute as
part of the field description in the form specification file, identifying the
external program to execute. (For more information on using the PROGRAM
attribute, see the description of that field attribute in Chapter 6.)

The external program takes over the entire screen. Any key sequence that you
have specified in the ON KEY clause is ignored by the external program.
When the external program terminates, 4GL performs the following tasks:

1. Restores the screen to its state before the external program began
2. Resumes the INPUT statement at the BYTE or TEXT field
3. Reactivates any key sequences specified in the ON KEY clause

Completing the INPUT Statement
The following actions can terminate the INPUT statement:

■ The user chooses one of the following keys:
❑ The Accept, Interrupt, or Quit key
❑ The RETURN or TAB key from the last field (and INPUT WRAP is

not currently set by the OPTIONS statement)
■ 4GL executes the EXIT INPUT statement.

INPUT

4-186 HCL Informix 4GL Reference Guide

By default, the Accept, Interrupt, and Quit keys terminate the INPUT
statement. Each of these actions also deactivates the form. (But pressing the
Interrupt or Quit key can immediately terminate the program, unless the
program also includes the DEFER INTERRUPT and DEFER QUIT statements.)

The user must press the Accept key explicitly to complete the INPUT
statement under the following conditions:

■ INPUT WRAP is specified in the OPTIONS statement.
■ An AFTER FIELD block for the last field includes a NEXT FIELD clause.

If 4GL previously executed a DEFER INTERRUPT statement in the program,
the Interrupt key causes 4GL to take the following actions:

■ Set the global variable int_flag to a non-zero value.
■ Terminate the INPUT statement, but not the 4GL program.

If 4GL previously executed a DEFER QUIT statement in the program, a Quit
signal causes 4GL to take the following actions:

■ Set the global variable quit_flag to a non-zero value.
■ Terminate the INPUT statement, but not the 4GL program.

Executing Control Blocks When INPUT Terminates

When INPUT terminates, these blocks are executed in the order indicated:

1. The AFTER FIELD clause for the current field
2. The AFTER INPUT clause

If INPUT terminates by an EXIT INPUT statement, or by pressing the Interrupt
or Quit key, 4GL does not execute any of these clauses. If a NEXT FIELD
statement appears in one of these clauses, 4GL places the cursor in the
specified field and returns control to the user.

References
DEFER, DISPLAY ARRAY, INPUT ARRAY, OPEN WINDOW, OPTIONS

INPUT ARRAY

INFORMIX-4GL Statements 4-187

ATTRIBUTE

Clause p. 3-96

Binding
Clause
p. 4-189

HELP number
END INPUT

p
. 4-197

Block Input Control
INPUT ARRAY

Element Description

number is a literal integer to specify a help message number.

INPUT ARRAY
The INPUT ARRAY statement supports data entry by users into a screen
array, and stores the entered data in a program array of records.

INPUT ARRAY

Usage
The INPUT ARRAY statement assigns to variables in one or more program
records the values that the user enters into the fields of a screen array. This
statement can include statement blocks to be executed under conditions that
you specify, such as screen cursor movement, or other user actions. The
following outline describes how to use the INPUT ARRAY statement:

1. Create a screen array in the form specification, and compile the form .
2. Declare an ARRAY OF RECORD with the DEFINE statement.
3. Open and display the screen form in either of the following ways:

■ Using the OPEN FORM and DISPLAY FORM statements
■ Using an OPEN WINDOW statement with the WITH FORM clause

4. Use the INPUT ARRAY statement to assign values to the program
array from data that the user enters into fields of the screen array.

INPUT ARRAY

4-188 HCL Informix 4GL Reference Guide

When the INPUT ARRAY statement is encountered, 4GL performs the
following tasks:

1. Displays any default values in the screen fields, unless you specify
the WITHOUT DEFAULTS keywords (as described on page 4-191)

2. Moves the cursor to the first field and waits for input from the user
3. Assigns the user-entered value to a corresponding program variable

Assignment of the entered value to the variable occurs when the cursor
moves from the field or the user presses the Accept key (typically ESCAPE).

The INPUT ARRAY statement activates the current form (the form that was
most recently displayed or the form in the current 4GL window). When the
INPUT ARRAY statement completes execution, the form is deactivated. After
the user presses the Accept key, the INSERT statement of SQL can insert the
values of the program variables into the appropriate database tables.

The following topics are described in this section:

■ “The Binding Clause” on page 4-189
■ “The ATTRIBUTE Clause” on page 4-191
■ “The HELP Clause” on page 4-196
■ “The INPUT ARRAY Input Control Blocks” on page 4-197
■ “The CONTINUE INPUT Statement” on page 4-214
■ “The EXIT INPUT Statement” on page 4-214
■ “The END INPUT Keywords” on page 4-215
■ “Using Built-In Functions and Operators” on page 4-215
■ “Using Large Data Types” on page 4-218
■ “Keyboard Interaction” on page 4-219
■ “Completing the INPUT ARRAY Statement” on page 4-221

INPUT ARRAY

INFORMIX-4GL Statements 4-189

The Binding Clause
The binding clause temporarily associates the member variables in an array of
program records with fields in the member records of a screen array, so the
4GL program can manipulate values that the user enters in the screen array.

You must declare the program array in a DEFINE statement within your 4GL
program; the screen array must be declared in the form specification file.

The Correspondence of Variables and Fields

The FROM clause binds the screen records in the screen array to the program
records of the program array. The form can include other fields that are not
part of the specified screen array, but the number of member variables in each
record of program array must equal the number of fields in each row of screen
array. Each variable must be of the same (or a compatible) data type as the
corresponding screen field. When the user enters data, 4GL checks the
entered value against the data type of the variable, not the data type of the
screen field.

The member variables of the records in program array can be of any 4GL data
type. If a variable is declared LIKE a SERIAL column, however, 4GL does not
allow the screen cursor to stop in the field. (Values in SERIAL columns are
maintained by the database server, not by 4GL.)

program FROM screen . *
array array

WITHOUT DEFAULTS

Binding
Clause

program array is the name of an array of program records.
screen array is the name of an array of screen records.

Description Element

INPUT ARRAY

4-190 HCL Informix 4GL Reference Guide

The number of screen records in screen array determines how many rows the
form can display at one time. The size of record array determines how many
RECORD variables your program can store. If the size of a program array
exceeds the size of its screen array, users can press the Next Page or Previous
Page keys to scroll through the screen array. (For more information, see
“Keyboard Interaction” on page 4-219.)

The default order in which the screen cursor moves from field to field in the
screen array is determined by the declared order of the corresponding
member variables, beginning in the first screen record. (See also the NEXT
FIELD keywords in “The NEXT FIELD Keywords” on page 4-176, and the
WRAP and FIELD ORDER options of the OPTIONS statement, as described in
“Cursor Movement in Interactive Statements” on page 4-296.)

Displaying Default Values

If you omit the WITHOUT DEFAULTS keywords, 4GL displays default values
from the program array when the form is activated. 4GL determines the
default values in the following way, in descending order of precedence:

1. The DEFAULT attribute (from the form specification file)
2. The DEFAULT column value (from the syscolval table)

4GL assigns NULL values to all variables for which no default is set. But if you
include the WITHOUT NULL INPUT option in the DATABASE section of the
form specification file, 4GL assigns these non-NULL default values.

Field Type Default Field Type Default

Character Blank (= ASCII 32) INTERVAL 0

Number 0 MONEY $0.00

 DATE

DATETIME

12/31/1899

1899-12-31 23:59:59.99999

INPUT ARRAY

INFORMIX-4GL Statements 4-191

The WITHOUT DEFAULTS Keywords

If you specify the WITHOUT DEFAULTS option, however, the screen displays
current values of the variables when the INPUT ARRAY statement begins. This
option is available with both the BY NAME and the FROM binding clauses.
The following steps describe how to display initialized values:

1. Initialize the variables with whatever values you want to display.
2. Call the built-in SET_COUNT() function to tell 4GL how many rows

are currently stored in the program array.
3. Specify INPUT ARRAY…WITHOUT DEFAULTS to display current

values, and to allow the user to change those records.

The WITHOUT DEFAULTS clause is useful when you want the user to be able
to make changes to existing rows of the database. You can display the
existing database values on the screen before the user begins editing the data.
The FIELD_TOUCHED() operator can help you to determine which fields have
been altered, and which ones therefore require updates to the database. (This
operator is described briefly in “Using Built-In Functions and Operators” on
page 4-215, and in detail in “FIELD_TOUCHED()” on page 5-84.)

The ATTRIBUTE Clause
This resembles the ATTRIBUTE clause of other form-based statements like
CONSTRUCT. Except for CURRENT ROW DISPLAY, as described in the next
section, attributes that you specify apply to all of the fields in screen array.

For the syntax of this clause in specifying color and intensity attributes in
screen interaction statements, see “The ATTRIBUTE Clause” on page 4-41.

If you specify form attributes with the INPUT ARRAY statement, the new
attributes apply only during the current activation of the form. When actions
of the user deactivate the form, the form reverts to its previous attributes. The
following INPUT ARRAY statement assigns the RED and REVERSE attributes:

INPUT ARRAY p_addr FROM sc_addr.* ATTRIBUTE (RED, REVERSE)

This statement assigns the WHITE attribute:

INPUT ARRAY p_items FROM sc_items.* ATTRIBUTE (WHITE)

INPUT ARRAY

4-192 HCL Informix 4GL Reference Guide

The ATTRIBUTE clause temporarily overrides any default display attributes
that were specified in an OPTIONS, DISPLAY FORM, or OPEN WINDOW
statement for these fields. It also suppresses any default attributes that
were specified in the syscolatt table by the upscol utility.

Highlighting the Current Row of the Screen Array

Besides color and intensity attributes that “ATTRIBUTE Clause” on
page 3-96 describes, the ATTRIBUTE clause of the INPUT ARRAY statement
also supports this syntax.

The comma-separated list of attributes within the quoted string is applied
only to the current row of screen array. For example, the specification

INPUT ARRAY p_items FROM s_items.*
ATTRIBUTE (RED, CURRENT ROW DISPLAY = "GREEN, REVERSE")

displays screen array in red, but with the current row (the row that contains
the screen cursor) in reverse video and green. When the cursor moves to
another row, the previously highlighted row reverts to red, and the attributes
list is applied to the new current row. If screen array has only one row, the
CURRENT ROW DISPLAY attribute list is applied to that row.

If the quoted string includes no keyword, an error is issued.

 ,

 CURRENT ROW DISPLAY = " keyword "

keyword is zero or one of the color attribute keywords, and zero or more of the
intensity attribute keywords (except DIM, INVISIBLE, and NORMAL)
from the syntax diagram of “The ATTRIBUTE Clause” on page 4-41.

Element Description

INPUT ARRAY

INFORMIX-4GL Statements 4-193

The COUNT Attribute

The COUNT attribute can specify the number of records within a program
array that contain data. It is valid only within the ATTRIBUTE clause of the
INPUT ARRAY statement, where it has this syntax.

The specification

COUNT = 5

is equivalent to the 4GL statement

CALL SET_COUNT(5)

Both of these specifications restrict the number of screen records that can be
displayed in the current screen array to 5.

You can use the COUNT attribute to control the screen array dynamically, as
the next section illustrates.

 COUNT = number

variable

number is a non-negative literal integer, specifying how many records in the
program array contain data.

variable is an INT or SMALLINT variable that contains the value of number.

Element Description

INPUT ARRAY

4-194 HCL Informix 4GL Reference Guide

The MAXCOUNT Attribute

The MAXCOUNT attribute can specify the dynamic size of a screen array. This
size can be less than the declared size that the INSTRUCTIONS section of the
.per file specifies for the screen array. MAXCOUNT is valid only within the
ATTRIBUTE clause of the INPUT ARRAY statement. It has this syntax.

The following example of an INPUT ARRAY statement specifies both the
MAXCOUNT and COUNT attributes:

INPUT ARRAY prog_array WITHOUT DEFAULTS
FROM scr_array.* ATTRIBUTE(MAXCOUNT = x, COUNT = y)

Here x and y are literal integers or integer variables. In this example, y is the
number of records that contain data within the program array. The
MAXCOUNT value of x determines the dynamic size of the screen array that
displays the program array.

If MAXCOUNT is specified as less than one or greater than the declared
program array size, the original program array size is used as the
MAXCOUNT value.

You can specify both COUNT and MAXCOUNT in the same ATTRIBUTE clause:

CALL SET_COUNT(5)
INPUT ARRAY prog_array WITHOUT DEFAULTS
FROM scr_array.* ATTRIBUTE(MAXCOUNT = 10, COUNT = 6)

In this example, the COUNT attribute overrides the SET_COUNT() value. The
number of rows displayed will be 6.

Except for the new COUNT and MAXCOUNT attributes, ATTRIBUTE lists of
4GL can only support fixed keywords or literal integers.

MAXCOUNT = number

variable

number is a non-negative literal integer, specifying how many records in the
screen array can display data.

variable is an INT or SMALLINT variable that contains the value of number.

Element Description

INPUT ARRAY

INFORMIX-4GL Statements 4-195

INSERT ROW Attribute

The ATTRIBUTE clause supports a feature by which the programmer can
enable or disable the Insert key for the entire form during INPUT ARRAY
statements.

The INSERT ROW attribute can be set to TRUE or FALSE in the ATTRIBUTE
clause that follows the INPUT ARRAY binding clause. It has this syntax.

When INSERT ROW = FALSE is specified, the user cannot use the Insert key to
perform insert actions within the INPUT ARRAY statement. (The user can still
perform insert actions by using the TAB, ARROW, and RETURN keys in the last
initialized row.)

When INSERT ROW = TRUE is specified, the user is not prevented from using
the Insert key to enter data. The default is TRUE, which corresponds to the
behavior of previous 4GL releases.

DELETE ROW Attribute

The DELETE ROW attribute provides similar functionality by which the
programmer can enable or disable the Delete key for the entire form during
INPUT ARRAY statements.

The DELETE ROW attribute can be set to TRUE or FALSE in the ATTRIBUTE
clause that follows the INPUT ARRAY binding clause. It has this syntax.

When DELETE ROW = FALSE is specified, the user cannot perform any
DELETE actions within the INPUT ARRAY statement.

When DELETE ROW = TRUE is specified, the user is not prevented from using
the Delete key to delete data. The default is TRUE, which corresponds to the
behavior of previous 4GL releases.

 INSERT ROW = TRUE

FALSE

 DELETE ROW = TRUE

FALSE

INPUT ARRAY

4-196 HCL Informix 4GL Reference Guide

The following example disables the Insert and Delete keys on rows of the
screen array:

INPUT ARRAY arrayname WITHOUT DEFAULTS FROM s_array.*
ATTRIBUTE(INSERT ROW = FALSE, DELETE ROW = FALSE)

The HELP Clause
The HELP clause specifies the number of a help message to display if the user
presses the Help key while the screen cursor is in any field of the screen array.
The default Help key is CONTROL-W, but you can assign a different key as the
Help key by using the HELP KEY clause of the OPTIONS statement.

The following program fragment specifies help message 311 if the user
requests help from any field in the s_items screen array:

INPUT ARRAY p_items FROM s_items.*
HELP 311

You create help messages in an ASCII file whose filename you specify in the
HELP FILE clause of the OPTIONS statement (see “The HELP FILE Option” on
page 4-299). Use the mkmessage utility to create a compiled version of the
help file. A runtime error occurs in the following situations:

■ 4GL cannot open the help file.
■ You specify a number that is not in the help file.
■ You specify a number outside the range from -32,767 to 32,767.

The help message specified in your HELP clause applies to the entire
INPUT ARRAY statement. To override this with field-level help messages,
specify an ON KEY block (see “The ON KEY Block” on page 4-171) that
invokes the INFIELD() operator and SHOW_HELP() function, as described in
Chapter 5. If you do this, the messages must be displayed in a 4GL window
within the 4GL screen, rather than in the separate Help window.

INPUT ARRAY

INFORMIX-4GL Statements 4-197

The INPUT ARRAY Input Control Blocks
Each INPUT ARRAY control block includes a statement block of at least one
statement and an activation clause that specifies when to execute the statement
block. An INPUT ARRAY control block can specify any of the following items:

■ The statements to execute before or after visiting specific screen
fields

■ The statements to execute when the user presses a key sequence
■ The statements to execute before or after the INPUT ARRAY statement
■ The next field to which to move the screen cursor
■ When to terminate execution of the INPUT ARRAY statement

The activation clause can specify any one of the following items:

■ Pre- and post-INPUT actions (the BEFORE or AFTER INPUT clause)
■ Pre- and post-INSERT actions (the BEFORE or AFTER INSERT clause)
■ Pre- and post-DELETE actions (the BEFORE or AFTER DELETE clause)
■ Keyboard sequence conditions (the ON KEY clause)
■ Cursor movement conditions (the BEFORE or AFTER FIELD clause,

and the BEFORE or AFTER ROW clause)

The statement block can include any SQL or 4GL statements, as well as the
following items:

■ Cursor movement instructions (the NEXT FIELD or NEXT ROW
clause)

■ Termination of the INPUT ARRAY statement (the EXIT INPUT
statement)

■ Returning control to the user without terminating the INPUT ARRAY
statement (the CONTINUE INPUT statement)

If you include one or more control blocks, the END INPUT keywords must
terminate the INPUT ARRAY statement. If no control block is included, 4GL
waits while the user enters values into the fields. When the user presses the
Accept key, the INPUT ARRAY statement terminates.

INPUT ARRAY

4-198 HCL Informix 4GL Reference Guide

Field Clfaieulsde
p. 3-86

Field Clause
p. 3-86

The activation clause and the statement block correspond respectively to the
left-hand and right-hand elements in the following syntax diagram.

INPUT ARRAY
Input Control Block ,

BEFORE FIELD statement

AFTER INPUT NEXT FIELD

DELETE
NEXT

INSERT EXIT
PREVIOUS

ROW
 , CONTINUE INPUT

ON KEY (key)

After BEFORE FIELD, AFTER FIELD, or NEXT FIELD, the field clause specifies a
field that the binding clause referenced implicitly (in the BY NAME clause, or
as record.* or array [line].*) or explicitly. You can qualify a field name by a table
reference, or the name of a screen record or a screen array or array [line].

The BEFORE FIELD screen-array or AFTER FIELD screen-array activation clause
applies to the entire screen array. BEFORE FIELD screen-array.field or AFTER
FIELD screen-array. field applies to the specified field in the screen array, as in
the following example, which represents part of a screen form.

key is one or more keywords to specify physical or logical keys. For details,
see “The ON KEY Block” on page 4-171.

statement is an SQL statement or other 4GL statement.

Element Description

field1 field2

[
[
[

] [
] [
] [

]
]
] } Screen array

} }

INPUT ARRAY

INFORMIX-4GL Statements 4-199

If you specify BEFORE FIELD screen-array.field1, 4GL executes the statement
block if the cursor moves into the field1 field of any screen record of screen-
array, but not after movement to a field2 field. You can specify BEFORE FIELD
screen-array if you want the statement block to be executed if the cursor enters
any field of screen-array.

If you include a control block, 4GL executes or ignores the statements in a
control block, depending on:

■ whether you specify the BEFORE INPUT or AFTER INPUT keywords.
■ the fields to which and from which the user moves the screen cursor.
■ the keys that the user presses.

4GL deactivates the form while executing statements in a control block. After
executing the statements, 4GL reactivates the form, allowing the user to
continue entering or modifying the data values in fields.

The Precedence of Input Control Blocks

4GL executes the statements in control blocks in the following order:

1. BEFORE INPUT

2. BEFORE ROW
3. BEFORE INSERT, BEFORE DELETE

4. BEFORE FIELD screen-array
5. BEFORE FIELD screen-array. field
6. ON KEY

7. AFTER FIELD screen-array. field
8. AFTER FIELD screen-array
9. AFTER INSERT, AFTER DELETE

10. AFTER ROW
11. AFTER INPUT

These blocks are described in the sections that follow. You can list these
blocks in any order. If you develop some consistent ordering, however, your
code might be easier to read.

INPUT ARRAY

4-200 HCL Informix 4GL Reference Guide

Within these blocks, you can include the NEXT FIELD keywords (as described
in “The NEXT FIELD Keywords” on page 4-176) and EXIT INPUT statement
(described in “The EXIT INPUT Statement” on page 4-178), as well as most
4GL and SQL statements. See “Nested and Recursive Statements” on
page 2-31 for information about including CONSTRUCT, PROMPT, INPUT, and
INPUT ARRAY statements within an input control block.

The activation clauses of INPUT ARRAY control blocks are described in their
order of execution by 4GL. Descriptions of NEXT FIELD and EXIT INPUT
follow the discussions of these activation clauses. No subsequent control
block statements are executed if EXIT INPUT executes.

The BEFORE INPUT Block

You can use the BEFORE INPUT block to display messages describing how to
use the INPUT ARRAY statement. For example, the following statement
fragment displays a message that tells the user how to enter data into the
table:

INPUT ARRAY p_customer FROM s_customer.*
BEFORE INPUT

DISPLAY "Press ESC to enter data" AT 1,1

4GL executes the BEFORE INPUT block after displaying the default values in
the fields and before allowing the user to enter values. (If you include the
WITHOUT DEFAULTS clause, 4GL displays the current values of the variables,
not the default values, before executing the BEFORE INPUT block.)

The following example displays the value 2 in the stock_num field:

CALL SET_COUNT(1)
INPUT ARRAY p_items WITHOUT DEFAULTS FROM s_items.*

BEFORE INPUT
LET pa_curr = ARR_CURR()
LET s_curr = SCR_LINE()
LET p_items[pa_curr].stock_num = 2
DISPLAY p_items[pa_curr].stock_num TO

s_items[s_curr].stock_num
NEXT FIELD manu_code

END INPUT

INPUT ARRAY

INFORMIX-4GL Statements 4-201

The following list describes how this program fragment uses the DISPLAY
statement in the BEFORE INPUT block to populate the fields of a single screen
array:

1. Call SET_COUNT(1) to initialize the array with a nondefault record.
2. Include WITHOUT DEFAULTS in the INPUT ARRAY binding clause.
3. Within the BEFORE INPUT block, use LET statements to assign values

to the variables.
4. Use DISPLAY to display the variable to the screen.

An INPUT ARRAY statement can include no more than one BEFORE INPUT
control block. You cannot include the FIELD_TOUCHED() operator in the
BEFORE INPUT block.

The BEFORE ROW Block

Here ROW means a screen record; it need not be linked to a database row. You
can specify no more than one BEFORE ROW block. 4GL executes the BEFORE
ROW block statements in the following cases:

■ The cursor moves into a new line of the screen form.
■ An INSERT statement fails because of lack of space.
■ An INSERT statement is terminated by the Interrupt or Quit key.
■ The user presses the Delete key.

The BEFORE DELETE Block

This statement block is executed after the user presses the Delete key while
the cursor is in a screen array, but before 4GL actually deletes the record. You
can specify no more than one BEFORE DELETE block.

If you want to prevent the record from being deleted (for example, if some
Boolean condition is not satisfied), specify EXIT INPUT, rather than
CONTINUE INPUT, within the BEFORE DELETE block.

INPUT ARRAY

4-202 HCL Informix 4GL Reference Guide

field

Cancelling Delete Operations

If you include the CANCEL DELETE keywords within the BEFORE DELETE
control block, delete operations by the user can also be cancelled program-
matically for individual screen records of the current 4GL form.

The syntax of CANCEL DELETE within the BEFORE DELETE control block of
INPUT ARRAY statements follows.

The cancelled Delete operation has no effect on the active set of rows that
INPUT ARRAY is processing.

See also “Cancelling Insert Operations” on page 4-204 for the parallel syntax
of CANCEL INSERT within the BEFORE INSERT control block.

If CANCEL INSERT or CANCEL DELETE is executed, the current BEFORE
INSERT or BEFORE DELETE control block is terminated, and control of
program execution passes to the next statement that follows the terminated
control block.

An error is issued if you specify CANCEL DELETE outside the context of the
BEFORE DELETE control block.

BEFOREDELETE statement

NEXT FIELD Field Clause
p. 3-86

NEXT
 EXIT

PREVIOUS

CONTINUE INPUT

CANCEL DELETE

INPUT ARRAY
BEFORE DELETE
Input Control Block

statement is an SQL statement or other 4GL statement that is valid within a
BEFORE DELETE control block of INPUT ARRAY.

Description Element

INPUT ARRAY

INFORMIX-4GL Statements 4-203

Similarly, an error is issued if you specify CANCEL INSERT outside the
context of the BEFORE INSERT control block.

As an example, the programmer might want to implement a system where
the user is allowed to delete all but one of the rows, but once a row is deleted,
a replacement row cannot be inserted in its place. The following code imple-
ments this design:

DEFINE n_rows INTEGER
DEFINE arrayname ARRAY[100] OF RECORD
. . .
INPUT ARRAY arrayname WITHOUT DEFAULTS FROM s_array.*

ATTRIBUTES(COUNT = n_rows, MAXCOUNT = n_rows,
INSERT ROW = FALSE, DELETE ROW = TRUE

BEFORE INSERT
CANCEL INSERT

BEFORE DELETE
LET n_rows = n_rows - 1
IF n_rows <= 0 THEN

CANCEL DELETE
END IF

END INPUT

The BEFORE INSERT Block

Statements in the BEFORE INSERT block are executed in the following cases:

■ The user begins entering new records into the array.
■ The user presses the Insert key to insert a new record between

existing records of a screen array, but before the record is added to
the array.

■ The user moves the cursor to a blank record at the end of an array.

4GL executes the statements in this block before the user enters data for each
successive screen record that the Insert key creates.

The following BEFORE INSERT block calls the get_item_num() function
before inserting a new empty record into the screen array:

BEFORE INSERT
CALL get_item_num()

You can specify no more than one BEFORE INSERT block.

INPUT ARRAY

4-204 HCL Informix 4GL Reference Guide

field

Cancelling Insert Operations

You can include the CANCEL INSERT keywords within the BEFORE INSERT
control block to programmatically cancel insert operations by the user for
individual screen records of the current 4GL form. The cancelled insert
operation has no effect on the active set of rows that INPUT ARRAY is
processing.

The syntax of CANCEL INSERT within the BEFORE INSERT control block of
INPUT ARRAY statements follows.

If CANCEL INSERT is specified, the user is prevented from entering rows by
using the Insert key. This feature also prevents the user from entering rows
by using an arrow key, TAB, RETURN, or (in Dynamic 4GL) ENTER to move the
screen cursor past the last initialized row.

The following example disables the Insert key for only the third row:

INPUT ARRAY ...
BEFORE INSERT

IF ARR_CURR() == 3
THEN

CANCEL INSERT
END IF

END INPUT

BEFORE INSERT statement

NEXT FIELD Field Clause
p. 3-86

NEXT
 EXIT

PREVIOUS

CONTINUE INPUT

 CANCEL INSERT

INPUT ARRAY
BEFORE INSERT
Input Control Block

statement is an SQL statement or other 4GL statement that is valid within a
BEFORE INSERT control block of INPUT ARRAY.

Description Element

INPUT ARRAY

INFORMIX-4GL Statements 4-205

The BEFORE FIELD Block

This statement block is executed whenever the screen cursor moves into the
specified field, but before the user enters a value. You can specify no more
than one BEFORE FIELD block for each field.

The following program fragment defines two BEFORE FIELD blocks. When
the cursor enters the fname or lname field, 4GL displays a message:

BEFORE FIELD fname
MESSAGE "Enter first name of customer"

BEFORE FIELD lname
MESSAGE "Enter last name of customer"

You can use a NEXT FIELD clause within a BEFORE FIELD block to restrict
access to a field. You can also use a DISPLAY statement within a BEFORE
FIELD block to display a default value in a field.

The following statement fragment causes 4GL to prompt the user for input
when the cursor is in the stock_num, manu_code, or quantity field:

INPUT ARRAY p_items FROM s_items.*
BEFORE FIELD stock_num

MESSAGE "Enter a stock number."
BEFORE FIELD manu_code

MESSAGE "Enter the code for a manufacturer."
BEFORE FIELD quantity

MESSAGE "Enter a quantity."
...

END INPUT

The ON KEY Block

Statements in the ON KEY block are executed if the user presses some key that
you specify by the keywords in the following table (in lowercase or
uppercase letters).

ACCEPT HELP NEXT or NEXTPAGE
DELETE INSERT PREVIOUS or PREVPAGE
DOWN INTERRUPT RETURN
ESC or ESCAPE LEFT TAB
F1 through F64
CONTROL-char (excep

RIGHT
t A, D, H, I, J, K, L, M, R,

UP
or X)

The list of keys that can activate the ON KEY control block must be enclosed
in parentheses, with commas separating the names of keys.

INPUT ARRAY

4-206 HCL Informix 4GL Reference Guide

The next example defines an ON KEY block for CONTROL-B. When the user
presses CONTROL-B, 4GL determines if the screen cursor is in the stock_num
or manu_code field. If it is in either one of these fields, 4GL calls the
stock_help() function and sets quantity as the next field.

INPUT ARRAY p_items FROM s_items.*
ON KEY (CONTROL-B)

IF INFIELD(stock_num) OR INFIELD(manu_code) THEN
CALL stock_help()
NEXT FIELD quantity

END IF

The following ON KEY block displays a help message. The BEFORE INPUT
clause informs the user how to access help:

BEFORE INPUT
DISPLAY "Press CTRL-W for help"

ON KEY (CONTROL-W, CONTROL-F)
CALL customer_help()

Keys in the following table require special consideration in an ON KEY block.

Key Special Considerations

ESC or ESCAPE You must specify another key as the Accept key in the OPTIONS
statement, because this is the default Accept key.

Interrupt

Quit

You must execute a DEFER INTERRUPT statement. If the user
presses the Interrupt key under these conditions, 4GL executes
the statements in the ON KEY block and sets int_flag to non-zero,
but does not terminate the INPUT statement.
4GL also executes the statements in this ON KEY block if the
DEFER QUIT statement has executed and the user presses the
Quit key. In this case, 4GL sets quit_flag to non-zero.

F1 You must specify another key as the Insert key in the OPTIONS
statement because CONTROL-W is the default Insert key.

F2 You must specify another key as the Delete key in the OPTIONS
statement, because F2 is the default Delete key.

F3 You must specify another key as the Next Page key in the
OPTIONS statement, because F3 is the default Next Page key.

F4 You must specify another key as the Previous Page key in the
OPTIONS statement, because F4 is the default for that key.

(1 of 2)

INPUT ARRAY

INFORMIX-4GL Statements 4-207

Key Special Considerations

CONTROL-char

A, D, H, K,
L, R, and X

4GL reserves these keys for field editing.

I, J, and M The standard meaning of these keys (TAB, LINEFEED, and
RETURN, respectively) is not available to the user. Instead, the key
is trapped by 4GL and used to activate the ON KEY block. For
example, if CONTROL-M appears in an ON KEY block, the user
cannot press RETURN to advance the cursor to the next field.
If you include one of these keys in an ON KEY block, be careful
to restrict the scope of the block to specific fields.

W This is the default Help key, so use OPTIONS to declare another.

(2 of 2)

You might not be able to use other keys that have special meaning to your
operating system, such as CONTROL-Z on many BSD UNIX systems. Similarly,
CONTROL-C, CONTROL-Q, and CONTROL-S specify the Interrupt, XON, and XOFF
signals on many UNIX systems.

If you use the OPTIONS statement to redefine the Accept or Help key, the keys
assigned to these sequences cannot be used in an ON KEY clause. For
example, if you redefine the Accept key by using the following statement,
you should not define an ON KEY block for the key sequence CONTROL-B:

OPTIONS ACCEPT KEY (CONTROL-B)

When the user presses CONTROL-B, 4GL will always perform the Accept key
function, regardless of the presence of an ON KEY (CONTROL-B) block.

If the user activates an ON KEY block while entering data in a field, 4GL takes
the following actions:

1. Suspends input to the current field
2. Preserves the input buffer containing characters that the user typed
3. Executes the statements in the current ON KEY block

INPUT ARRAY

4-208 HCL Informix 4GL Reference Guide

4. Restores the input buffer for the current screen field
5. Resumes input in the same field, with the screen cursor at the end of

the buffered list of characters

You can change this default behavior by performing the following tasks in
the ON KEY block:

■ Resuming input in another field by using the NEXT FIELD statement
■ Changing the input buffer value for the current field by assigning a

new value to the corresponding variable and then displaying this
value

You can also use this block to provide accelerator keys for common functions,
such as saving and deleting. The INFIELD() operator can control field-specific
responses in the action for an ON KEY clause. You can implement field-level
help by using the INFIELD() operator and SHOWHELP() function.

The AFTER FIELD Block

4GL executes the statements in the AFTER FIELD block associated with a field
every time the cursor leaves the field. Any of the following keys can cause the
cursor to leave the field:

■ Any arrow key
■ The RETURN or TAB key
■ The Accept key
■ The Interrupt or Quit key (if a supporting DEFER statement was

executed)

You can specify only one AFTER FIELD block for each field.

This AFTER FIELD block checks if the stock_num and manu_code fields
contain values. If they contain values, 4GL calls the get_item() function:

AFTER FIELD stock_num, manu_code
LET pa_curr = ARR_CURR()
IF p_items[pa_curr].stock_num IS NOT NULL

AND p_items[pa_curr].manu_code IS NOT NULL THEN
CALL get_item()
IF p_items[pa_curr].quantity IS NOT NULL THEN

CALL get_total()
END IF

END IF

INPUT ARRAY

INFORMIX-4GL Statements 4-209

The following statement makes sure that the user enters an address line:

INPUT ARRAY p_addr FROM sc_addr.*
AFTER FIELD address1

IF p_addr.address1 IS NULL THEN
NEXT FIELD address1

END IF
END INPUT

The user terminates the INPUT ARRAY statement by pressing the Accept key
when the screen cursor is in any field, or by pressing RETURN or TAB after the
last field. You can use the AFTER FIELD block on the last field to override this
default termination. (Including INPUT WRAP in the OPTIONS statement
produces the same effect.)

When the NEXT FIELD keywords appear in an AFTER FIELD block, the cursor
moves to the specified field. If an AFTER FIELD block appears for each field,
and the NEXT FIELD keywords are in each block, the user cannot leave the
form.

The AFTER INSERT Block

This block has no effect unless the BY NAME or FROM clause references a
screen array. 4GL executes the AFTER INSERT block after the user inserts a
record into the screen array. A user inserts a record by following these steps:

1. Entering information in all the required fields of the current record
2. Moving the cursor out of the last input field by using one of these

keys:
■ Any arrow key
■ The RETURN or TAB key
■ The Accept key
■ The HOME or END key

Tip: The Insert key does not by itself activate the AFTER INSERT block; the user must
also move the cursor from the newly inserted record.

The following AFTER INSERT block calls the renum_items() function after the
user inserts a new blank screen record into the items screen array:

AFTER INSERT OF items
CALL renum_items()

An INPUT statement can include only one AFTER INSERT block.

INPUT ARRAY

4-210 HCL Informix 4GL Reference Guide

The AFTER DELETE Block

4GL executes the AFTER DELETE block after the user deletes the values from
a screen record by using the Delete key. If this block is present, 4GL takes the
following actions when the user presses the Delete key:

1. Deletes the record from the screen array
2. Executes the statements in the AFTER DELETE block
3. Executes the statements in the AFTER ROW block, if one is specified

The user must also press the Accept key to make corresponding changes to
the variables in the array of program records. The following AFTER DELETE
block calls the renum_items() function:

AFTER DELETE OF items
CALL renum_items()

An INPUT statement can include only one AFTER DELETE block.

The AFTER ROW Block

Here ROW means a screen record; this need not be linked to a database row.
4GL executes the statements in the AFTER ROW block in these cases:

■ The cursor leaves the current row by using one of these keys:
❑ Any arrow key
❑ The RETURN or TAB key
❑ The Accept key
❑ The Interrupt key (if DEFER INTERRUPT was also executed)

■ A new screen record is inserted by the Insert key.

The INPUT ARRAY statement can specify only one AFTER ROW block. If you
specify both an AFTER ROW and an AFTER INSERT block, 4GL executes the
AFTER ROW block immediately after executing the AFTER INSERT block.

The following AFTER ROW block calls the order_total() function after the
screen cursor leaves a row, and the row is inserted:

AFTER ROW
CALL order_total()

INPUT ARRAY

INFORMIX-4GL Statements 4-211

If you include a NEXT FIELD statement in an AFTER ROW block, 4GL moves
the cursor to the next field of the next row, not to the row which the cursor
has just left. For example, if values in the fields in that row are in conflict, the
developer could detour the user back to the conflicting fields before allowing
the INPUT statement to complete, by having conditional NEXT FIELD state-
ments in the AFTER INPUT block. For example:

INPUT ARRAY p_items from s_items.*
...
AFTER ROW
LET pa_curr = arr_curr()

IF p_items[pa_curr].manu_code = "PNG" THEN
MESSAGE "NOTE: PNG products are currently on hold"
NEXT FIELD manu_code

END IF
...

END INPUT

The NEXT FIELD statement in the AFTER ROW control block, if executed, now
keeps the user entry in the current row, with the cursor in the manu_code
field, regardless of what navigation key you use to leave that row (for
example UP ARROW, DOWN ARROW, TAB, RETURN, or ACCEPT).

The AFTER INPUT Block

The statements in the AFTER INPUT block are executed when the user termi-
nates the INPUT ARRAY statement without terminating the 4GL program.

4GL executes the AFTER INPUT block only when the INPUT ARRAY statement
is terminated by the user pressing one of the following keys:

■ The Accept key
■ The Interrupt key (if the DEFER INTERRUPT statement has executed)
■ The Quit key (if the DEFER QUIT statement has executed)

The AFTER INPUT clause is not executed in the following situations:

■ The user presses the Interrupt or Quit key and the DEFER INTERRUPT
or DEFER QUIT statement, respectively, has not executed. In either
case, the program terminates immediately.

■ The EXIT INPUT statement terminates the INPUT ARRAY statement.

INPUT ARRAY

4-212 HCL Informix 4GL Reference Guide

By using the GET_FLDBUF() or FIELD_TOUCHED() built-in operators within
the AFTER INPUT block, you can use the AFTER INPUT block to validate, save,
or alter values that the user entered.

The NEXT FIELD statement in the AFTER INPUT control block gives the 4GL
developer the ability to prevent the user from completing the INPUT
statement if some programmer-defined semantic criteria are not satisfied.
The following example uses this block to require that a first name be specified
for any customers with the last name Smith:

CALL SET_COUNT(1)
INPUT ARRAY p_customer FROM sc_customer.*

AFTER INPUT
IF p_customer.lname="Smith" THEN

IF NOT FIELD_TOUCHED(p_customer.fname) THEN
CALL mess("You must enter a first name.")
NEXT FIELD fname

END IF
END IF

END INPUT

You can place the NEXT FIELD clause in this block to return the cursor to the
form. If you place a NEXT FIELD clause in the AFTER INPUT block, use it in a
conditional statement. Otherwise, the user cannot exit from the form.

You can include no more than one AFTER INPUT control block.

The NEXT FIELD Keywords

The NEXT FIELD keywords specify the next field to which 4GL moves the
screen cursor. If you omit this clause, by default the cursor moves among the
screen fields according to the explicit or implicit order of fields in the INPUT
ARRAY binding clause. The user can control movement from field to field by
using the arrow keys, TAB, and RETURN. By using the NEXT FIELD keywords,
however, you can explicitly position the screen cursor. You must specify one
of the following options with the NEXT FIELD keywords.

Clause Effect

NEXT FIELD NEXT Advances the screen cursor to the next field

NEXT FIELD PREVIOUS Returns the screen cursor to the previous field

NEXT FIELD field-name Moves the screen cursor to field-name

INPUT ARRAY

INFORMIX-4GL Statements 4-213

For example, this NEXT FIELD clause places the cursor in the previous field:

NEXT FIELD PREVIOUS

The following INPUT ARRAY statement includes a NEXT FIELD clause in an
ON KEY block. If the user presses CONTROL-B when the screen cursor is in the
stock_num or manu_code field, 4GL sets quantity as the next field:

INPUT ARRAY p_items FROM s_items.*
ON KEY (CONTROL-B)

IF INFIELD(stock_num) OR INFIELD(manu_code) THEN
CALL stock_help()
NEXT FIELD quantity

END IF
...

END INPUT

In releases of 4GL prior to 6.03, the NEXT FIELD statement was ignored except
to choose the active field in the target row. If the ACCEPT key was used, the
NEXT FIELD was ignored because the INPUT ARRAY statement had been
completed (except for AFTER INPUT processing, if any).

In most situations, the NEXT FIELD should appear in a conditional statement.
The NEXT FIELD statement must appear in a conditional statement when it
appears in an AFTER INPUT clause; otherwise, the user cannot exit the form.

4GL immediately positions the screen cursor in the form when it encounters
the NEXT FIELD clause; it does not execute any statements that follow the
NEXT FIELD clause in the control block. For example, 4GL does not invoke the
qty_help() function in the next example:

ON KEY (CONTROL-B, F4)
IF INFIELD(stock_num) OR infield(manufact) THEN

CALL stock_help()
NEXT FIELD quantity
CALL qty_help() -- function is never called

END IF

You can use the NEXT FIELD clause in any INPUT ARRAY control block. The
NEXT FIELD clause typically appears in a conditional statement. In an AFTER
INPUT clause, the NEXT FIELD statement must appear in a conditional
statement; otherwise, the user cannot exit from the form. To restrict access to
a field, use the NEXT FIELD statement in a BEFORE FIELD clause.

INPUT ARRAY

4-214 HCL Informix 4GL Reference Guide

The following example demonstrates using the NEXT FIELD clause in an
ON KEY control block, which 4GL executes if the user presses CONTROL-W.
If the cursor is in the city field, 4GL displays San Francisco in the city field
and CA in the state field, and then moves the cursor to the zipcode field.

ON KEY (CONTROL-W)
IF INFIELD(city) THEN

LET p_addr.city = "San Francisco"
DISPLAY p_addr.city TO city
LET p_addr.state = "CA"
DISPLAY p_addr.state TO state
NEXT FIELD zipcode

END IF

To wrap from the last field of a form to the first field of a form, use the NEXT
FIELD statement after an AFTER FIELD clause for the last field of the form.
(The INPUT WRAP option of the OPTIONS statement has the same effect.)

The CONTINUE INPUT Statement
The CONTINUE INPUT statement causes 4GL to skip all subsequent state-
ments in the current control block. The screen cursor returns to the most
recently occupied field in the current form.

The CONTINUE INPUT statement is useful when program control is nested
within multiple conditional statements, and you want to return control to the
user. It is also useful in an AFTER INPUT control block that examines the field
buffers; depending on their contents, you can return the cursor to the form.

The EXIT INPUT Statement
The EXIT INPUT statement terminates input. 4GL does the following:

■ Skips all statements between EXIT INPUT and END INPUT

■ Deactivates the form
■ Resumes execution at the first statement after END INPUT

4GL ignores any statements in an AFTER INPUT control block if the EXIT
INPUT ARRAY statement is executed.

INPUT ARRAY

INFORMIX-4GL Statements 4-215

The END INPUT Keywords
The END INPUT keywords indicate the end of the INPUT ARRAY statement.
These keywords should follow the last control block. If you do not include
any control blocks, the END INPUT keywords are not required.

Using Built-In Functions and Operators
You can use the following built-in functions to keep track of the relative
states of the screen cursor, the program array, and the screen array.

Function Description

ARR_CURR() Returns the number of the current record of the program
array. This indicates the position of the screen cursor at the
beginning of the BEFORE or AFTER ROW control block,
rather than the line to which the cursor moves after execution
of the block.

ARR_COUNT() Returns the current number of records in the program array.

FGL_SCR_SIZE() Returns an INTEGER value corresponding to the declared
number of screen records in a specified screen array in the
currently active form.

SCR_LINE() Returns the number of the current line in the screen array.
This is the line containing the screen cursor at the beginning
of the BEFORE ROW or AFTER ROW control block, rather
than the line to which the cursor moves after execution of the
block. This can be different from the value returned by
ARR_CURR() if the program array is larger than the screen
array.

SET_COUNT() Takes the number of records currently in the program array as
an argument and sets the initial value of ARR_COUNT().
You must call this function before executing the INPUT
ARRAY WITHOUT DEFAULTS or DISPLAY ARRAY
statement.

INPUT ARRAY

4-216 HCL Informix 4GL Reference Guide

These functions and operators access field buffers and keystroke buffers.

Feature Description

FIELD_TOUCHED() Returns TRUE when the user has “touched” (made a
change to) a screen field whose name is passed as an
operand. Moving the screen cursor through a field (with
the RETURN, TAB, or arrow keys) does not mark a field as
touched. This function also ignores the effect of statements
that appear in the BEFORE INPUT control block. For
example, you can assign values to fields in the BEFORE
INPUT control block without having the fields marked as
touched.

GET_FLDBUF() Returns the character values of the contents of one or more
fields in the currently active form.

FGL_GETKEY() Waits for a key to be pressed, and then returns an
INTEGER value corresponding to the raw value of the key
that was pressed.

FGL_LASTKEY() Returns an INTEGER value corresponding to the most
recent keystroke executed by the user in the screen form.

INFIELD() Returns TRUE if the name of the field that is specified as its
operand is the name of the current field.

Each field has only one field buffer; two statements cannot use a buffer simul-
taneously. To display the same form with data entry fields more than once,
open a new 4GL window, and open and display a second copy of the form.
(4GL allocates a separate set of buffers to each form, so this avoids
overwritting buffers when two or more concurrent statements accept input.)

The following statement uses the INFIELD() operator to determine if the
cursor is in the stock_num or manu_code field. If the cursor is in one of these
fields, 4GL calls the stock_help() function and sets quantity as the next field:

INPUT ARRAY p_items FROM s_items.*
ON KEY (CONTROL-B)

IF INFIELD(stock_num) OR INFIELD(manu_code) THEN
CALL stock_help()
NEXT FIELD quantity

END IF

INPUT ARRAY

INFORMIX-4GL Statements 4-217

The INFIELD(field) expression returns TRUE if the current field is field and
FALSE otherwise. You can use this function to control field-dependent actions
when the user presses a specified key in the ON KEY control block. In the
following INPUT ARRAY statement, the BEFORE FIELD control block for the
city field displays a message identifying a key that the user can press to enter
the character string "San Francisco" into the field:

INPUT ARRAY pr_customer FROM sc_cust.* ATTRIBUTE(REVERSE)
BEFORE FIELD city

MESSAGE "Press CTRL-F for default city, San Francisco"
ON KEY (CONTROL-F)

IF INFIELD(city) THEN
LET p_customer.city = "San Francisco"
DISPLAY p_customer.city TO city
LET p_customer.state = "CA"
DISPLAY p_customer.state TO state
NEXT FIELD zipcode

END IF
END INPUT

If the user presses CONTROL-F while the cursor is in the city field, the ON KEY
clause in this example changes the screen display in three ways:

1. Displays the value San Francisco in the city field
2. Displays CA in the state field
3. Moves the cursor to the first character position in the zipcode field

For more about the built-in 4GL functions and operators, see Chapter 5.

INPUT ARRAY

4-218 HCL Informix 4GL Reference Guide

Using Large Data Types
Within a field of a screen array, 4GL displays any value of a large data type
(BYTE or TEXT) in the following way.

Type Screen Display

TEXT As much of the TEXT data as can fit in the screen field

BYTE The string <BYTE value> (4GL cannot display the data value in a field.)

If the form specification file assigns an appropriate attribute to a BYTE or TEXT
field, the user can invoke an external program by pressing the exclamation
point (!) key when the cursor is in the field. This external program is
typically an editor that allows the user to edit large string (TEXT) or graphics
(BYTE) data. To implement this feature, specify the PROGRAM attribute as
part of the field description in the form specification file, identifying the
external program to execute. (For more information on using the PROGRAM
attribute, see the description of that field attribute in Chapter 6.)

The external program takes over the entire screen. Any key sequence that you
have specified in the ON KEY clause is ignored by the external program.
When the external program terminates, 4GL takes the following actions:

1. Restores the screen to its state before the external program began
2. Resumes the INPUT statement at the BYTE or TEXT field
3. Reactivates any key sequences specified in the ON KEY clause

INPUT ARRAY

INFORMIX-4GL Statements 4-219

Keyboard Interaction
The user of your 4GL application can use the keyboard to position the cursor
during an INPUT ARRAY statement, to scroll the screen array, and to edit data
in screen records.

By default, the user can move the cursor within a screen array and scroll the
displayed rows by clicking the arrow keys, the PAGE UP or PAGE DOWN key,
and the F3 and F4 function keys. The following table describes these keys.

Key Effect

→ RIGHT ARROW moves the cursor one space to the right inside a screen field
without erasing the current character. At the end of the field, 4GL moves
the cursor to the first character position of the next screen field. This key is
equivalent to the CONTROL-L editing key.

← LEFT ARROW moves the cursor one character position to the left in a screen
field without erasing the current character. At the end of the field, the
cursor moves to the first character position of the previous screen field. This
key is equivalent to the CONTROL-H editing key.

↓ DOWN ARROW moves the cursor to the same display field one line down on
the screen. If the cursor was on the last line of the screen array before DOWN
ARROW was used, 4GL scrolls the program array data up one line. If the last
program array record is already on the last line of the screen array, DOWN
ARROW generates a message indicating that there are “no more rows in that
direction.”

↑ UP ARROW moves the cursor to the same field one line up on the screen. If
the cursor is on the first line of the screen array, 4GL scrolls the program
array data down one line. If the first program array record is already on the
first screen array line, UP ARROW generates a message indicating that there
are “no more rows in that direction.”

F3 F3 scrolls the display to the next full page of program records. The NEXT
KEY clause of the OPTIONS statement can reset this key.

F4 F4 scrolls the display to the previous full page of program records. The
PREVIOUS KEY clause of the OPTIONS statement can reset this key.

INPUT ARRAY

4-220 HCL Informix 4GL Reference Guide

Clearing Reserved Lines

When moving the cursor to a new field of an array, the INPUT ARRAY
statement clears the Comment line and the Error line. The Comment line
displays text defined with the COMMENTS attribute in the form specification
file. The Error line displays system error messages and ERROR statement text.

Editing Keys

Unless a field has the NOENTRY attribute, the user can press the following
keys during an INPUT ARRAY statement to edit values in a field.

Key Effect

CONTROL-A Toggles between insert and type-over mode

CONTROL-D Deletes characters from current cursor position to the end of the
field

CONTROL-H Moves the cursor nondestructively one space to the left. It is
equivalent to pressing left arrow

CONTROL-L Moves the cursor nondestructively one space to the right. It is
equivalent to pressing right arrow

CONTROL-R Redisplays the screen

CONTROL-X Deletes the character beneath the cursor

INPUT ARRAY

INFORMIX-4GL Statements 4-221

Inserting and Deleting Records from an Array

The user can insert and delete records within screen arrays by pressing
CONTROL-W (the default Insert key) and F2 (the default Delete key).

Key Effect

CONTROL-W Inserts a new blank screen record into the screen array at the line
below the cursor. Any displayed values in lower records move
down one line, and the cursor moves to the beginning of the first
field of the new blank record. This key is not needed to insert rows
at the end of the screen array. If the user attempts to insert more
rows than the declared size of the program array, 4GL displays a
message that the array is full. The OPTIONS statement can specify
a different physical key as the Insert key.

F2 Deletes the current record from the screen array. 4GL adjusts any
subsequent rows to fill the gap. The OPTIONS statement can
specify a different physical key as the Delete key.

Pressing the Accept key makes corresponding changes in the program array.
You can then use the ARR_COUNT() function to determine how many records
(possibly including blank records) remain in the program array after the user
has pressed the Insert or Delete key and the Accept key.

See also “The BEFORE DELETE Block” on page 4-201, “The BEFORE INSERT
Block” on page 4-203, “The AFTER INSERT Block” on page 4-209, and “The
AFTER DELETE Block” on page 4-210.

Completing the INPUT ARRAY Statement
The following actions can terminate the INPUT ARRAY statement:

■ The user presses one of the following keys:
❑ The Accept, Interrupt, or Quit key
❑ The RETURN or TAB key from the last field (and INPUT WRAP is

not currently set by the OPTIONS statement)
■ 4GL executes the EXIT INPUT statement.

INPUT ARRAY

4-222 HCL Informix 4GL Reference Guide

All of these conditions deactivate the form. Unlike the INPUT statement, the
INPUT ARRAY statement is not terminated when the user presses the RETURN
or TAB key in the last screen field.

By default, the Accept, Interrupt, and Quit keys terminate the INPUT ARRAY
statement. Each of these actions also deactivates the form. (But pressing the
Interrupt or Quit key can immediately terminate the program, unless the
program also includes the DEFER INTERRUPT and DEFER QUIT statements.)

The user must press the Accept key explicitly to complete the INPUT ARRAY
statement under the following conditions:

■ INPUT WRAP is specified in the OPTIONS statement.
■ An AFTER FIELD block for the last field includes a NEXT FIELD clause.

If 4GL previously executed a DEFER INTERRUPT statement in the program, an
Interrupt signal causes 4GL to take the following actions:

■ Sets the global variable int_flag to a non-zero value
■ Terminates the INPUT ARRAY statement but not the 4GL program

If 4GL previously executed a DEFER QUIT statement in the program, a Quit
signal causes 4GL to take the following actions:

■ Sets the global variable quit_flag to a non-zero value
■ Terminates the INPUT ARRAY statement but not the 4GL program

Executing Control Blocks when INPUT ARRAY Terminates

When INPUT ARRAY terminates, control blocks are executed in this order:

1. The AFTER FIELD clause for the current field
2. The AFTER ROW clause
3. The AFTER INPUT clause

If INPUT ARRAY is terminated by the EXIT INPUT keywords, or by pressing
the Interrupt or Quit key, 4GL does not execute any of these clauses. If a NEXT
FIELD statement appears in one of these clauses, 4GL places the cursor in the
specified field and returns control to the user.

The INPUT ARRAY statement in the example that follows supports data entry
into a screen form.

INPUT ARRAY

INFORMIX-4GL Statements 4-223

The BEFORE FIELD clauses display messages telling the user what to enter in
the stock_num, manu_code, and quantity fields. The AFTER FIELD clauses
check that user entered values for the stock_num, manu_code, and quantity
fields. When the user enters item values for the stock_num and manu_code
fields, 4GL calls get_item() to display a description and price of the item.
When all three fields are specified, 4GL displays the total cost.

In this example, the BEFORE INSERT, AFTER INSERT, and AFTER DELETE
clauses call functions that ensure that the numbering of the items is accurate.
Accurate numbering is necessary because the user can press the Insert and
Delete keys at runtime to insert and to delete items within the screen form.

CALL SET_COUNT(1)
INPUT ARRAY p_items FROM s_items.*

BEFORE FIELD stock_num
MESSAGE "Enter a stock number."

BEFORE FIELD manu_code
MESSAGE "Enter the code for a manufacturer."

BEFORE FIELD quantity
MESSAGE "Enter a quantity"

AFTER FIELD stock_num, manu_code
MESSAGE ""
LET pa_Curr = arr_curr()
IF p_items[pa_curr].stock_num IS NOT NULL

AND p_items[pa_curr].manu_code IS NOT NULL THEN
CALL get_item()
IF p_items[pa_curr].quantity IS NOT NULL THEN

CALL get_total()
END IF

END IF
AFTER FIELD quantity

MESSAGE ""
LET pa_curr = arr_curr()
IF p_items[pa_curr].stock_num IS NOT NULL

AND p_items[pa_curr].manu_code IS NOT NULL
AND p_items[pa_curr].quantity IS NOT NULL THEN

CALL get_total()
END IF

BEFORE INSERT
CALL get_item_num()

AFTER INSERT
CALL renum_items()

AFTER DELETE
CALL renum_items()

END INPUT

References
DEFER, DISPLAY ARRAY, INPUT, OPEN WINDOW, OPTIONS, SCROLL

LABEL

4-224 HCL Informix 4GL Reference Guide

LABEL
The LABEL statement declares a statement label, marking the next statement as
one to which a WHENEVER or GOTO statement can transfer program control.

Usage
The LABEL statement indicates where to transfer control of program
execution within the same program block. Upon executing a GOTO or
WHENEVER statement that references the label identifier, 4GL jumps to the
statement immediately following the LABEL statement, skipping any inter-
vening statements. (See also “GOTO” on page 4-151.)

The following restrictions apply to the LABEL statement:

■ The identifier must be unique among labels in the program block.
■ To jump to a label, the GOTO or WHENEVER statement must specify

the same label identifier as the LABEL statement.
■ The GOTO (or WHENEVER) and LABEL statements must both be in

the same MAIN, FUNCTION, or REPORT program block.

A colon (:) symbol must follow the last character in the label identifier. This
syntax contrasts with GOTO, where the colon is optional, and with
WHENEVER, where the colon precedes the identifier but is not required. You
might wish to declare a meaningful name to indicate something about the
purpose of the jump:

WHENEVER ERROR GO TO :l_error
...

LABEL l_error:
ERROR "Cannot complete processing."
ROLLBACK WORK

LABEL label:

is a statement label. A colon (:) symbol follows the last character. label

Element Description

LABEL

INFORMIX-4GL Statements 4-225

References
GOTO, WHENEVER

LET

4-226 HCL Informix 4GL Reference Guide

LET
The LET statement assigns a value to a variable, or a set of values to a record.

Element Description
array is a variable of the ARRAY data type.
destination is a program record to be assigned values.
large is a variable of the BYTE or TEXT data type.
record is a variable of the RECORD data type.
source is a program record from which to copy values.
variable is a variable of a simple data type, a simple member of a record, or a

 simple element of an array.

LET Receiving
Variable

large

=

||
 ,,

4GL Expression
p. 3-49

= NULL

destination .* = source . *

variable

record

 ,
.

1 array [3 Integer Expression
p. 3-63]

Receiving
Variable

LET

INFORMIX-4GL Statements 4-227

Usage
After DEFINE declares a variable, the 4GL compiler allocates memory to that
variable, and (for RDS) initializes the value to NULL. For the 4GL C Compiler,
however, the contents of the variable is whatever happens to occupy that
memory location.

Do not use uninitialized variables in 4GL expressions. If you reference any
variable without first initializing it with an INITIALIZE or LET statement, the
results are unlikely to be useful. The LET statement can assign a single value
to a single variable, or it can assign all the values from a RECORD variable to
another program record.

To execute a LET statement, 4GL evaluates the expression on the right of the
equal (=) sign and assigns the resulting value to the variable on the left. For
example, the statements in the following example create a SELECT statement
as text for a PREPARE statement. Here slash (/) embeds a quotation (") mark
within a string; the comma (,) and double pipe (||) symbols concatenate
successive elements of the statement text:

DEFINE sel_stmt CHAR(80)
LET sel_stmt = "SELECT * FROM customer" ||

"WHERE lname MATCHES \"" || last_name CLIPPED, "\""
PREPARE s1 FROM sel_stmt

The next example assigns a NULL value to a MONEY variable:

DEFINE total_price MONEY
LET total_price = NULL

You can use most of the 4GL built-in functions and character operators like
CLIPPED and USING within the LET statement. For example, these statements
use the ASCII operator to ring the terminal bell (= the ASCII value for 7):

DEFINE bell CHAR(1)
LET bell = ASCII 7
DISPLAY bell

You cannot assign individual values to an entire program record or to a
program array. You cannot use the THRU or THROUGH notation (described
in “THRU or THROUGH Keywords and .* Notation” on page 3-92) in the
LET statement, but you can assign all the values of one program record to
another program record of the same size by using the asterisk (*) notation:

LET x.* = y.*

LET

4-228 HCL Informix 4GL Reference Guide

This example copies the value of each member of the y record to consecutive
members of the x record. The two records must have the same number of
members, and corresponding members must be of compatible data types.
(See “Summary of Compatible 4GL Data Types” on page 3-46.) No member
of the record can be of the BYTE or TEXT data types.

To reference substrings of CHAR or VARCHAR variables, specify the starting
and ending character positions as integers. These substring positions must be
enclosed within brackets and separated by a comma, as in this example:

DEFINE full_name CHAR(20), first_name CHAR(10)
LET full_name[1,10] = new_first

For TEXT and BYTE variables, LET can assign only NULL values. To assign
other values to TEXT and BYTE variables, you can take one of the following
actions:

■ Use the INTO clause of the SELECT, FOREACH, OPEN, or FETCH
statement

■ Pass the name of the variable as an argument to a function

The Comma and Double-Pipe List Separator Symbols
A comma (,) between values to the right of the equal (=) sign has concate-
nation semantics. Unlike the double pipe (||) concatenation operator,
however, a NULL value in a comma-separated list has no effect, unless every
value in the list is NULL (in which case, the list evaluates to a single NULL).
In contrast, the || operator returns NULL if any operand is NULL; this
behavior conforms to the ANSI/ISO standard for SQL in concatenating NULL
strings.

The following program illustrates the difference between these separators:

MAIN
DEFINE c1, c2, c3 CHAR(5)
DEFINE c4, c5 CHAR(14)
LET c1 = "SOME"
LET c2 = NULL
LET c3 = "THING"
LET c4 = c1, c2, c3
LET c5 = c1 || c2 || c3
DISPLAY "c4 = "<<", c4, ">>"
DISPLAY "c5 = "<<", c5, ">>"

END MAIN

LET

INFORMIX-4GL Statements 4-229

The DISPLAY statements in this example produce the following output:

c4 = <<SOME THING>>
c5 = << >>

Which separator you use should depend on how you want NULL strings
handled when the list can include both NULL and non-NULL values.

4GL performs data type conversion on compatible data types (as described in
“Data Type Conversion” on page 3-42).

In nondefault locales, if you assign number or monetary values in the LET
statement, the conversion process inserts locale-specific separators and
currency symbols into the created strings, rather than U.S. English separators
and currency symbols. This result occurs regardless of whether you include
the USING operator in the LET statement. If DBFORMAT or DBMONEY is set,
however, their settings override the default settings in the locale files. ♦

References
FOREACH, GLOBALS, INITIALIZE

GLS

LOAD

4-230 HCL Informix 4GL Reference Guide

LOAD
The LOAD statement inserts data from a file into an existing table.

LOAD FROM filename variable

DELIMITER delimiter INSERT
Clause

INSERT
Clause

INSERT INTO table

Table ,
Qualifier
p. 3-89 (column)

Element Description
column is the name of a column in table, in parentheses. If you omit the list of

column names, the default is all the columns of table.
delimiter is a quoted string (or a CHAR or VARCHAR variable) containing a

delimiter symbol.
filename is a quoted string (or a CHAR or VARCHAR variable) specifying a file

that contains the input data. This can include a pathname.
table is the name of a table, synonym, or view in the current database, or in a

database specified in the table qualifier.
variable is a CHAR or VARCHAR variable containing an INSERT clause.

Usage
The LOAD statement must include an INSERT statement (either directly or as
text in a variable) to specify where to store the data. LOAD appends the new
rows to the specified table, synonym, or view, but does not overwrite existing
data. It cannot add a row that has the same key as an existing row. You
cannot use the PREPARE statement to preprocess a LOAD statement.

LOAD

INFORMIX-4GL Statements 4-231

The user who executes LOAD must have Insert privileges for table.
(Database and table-level privileges are described in Informix Guide to SQL:
Syntax.) For readers familiar with the ACE reports of INFORMIX-SQL, LOAD
provides flat-file input functionality, similar to that of the READ command of
ACE.

The Input File
The variable or string following the LOAD FROM keywords must specify the
name of a file of ASCII characters (or characters that are valid for the client
locale) that represent the data values that are to be inserted. How data values
in this input file should be represented by a character string depends on the
SQL data type of the receiving column in table.

Data Type Input Format

CHAR,
VARCHAR,
TEXT

Values can have more characters than the declared maximum length
of the column, but any extra characters are ignored. A backslash (\)
is required before any literal backslash or any literal delimiter
character, and before any NEWLINE character anywhere in a
VARCHAR value, or as the last character in a TEXT value.
Blank values can be represented as one or more blank characters
between delimiters, but leading blanks must not precede other
CHAR, VARCHAR, or TEXT values.

DATE In the default locale, values must be in month/day/year format (see
“Numeric Date” on page 3-75) unless another format is specified by
DBDATE or GL_DATE environment variables. You must represent
the month as a 2-digit number. You can use a 2-digit number for the
year if you are satisfied with the DBCENTURY setting. Values must
be actual dates; for example, February 30 is invalid.

DATETIME,
INTERVAL

INTERVAL values must be formatted year-month or else
day hour:minute:second.fraction, or a contiguous subset thereof;
DATETIME values must be in the format
year-month-day hour:minute:second.fraction, or a contiguous subset,
without DATETIME or INTERVAL keywords or qualifiers.
Time units outside the declared column precision can be omitted.
DATETIME year must be a four-digit number; all other time units
(except fraction) require two digits.

MONEY Values can include currency symbols, but these are not required.

(1 of 2)

LOAD

4-232 HCL Informix 4GL Reference Guide

Data Type Input Format

SERIAL Values can be represented as 0 to tell the database server to supply a
new SERIAL value. You can specify a literal integer greater than zero,
but if the column has a unique index, an error results if this number
duplicates an existing value.

BYTE Values must be ASCII-hexadecimals; no leading or trailing blanks.

(2 of 2)

Each set of data values in filename that represents a new row is called an input
record. The NEWLINE character must terminate each input record in filename.
Specify only values that 4GL can convert to the data type of the database
column. For database columns of character data types, inserted values are
truncated from the right if they exceed the declared length of the column.

NULL values of any data type must be represented by consecutive delimiters
in the input file; you cannot include anything between the delimiter symbols.

This example shows two records in a hypothetical input file called nu_cus:

0|Jeffery|Padgett|Wheel Thrills|3450 El Camino|Suite 10|Palo
Alto|CA|94306||
0|Linda|Lane|Palo Alto Bicycles|2344 University||Palo
Alto|CA|94301|(415)323-6440

This nu_cus data file illustrates the following features of LOAD:

■ The first data value in each record is zero, because the database
server should supply a value for a SERIAL column in the row of the
database table.

■ The pipe symbol (|), the default delimiter, separates consecutive
values.

■ LOAD uses adjacent delimiters to assign NULL values to the phone
column in the first record and to the address2 column for the second
record.

The following LOAD statement inserts all the values from the nu_cus file into
a customer table that is owned by the user whose login is krystl:

LOAD FROM "nu_cus" INSERT INTO krystl.customer

LOAD

INFORMIX-4GL Statements 4-233

Each input record must contain the same number of delimited data values. If
the INSERT clause has no list of columns, the sequence of values in each input
record must match the columns of table in number and order. Each value
must have the literal format of the column data type, or of a compatible data
type. (See “Summary of Compatible 4GL Data Types” on page 3-46.)

A file created by the UNLOAD statement can be used as input for the LOAD
statement if its values are compatible with the schema of table.

The onload and dbload utilities give you more flexibility for the format of the
input file. See your database server documentation for a description of
onload, and see the INFORMIX-SE Administrator’s Guide for a description of
dbload.

The LOAD statement expects incoming data in the format specified by
environment variables DBFORMAT, DBMONEY, DBDATE, GL_DATE, and
GL_DATETIME. The precedence of these format specifications is consistent
with forms and reports. If there is an inconsistency, an error is reported and
the LOAD is cancelled. For more information, see Appendix E, “Developing
Applications with Global Language Support.” ♦

The DELIMITER Clause
The DELIMITER clause specifies the symbol that must separate consecutive
data values in each input record, and must terminate any record whose last
value is NULL. The next example uses the caret (^) symbol as the delimiter:

LOAD FROM "/a/data/ord.loadfile" DELIMITER "^"
INSERT INTO orders

If you omit the DELIMITER clause, the default delimiter symbol is the value
of the DBDELIMITER environment variable, or else a pipe (|) symbol
(ASCII 124) if DBDELIMITER is not set. For details, see Appendix D.

■ Hexadecimal numbers (0 through 9, a through f, or A through F)
■ NEWLINE or CONTROL-J

■ Backslash (\)

GLS

LOAD

4-234 HCL Informix 4GL Reference Guide

The backslash serves as an escape character to indicate that the next character
is to be interpreted literally as part of the data, rather than as a delimiter or
record separator or escape character. If any character value in the input file
includes the delimiter or NEWLINE symbols without backslashes, the LOAD
statement produces error -846.

Important: When this error occurs, the SQLCA.SQLERRD[3] character is always set
to 1, regardless of how many records (if any) were successfully loaded into the
database. For this reason, unless the LOAD operation occurs within a transaction,
recovery of the database after this error is not trivial.

The UNLOAD statement automatically inserts a backslash before any literal
delimiter or NEWLINE symbol in character values. When LOAD (or the onload
or dbload utility) inserts output from UNLOAD into a database table, these
escapist backslash symbols are automatically stripped from the data.

The INSERT Clause
The INSERT clause specifies the table and columns in which to store the new
data. This clause supports a subset of the syntax of the INSERT statement,
which is described in the Informix Guide to SQL: Syntax. You cannot, however,
include the VALUES, SELECT, or EXECUTE PROCEDURE clause of the INSERT
statement within the INSERT clause of the LOAD statement. You must specify
explicit column names if either of these conditions is true:

■ You are not inserting data into all of the columns of table.
■ The input file does not match the default order of columns, as listed

in the syscolumns table of the system catalog.

The following example identifies the price and discount columns as the only
columns into which to insert non-NULL data values:

LOAD FROM "/tmp/prices" DELIMITER ","
INSERT INTO maggie.worktab(price,discount)

LOAD

INFORMIX-4GL Statements 4-235

Data Integrity Issues with LOAD
If LOAD is executed within a transaction, the inserted rows are locked, and
they remain locked until the COMMIT WORK or ROLLBACK WORK statement
terminates the transaction. If no other user is accessing the table, you can
avoid locking limits and reduce locking overhead by locking the table with
the LOCK TABLE statement after the transaction begins. This exclusive table
lock is released when the transaction terminates. (Transactions, row locking,
and table locking are described in Informix Guide to SQL: Tutorial.)

Consult the documentation for your database server about the limit on the
number of locks available during a single transaction.

Important: In a database that is not ANSI-compliant, but that supports transaction
logging, it is recommended that you use the BEGIN WORK statement to initiate a
transaction prior to any LOAD statement. Otherwise, if the LOAD statement fails
after inserting some rows, it might be difficult to restore the database to its condition
before the LOAD statement began to execute outside any transaction.

If the current database has no transaction log, a failing LOAD statement
cannot remove any rows that were loaded before the failure occurred. You
must Guidely remove the already loaded records from either the load file or
from the receiving table, repair the erroneous records, and rerun LOAD. This
is true for all versions of 4GL.

In versions of 4GL prior to 6.01, if the database has transaction logging and a
transaction is in effect before the LOAD statement executes, 4GL always
commits the transaction when the LOAD statement completes. You can
neither control nor prevent this internal COMMIT WORK operation.

Beginning with Version 6.01, however, you can take one of the following
actions when the database has a transaction log:

■ Run LOAD as a singleton transaction, so that any error causes the
entire LOAD statement to be automatically rolled back.

■ Run LOAD within an explicit transaction, so that a data error merely
stops the LOAD statement in place with the transaction still open.

LOAD

4-236 HCL Informix 4GL Reference Guide

LOAD does not execute a COMMIT WORK or ROLLBACK WORK automatically
unless LOAD was the first statement of a new (implicit) transaction. For
example, if the database is ANSI-compliant, a transaction is always in effect.
LOAD would be the first statement of a new transaction only if the immedi-
ately preceding SQL statement was a DATABASE statement, a COMMIT WORK
statement, or a ROLLBACK WORK statement.

If the database is not ANSI-compliant but has a transaction log, a new trans-
action is indicated by a BEGIN WORK statement. LOAD is the first statement
of a new transaction only if the immediately preceding SQL statement was a
BEGIN WORK statement.

In either type of logged database, if LOAD is the first statement of a new trans-
action, 4GL automatically commits the transaction if the load completes
without errors. If errors are found, a rollback is automatically performed.

If LOAD is not the first statement of a new transaction, 4GL leaves the trans-
action open. This allows you to take one of the following actions:

■ COMMIT the successfully loaded rows, fix the load records, and
rerun LOAD with the balance of the records.

■ Abort the LOAD altogether by executing ROLLBACK WORK, followed
by repeating the LOAD operation from the beginning.

The following 4GL script fragment illustrates a typical LOAD statement series
using an explicit transaction in a database that is not ANSI-compliant:

create database mine with log in "/db/mine/trans.log";
create table mytab1 (col1 serial, col2 char(20), col3 date);
create table loadlog (tabname char(18), loaddate date);
begin work;
insert into loadlog values ("mytab1", today);
load from "mytab1.unl" insert into mytab1;

If the LOAD is successful, at this point you can execute COMMIT WORK or
ROLLBACK WORK as appropriate.

The next 4GL script fragment illustrates the same steps using an explicit
transaction in an ANSI-compliant database:

create database mine_ansi with log in "/db/mine/trans.log" MODE ANSI;
create table "user1".mytab1 (col1 serial, col2 char(20), col3 date);
create table "user1".loadlog (tabname char(18), loaddate date);
commit work;
insert into "user1".loadlog values ("mytab1", today);
load from "mytab1.unl" insert into "user1".mytab1;

LOAD

INFORMIX-4GL Statements 4-237

If the LOAD is successful, at this point you can execute COMMIT WORK or
ROLLBACK WORK as appropriate.

The third 4GL script fragment illustrates a typical LOAD statement (with an
implicit transaction) in a database that is not ANSI-compliant:

create database mine with log in "/db/mine/trans.log";
create table mytab1 (col1 serial, col2 char(20), col3 date);
close database;
database mine;
load from "mytab1.unl" insert into mytab1;

If the LOAD has no errors, the changes are committed. If error messages
appear, the rows that were loaded before the error occurred are rolled back
automatically.

The final 4GL script fragment illustrates a typical LOAD statement (with
implicit transaction) in a database that is ANSI compliant:

create database mine_ansi with log in "/db/mine/trans.log" MODE ANSI;
create table "user1".mytab1 (col1 serial, col2 char(20), col3 date);
close database;
database mine_ansi;
load from "mytab1.unl" insert into "user1".mytab1;

If the LOAD has no errors, the changes are committed. If error messages
appear, the rows that were loaded before the error occurred are rolled back
automatically.

LOAD

4-238 HCL Informix 4GL Reference Guide

Performance Issues with LOAD
For valid input files, LOAD provides better performance when the table that
the INSERT INTO clause references has no index, no constraint, and no trigger.

If one or more trigger, constraint, or index exists on the table, however, it is
recommended that you follow these steps:

1. Use SET INDEX…DISABLED to disable any indexes on the table.
2. Use SET CONSTRAINT…DISABLED to disable any constraints.
3. Use SET TRIGGER…DISABLED to disable any triggers.
4. Use LOAD to insert data into the table.
5. Use SET INDEX… ENABLED to restore any indexes on the table
6. Use SET CONSTRAINT…ENABLED to restore any constraints.
7. Use SET TRIGGER...ENABLED to restore any triggers.

(See Informix Guide to SQL: Syntax for the syntax of the SET INDEX,
SET CONSTRAINT, and SET TRIGGER statements.) It is more efficient to follow
these steps than to drop the indices, constraints, and triggers; perform the
LOAD; and then recreate the indices, constraints, and triggers.

Because the SET statement was introduced in the Informix implementation of
the SQL language after the 4.10 release, these SET statements must be
prepared, or else must be delimited by the SQL and END SQL keywords.

References
DATABASE, UNLOAD

LOCATE

INFORMIX-4GL Statements 4-239

LOCATE
The LOCATE statement specifies where to store a TEXT or BYTE value.

Usage
The TEXT or BYTE data type can stores a large binary value. You must specify
whether you want to store the value of the variable in memory or in a file.
You can access a value from memory faster than from a file. If your program
exceeds the available memory, however, 4GL automatically stores part of the
TEXT or BYTE value in a file. To use a large variable, your program must
include the following steps:

1. Declare the variable with a DEFINE statement.
2. Use the LOCATE statement to specify the storage location.

The LOCATE statement must appear within the scope of reference of
the variable.

The following topics are described in this section:

■ “The List of Large Variables” on page 4-240
■ “The IN MEMORY Option” on page 4-241
■ “The IN FILE Option” on page 4-241

 ,

LOCATE BYTE or TEXT
Variable List

p. 4-240
IN MEMORY

FILE "filename"

variable

filename is the name of a file in which to store the TEXT or BYTE value. This
specification can include a pathname and file extension.

variable is the name of a CHAR or VARCHAR variable containing a filename
specification.

Element Description

LOCATE

4-240 HCL Informix 4GL Reference Guide

■ “Passing Large Variables to Functions” on page 4-243
■ “Freeing the Storage Allocated to a Large Data Type” on page 4-243

The LOCATE statement must follow any DEFINE statement that declares TEXT
or BYTE variables, and it must appear in the same program block as a local
TEXT or BYTE variable. If you try to access a TEXT or BYTE value before initial-
izing its variable with a LOCATE statement, 4GL generates a runtime error.

The List of Large Variables
Use the following syntax to specify the large variables to be initialized.

As in all 4GL statements that do not declare variables, any identifier of
an array, record, record member, or variable must have been previously
declared and must be within its scope of reference. (The only 4GL statements
that can declare variables are DEFINE and GLOBALS.)

variable

 .
.*

record .first

 ,
THROUGH record . last

THRU

array [3 integer]

BYTE or TEXT
Variable List

array is the name of a structured variable of the ARRAY data type.
first is the name of a large member variable to be initialized.
integer is a literal integer between 0 and the declared size of the array.
last is another member of record that was declared later than first.
record is the name of a structured variable of the RECORD data type.
variable is the name of a large variable of the TEXT or BYTE data type.

Element Description

LOCATE

INFORMIX-4GL Statements 4-241

You can then use most 4GL statements to access the variable. The LET
statement can assign a NULL value to a TEXT or BYTE variable, but it cannot
assign non-NULL values. The INTO clause of the SELECT statement can assign
to a specified variable a TEXT or BYTE value from the database.

The IN MEMORY Option
Use the IN MEMORY option to allocate storage in memory for TEXT and BYTE
values. The following example declares the variable quarter as the same data
type as the database column analysis, and stores the variable in memory:

DEFINE quarter LIKE stock.analysis
LOCATE quarter IN MEMORY

If the TEXT or BYTE variable has already been stored in memory, you can use
the LOCATE statement again to reinitialize the variable.

If a TEXT or BYTE variable has been initialized to memory or to a temporary
file, you can use LOCATE to reinitialize the variable. You cannot reinitialize a
TEXT or BYTE variable that is stored in a named file.

The IN FILE Option
The IN FILE option stores the TEXT or BYTE value in a file, whose name can be
specified as a quoted string, as a CHAR or VARCHAR variable, or as a CHAR
or VARCHAR member of a record or element of an array. 4GL opens and closes
the file each time that you use the variable in an SQL or other 4GL statement.

When you retrieve a row containing a TEXT or BYTE column, the value of the
column overwrites the current contents of the file. Similarly, when you
update a row, 4GL reads and stores the entire contents of the file in the
database column.

As with storage in memory, the file contains only the value most recently
assigned to the variable. You have several options with the IN FILE clause:

■ Omit a filename, so that 4GL places the value in a temporary file.
■ Specify a variable that contains the name of a file in which to store

the TEXT or BYTE value. The filename can include a pathname.

LOCATE

4-242 HCL Informix 4GL Reference Guide

Using a Temporary File

If you omit the filename, 4GL places the TEXT or BYTE value in a temporary
file. 4GL creates the temporary file at runtime in the directory identified by
the DBTEMP environment variable. If DBTEMP is not set, 4GL puts the
temporary files in the /tmp directory. If no temporary directory exists, a
runtime error occurs.

The following example omits the filename. It also shows that TEXT and BYTE
types can be declared as components of RECORD variables:

DEFINE stock RECORD
n INTEGER, analysis TEXT, graph BYTE

END RECORD
LOCATE stock.analysis IN FILE
LOCATE stock.graph IN FILE

If the TEXT or BYTE variable has already been located in a temporary file, you
can use the LOCATE statement again reinitializes the variable.

You can specify multiple filenames by declaring an array of character
variables. This example stores an array of filenames in an array of TEXT
variables:

DEFINE flnames ARRAY[10] OF char(20),
t_holds ARRAY[10] of TEXT
i INTEGER

F O R i = 1 T O 5
LET flnames[i] = "/u/db/profile", i, USING "<<&"
LOCATE t_holds[i] IN FILE flnames[i]

END FOR

Specifying a Filename

To place the TEXT or BYTE value in a specific file, the LOCATE statement can
include either a literal filename, or else a character variable that contains the
filename. This example uses a quoted string to specify the filename:

DEFINE analysis TEXT
LOCATE analysis IN FILE "/u/db/analysis"

The next example uses a CHAR variable to specify the filename:

DEFINE flname CHAR(20),t_hold TEXT
LET flname = "/tmp/TodaysReport"
LOCATE t_hold IN FILE flname

LOCATE

INFORMIX-4GL Statements 4-243

Passing Large Variables to Functions
If you specify a variable in the argument list of a function or report, 4GL
ordinarily passes it by value. The function or report can modify the passed
value without affecting the variable in the calling function.

4GL handles large data types differently. It passes large variables by reference.
If a function modifies a TEXT or BYTE variable, the change is apparent to the
variable in the calling routine. The CALL statement need not include a
RETURNING clause for a TEXT or BYTE value.

Freeing the Storage Allocated to a Large Data Type
If you no longer need a TEXT or BYTE variable, you can use the following
statements to release the memory that stored its value.

Statement Description

FREE If you stored the TEXT or BYTE variable in a file, you can reference the
variable in the FREE statement to delete the file. If you stored the
TEXT or BYTE variable in memory, the FREE statement releases all
memory associated with the variable.

LOCATE The LOCATE statement for the same variable releases memory and
removes temporary files, but does not remove named files.

When it encounters the RETURN statement or the END FUNCTION or END
REPORT keywords, 4GL frees any local TEXT or BYTE variables that are stored
in memory or in a temporary file. 4GL does not, however, deallocate storage
for TEXT and BYTE variables that are passed by reference as arguments to a
function or to a report. Storage for such variables is deallocated when EXIT
PROGRAM or END MAIN terminates the program. 4GL does not automatically
remove a named file that is associated with a TEXT or BYTE variable.

After you release the storage, you cannot access the TEXT or BYTE variable
without executing a new LOCATE statement to initialize it. If you have named
the file for the TEXT or BYTE value, and you want to retain the file, do not use
the FREE statement. For information on the FREE statement, see the Informix
Guide to SQL: Syntax.

LOCATE

4-244 HCL Informix 4GL Reference Guide

References
DEFINE, EXIT, FUNCTION, GLOBALS, MAIN, INITIALIZE, REPORT, RETURN

MAIN

INFORMIX-4GL Statements 4-245

MAIN
The MAIN statement defines the MAIN program block.

Usage
Every 4GL program must have exactly one MAIN statement, which typically
calls functions or reports to do the work of the application. The following
fragment calls functions defined in the same module as the MAIN statement:

MAIN
...
CALL get_states()
CALL ring_menu()
...

END MAIN

FUNCTION get_states()
...

END FUNCTION

FUNCTION ring_menu()
...

END FUNCTION

The MAIN statement cannot appear within another statement. It must be the
first program block of the module in which it appears, as in this example.

The END MAIN keywords mark the end of the MAIN program block. The
program terminates when it encounters these keywords.

MAIN statement END MAIN

EXIT PROGRAM

DATABASE
Statement

p. 4-71 DEFINE
Statement

p. 4-81

DEFER Statement
p. 4-78

statement is any SQL or other 4GL statement (except MAIN, FUNCTION,
GLOBALS, NEED, PAUSE, PRINT, REPORT, RETURN, or SKIP).

Description Element

MAIN

4-246 HCL Informix 4GL Reference Guide

If it encounters the EXIT PROGRAM statement, the program terminates before
END MAIN. The Interactive Debugger treats this as an abnormal termination.

Variables Declared in the MAIN Statement
You can declare variables by including DEFINE statements within the MAIN
program block. Variables that you declare here are local to the MAIN block;
you cannot reference their names in any FUNCTION or REPORT definition.

If you include a DEFINE statement before the MAIN statement, however, and
outside of any FUNCTION or REPORT statement, its module variables are
visible to subsequent statements in any program block of the same source
module. The GLOBALS statement can extend the visibility of a module
variable beyond the module where it is declared. If you assign the same
identifier to variables that differ in scope of reference, in any portion of your
program where the scopes of their names overlap, the following rules of
precedence apply:

■ A local variable has the highest precedence, so that within its scope,
no identical identifier of a global or module variable can be visible.

■ Within the module in which it was declared, a module variable takes
precedence over another with the same identifier whose scope has
been extended by the GLOBALS "filename" statement.

You should assign unique names to global and module variables that you
intend to reference within the MAIN program block.

DEFER and DATABASE Statements and the MAIN Program Block
DEFER statements can appear only within the MAIN statement.

Any DATABASE statement that appears before the MAIN statement (but in the
same module) specifies the default database at compile time. This database
also becomes the current database at runtime, unless another DATABASE
statement specifies a different database. Any DATABASE statement in the
MAIN statement must follow the last DEFINE declaration.

This database becomes the current database for subsequent SQL statements
until the program ends, or until another DATABASE statement is encountered.

MAIN

INFORMIX-4GL Statements 4-247

References
DATABASE, DEFER, DEFINE, EXIT PROGRAM, FUNCTION, GLOBALS, REPORT

MENU

4-248 HCL Informix 4GL Reference Guide

MENU
The MENU statement creates and displays a ring menu. From the keyboard,
the user can choose menu options that execute blocks of statements.

Usage
This statement specifies and displays a ring menu that occupies two lines in
the current 4GL window. You can use the MENU statement to accomplish
these tasks:

■ Create and display a screen menu, including a title of the menu
■ Define and display a list of menu options that the user can select
■ Specify a single-line description to display for each menu option
■ Designate help message numbers for each menu option
■ Specify a block of 4GL statements to execute for each menu option

When it encounters a MENU statement, 4GL performs these actions:

1. Displays the menu title (and as many menu options as can fit) in the
Menu line of the current 4GL window.

2. Moves the menu cursor to the first option and displays its description
The order of options is determined by the order of control blocks.
The menu cursor marks the current menu option with a double bor-
der. (The term ring menu refers to a menu where moving the menu
cursor beyond the last option returns it to the first option.)

MENU "title"

variable

MENU Control Block
p. 4-250

END MENU

is a quoted string that specifies a display label for the ring menu. If the
string is empty, no menu title is displayed.
is a CHAR or VARCHAR variable containing a display label.

title

variable

Description Element

MENU

INFORMIX-4GL Statements 4-249

3. Waits for the user to press the activation key for a MENU control
block, or to terminate the MENU statement by pressing the Quit key
or Interrupt key

4. If the user presses an activation key, executes statements in the corre-
sponding control block, until it encounters one of these statements:
■ EXIT MENU statement. 4GL then exits from the menu.
■ CONTINUE MENU statement. 4GL skips any remaining state-

ments in the MENU control block, and redisplays the menu.
■ Last statement in the MENU control block. 4GL redisplays the

menu so that the user can choose another option.

A menu can appear above or below a screen form, but not within a form. 4GL
displays the menu title and the menu options on the Menu line. This reserved
line is positioned by the most recent MENU LINE specification in the OPTIONS
or OPEN WINDOW statement. The default position is the first line of the
current 4GL window.

Unless the title and at least one option can fit on the screen or in the current
4GL window, a runtime error occurs. For information on multiple-page
menus, and how the set of menu options acts like a ring for the menu cursor,
see “Scrolling the Menu Options” on page 4-266.

The title of a menu is just a display label; your program cannot reference a
menu by name. To repeat the same menu and all its behavior in different
parts of a program, you can include its MENU statement in a FUNCTION
definition, so that you can invoke the function when you want the menu to
appear. The following topics are described in this section:

■ “The MENU Control Blocks” on page 4-250

■ “Invisible Menu Options” on page 4-257

■ “The CONTINUE MENU Statement” on page 4-259

■ “The EXIT MENU Statement” on page 4-259

■ “The NEXT OPTION Clause” on page 4-260

■ “The HIDE OPTION and SHOW OPTION Keywords” on page 4-260

■ “Nested MENU Statements” on page 4-262

■ “The END MENU Keywords” on page 4-263

■ “Identifiers in the MENU Statement” on page 4-263

■ “Choosing a Menu Option” on page 4-265

MENU

4-250 HCL Informix 4GL Reference Guide

■ “Completing the MENU Statement” on page 4-268

■ “COMMAND KEY Conflicts” on page 4-271

The MENU Control Blocks
Each control block includes a statement block of at least one statement, and
an activation clause that specifies when to execute the statement block. Any of
three types of activation clauses can appear within MENU control blocks:

■ BEFORE MENU clause (statements to execute before the menu is
displayed)

■ COMMAND clause (to specify the name and description of an option,
an optional activation key to choose the option, and an optional help
message number, identifying a help message to display if the user
presses the Help key while this is the current option; 4GL executes
the statements in this block when the user chooses the menu option)

■ Hidden option (a COMMAND clause that only specifies activation
keys to execute a statement block if the key is pressed; no option
name, description, nor help message number is specified)

The statement block can specify SQL or other 4GL statements to execute when
a user presses a key sequence, as well as special MENU instructions:

■ The next menu option to highlight with the menu cursor

■ Whether to suppress or restore the display of one or more menu
options

■ Whether to exit from the MENU statement

MENU

INFORMIX-4GL Statements 4-251

MENU Control

Block

BEFORE MENU statement

COMMAND Clause NEXT OPTION option
,

SHOW OPTION option

HIDE ALL

CONTINUE MENU

EXIT MENU

COMMAND Clause

COMMAND option description

 , HELP number

KEY (4 key)

 Element Description
description is a quoted string or the name of a CHAR or VARCHAR variable that

contains an option description for the Menu help line.
key is a letter, a literal symbol in quotation marks, or a keyword.

(Quotation marks are not required if key is a single letter of the
alphabet.) This list of up to four activation keys must be enclosed in
parentheses; see “The KEY Clause” on page 4-255.

number is an integer that identifies the help message for this menu option.
You must have used the OPTIONS statement previously to identify
the help file containing the message.

option is a quoted string or the name of a CHAR or VARCHAR variable that
contains the name of the menu option. This name cannot be longer
than the width of the current 4GL window.

statement is an SQL statement or other 4GL statement.

The screen displays a ring menu of option names as menu options. The men
options appear in the same order in which you specify them in COMMAN
clauses within the MENU statement.

MENU

4-252 HCL Informix 4GL Reference Guide

You must include at least one non-hidden option (that is, one COMMAND
clause with a non-null option) for each menu. Within the MENU control block
that includes the COMMAND clause, you can include statements that perform
the activity specified by the menu option.

The description appears on the line below the menu when the option is current.
The string length must not be longer than the width of the screen or 4GL
window. See also “Identifiers in the MENU Statement” on page 4-263.

The BEFORE MENU Block

Before displaying the menu, 4GL executes any statements in the statement
block that follows the optional BEFORE MENU keywords. Use statements in
this control block to perform preliminary tasks, such as:

■ Specifying values for variables used for the menu name, the names
of options, and the strings containing descriptions of options

■ Hiding or showing individual menu options

■ Checking user access privileges

If 4GL encounters the EXIT MENU statement here, no menu is displayed.

The following program fragment includes statements that specify the name
of the menu, the name of an option, and the option description at runtime:

DEFINE menu_name, opt_name CHAR(20)
opt_desc CHAR(40), priv_flag SMALLINT

LET menu_name = "SEARCH"
LET opt_name = "Query"
LET opt_desc = "Query for customers."
IF ...

LET priv_flag = 1
END IF
MENU menu-name

BEFORE MENU
IF priv_flag THEN

LET menu_name = "POWER SEARCH"
LET opt_name = "Power Query"

END IF
COMMAND opt_name opt_desc HELP 12

IF priv_flag THEN
CALL cust_find(1)

ELSE
CALL cust_find(2)

END IF
...

END MENU

MENU

INFORMIX-4GL Statements 4-253

The next BEFORE MENU clause initially hides all menu options. If the user is
privileged, 4GL then displays all the menu options. If the user is not privi-
leged, 4GL displays only the Query, Detail, Switch, and Exit menu options:

MENU menu_name
BEFORE MENU

HIDE OPTION ALL
IF priv THEN

LET menu_name = "PRIVILEGED SEARCH"
SHOW OPTION ALL

ELSE SHOW OPTION "Query", "Detail", "Switch", "Exit"
END IF

...
END MENU

The COMMAND Clause

The COMMAND clause can define a menu option that appears after the menu
title in the Menu line, as well as its description that appears in the following
line when the menu cursor is on the option.

For definitions of terms, see “The MENU Control Blocks” on page 4-250.
Each COMMAND clause is part of a MENU control block whose statements
perform the activity specified by the option description. To nest menus, you
can include another MENU statement. The MENU control blocks might be
easier to read if you use function calls to group statements.

The COMMAND clause can optionally include a HELP clause to associate a
help message number with the menu option. It can also include a KEY clause,
to specify up to four activation keys that the user can press to choose the
option; otherwise, 4GL recognizes default activation keys, based on the initial
character of option. By default, when OPTION is highlighted, pressing the
RETURN key has the same effect as pressing an activation key.

COMMAND option description

 , HELP number

KEY (4 key)

COMMAND Clause

MENU

4-254 HCL Informix 4GL Reference Guide

Optionally, you can include a description of the menu option in a COMMAND
clause. The description appears on the line below the menu and is displayed
when the option is highlighted.

4GL produces a runtime error if a menu option or its description exceeds the
width of the screen or the width of the current 4GL window.

If the name and description of the menu option are omitted, the COMMAND
clause produces no visual display, as described in “Invisible Menu Options”
on page 4-257.

The HELP Clause

The HELP clause specifies the number of a help message to display for option.
4GL displays this help message when the corresponding menu option is
current and a user presses the Help key. The default Help key is CONTROL-W.
You can use the OPTIONS statement to assign a different Help key.

The following MENU statement specifies different help message numbers for
each of two menu options:

MENU "MAIN"
COMMAND "Customer" "Enter and maintain customer data"

HELP 101
CALL customer()
CALL ring_menu()

COMMAND "Orders" "Enter and maintain orders" HELP 102
CALL orders()
CALL ring_menu()

...
END MENU

You can specify help messages (and their numbers) in an ASCII file whose
filename appears in the HELP FILE clause of the OPTIONS statement. Use the
mkmessage utility, as described in “The mkmessage Utility” on page B-2, to
create a runtime version of the help file. A runtime error occurs if the help file
cannot be opened, or if you specify a help number that is not defined in the
help file, or that is greater than 32,767.

An invisible menu option cannot have a Help clause.

MENU

INFORMIX-4GL Statements 4-255

The KEY Clause

The KEY clause in a MENU control block specifies one or more activation keys
that users can press to choose the option (if an option name is specified) and
to execute the statements in the MENU control block. If you omit the KEY
clause, the first character in option name is the default activation key to
choose the option. Conversely, if the KEY clause assigns a key to an option,
the first letter no longer activates the option.

If a user chooses the option, 4GL executes the statements in the MENU control
block that includes the COMMAND clause. If EXIT MENU is not among these
statements, 4GL redisplays the menu, so the user can choose another option.

This MENU statement, for example, creates a menu entitled TOP LEVEL that
displays five options. The default activation keys are A, F, C, D, and E:

MENU "TOP LEVEL"
COMMAND "Add" "Add a row to the database."

...
COMMAND "Find" "Find a row in the database."

...
COMMAND "Change" "Update a row in the database."

...
COMMAND "Delete" "Delete a row from the database."

...
COMMAND "Exit" "Return to the operating system."

EXIT MENU
END MENU

This MENU statement produces the following initial display:

One option is always marked as the current option. This option is marked by
a double border, called the menu cursor.

TOP LEVEL: Find Change Delete Exit
Add a row to the database

Add

MENU

4-256 HCL Informix 4GL Reference Guide

The line under the menu options (the Menu help line) displays a description
of the menu option, as specified in the COMMAND clause for that menu
option. If the menu cursor moves to another option, the display in this line
changes, unless you specify the same description for both menu options.

4GL executes the statements in the MENU control block if the user presses an
activation key that you specify by key specification in the KEY clause:

■ Letters (Both upper- and lowercase letters are valid, but 4GL does not
distinguish between them.)

■ Symbols (such as !, @, or #) enclosed between quotation marks
■ Any of the following keywords (in uppercase or lowercase letters):

DOWN
ESC or ESCAPE

INTERRUPT
LEFT

RETURN or ENTER
RIGHT

TAB
UP

F1 through F64
CONTROL-char (e cept A, D, H, I, J K, L, M, R, or X)

The following keys deserve special consideration before you assign them as
activation keys in the KEY clause of a MENU statement.

Key Special Considerations

ESC or ESCAPE You must use the OPTIONS statement to specify another key as
the Accept key, because this is the default Accept key.

Interrupt

QUIT

You must include a DEFER INTERRUPT statement. When the
user presses the Interrupt key under these conditions, 4GL
executes the statements in the MENU control block and sets
int_flag to non-zero, but does not terminate the MENU
statement.
4GL also executes the statements in the control block if DEFER
QUIT has been executed and the user presses the Quit key. In this
case, 4GL sets quit_flag to non-zero.

(1 of 2)

MENU

INFORMIX-4GL Statements 4-257

Key Special Considerations

CONTROL-char

A, D, H, K
L, R, and X

4GL reserves these keys for field editing.

I, J, and M The usual meanings of these keys (TAB, LINEFEED, and RETURN,
respectively) are not available to the user. Instead, the key is
trapped by 4GL and used to trigger the menu option. For
example, if CONTROL-M appears in the KEY clause, the user
cannot press RETURN to advance the cursor to the next field.

(2 of 2)

Some other control keys, such as S, Q, or Z also might not be allowed,
depending on your implementation of UNIX.

The key must be unique among all KEY clauses of the same MENU statement.
You might not be able to specify other keys that have special meaning to your
operating system. The key value also cannot be the default activation key of
any other COMMAND clause. If you specify a letter here as the activation key,
it must be different from the first letter of any option of the same menu.

See also “COMMAND KEY Conflicts” on page 4-271.

Invisible Menu Options
You can add an invisible option (an option that is never displayed) to a menu
by including a KEY clause in the COMMAND clause of the MENU control
block, but not specifying an option name or an option description.

Just as with visible options, the key value cannot be the activation key of any
other COMMAND clause. If you specify a letter here as the activation key, it
must be different from the first letter of any option of the same menu.

 ,

COMMAND KEY (4 key)

MENU

4-258 HCL Informix 4GL Reference Guide

The following MENU statement creates a menu named TOP LEVEL with six
options, of which only five appear in the menu display. The exclamation
point (!) key chooses an invisible option that is not displayed on the menu.
Here a description and a help number are associated with each visible option:

MENU "TOP LEVEL"
COMMAND "Add" "Add a row to the database" HELP 12

...
COMMAND "Find" "Find a row in the database" HELP 13

...
COMMAND "Change" "Update a row in the database" HELP 14

...
COMMAND "Delete" "Delete a row from the database" HELP 15

...
COMMAND KEY ("!")

CALL bang()
...

COMMAND "Exit" "Return to operating system" HELP 16
EXIT PROGRAM

END MENU

These statements produce the following menu display:

At least one COMMAND clause, however, must include an option. You cannot
specify a menu in which every option is invisible. If your application requires
such a menu, the MENU statement can include a COMMAND clause in which
the option is null (that is, an empty string), as in the following example:

MENU ""
COMAND ""
COMMAND KEY(UP) DISPLAY "Up " AT 3,1
COMMAND KEY(DOWN) DISPLAY "Down " AT 3,1
COMMAND KEY(LEFT) DISPLAY "Left " AT 3,1
COMMAND KEY(RIGHT) DISPLAY "Right" AT 3,1
COMMAND KEY(INTERRUPT) EXIT MENU
END MENU

This example would not be valid if the first COMMAND clause were omitted.

TOP LEVEL: Find Change Delete Exit
Add a row to the database

Add

MENU

INFORMIX-4GL Statements 4-259

The CONTINUE MENU Statement
The CONTINUE MENU statement causes 4GL to ignore the remaining state-
ments in the current MENU control block, and redisplay the menu. The user
can then choose another menu option, as in the following program fragment.

In this example, the Yearly Report option first cautions the user that a report
takes several hours to create. If the user types Y to create the report, 4GL calls
the calc_yearly() function. Otherwise, 4GL executes the CONTINUE MENU
statement and redisplays the YEAR END menu:

MENU "YEAR END"
COMMAND "Yearly Report" "Compile Yearly Statistics Report"

PROMPT "This report takes several hours to create." ,
"Do you want to continue? (y/n)" FOR answer

IF answer MATCHES "[Yy]" THEN
CALL calc_yearly()

ELSE
CONTINUE MENU

...
END MENU

The EXIT MENU Statement
The EXIT MENU statement terminates the MENU statement without executing
any remaining statements in the menu control blocks. Use this statement at
any point where you want the user to leave the menu instead of redisplaying
it. You must specify this statement for at least one menu option in each 4GL
menu. Otherwise, the user will have no way to leave the menu.

If it encounters the EXIT MENU statement, 4GL takes the following actions:

■ Skips all statements between the EXIT MENU and END MENU
keywords

■ Deactivates the menu and erases the menu from the screen.
■ Resumes execution at the first statement after the END MENU

keywords

The following example demonstrates using the EXIT MENU keywords in the
MENU block of a menu option named Exit:

MENU "CUSTOMER"
...
COMMAND "Exit" "leave the CUSTOMER menu." HELP 5

EXIT MENU
END MENU

MENU

4-260 HCL Informix 4GL Reference Guide

(To exit from the current MENU control block without exiting from the MENU
statement, use the CONTINUE MENU keywords rather than EXIT MENU.)

The NEXT OPTION Clause
When 4GL finishes executing the statements in a control block that includes a
COMMAND clause, the option just executed remains as the current option. If
you want a different option to be the current option, use the NEXT OPTION
keywords. The NEXT OPTION clause identifies the name of a menu option to
make current. This clause does not choose the next menu option; rather, it
identifies the next menu option that will be highlighted as the current option.
The user can simply press RETURN to choose the current option.

In the following MENU statement, if the user selects the Query option, 4GL
calls the function query_data(), and redisplays the menu with Modify as the
current option. To choose the Modify option, the user presses RETURN.

MENU "CUSTOMER"
COMMAND "Query" "Search for a customer"

CALL query_data()
NEXT OPTION "Modify"

...
COMMAND "Modify" "Modify a customer"

...
END MENU

Without NEXT OPTION, 4GL would display Query as the current option; the
user would have to make Modify the current option and then press RETURN.

If you want the cursor to move among menu options in a certain order, list
their defining COMMAND clauses in the desired order. Use the NEXT OPTION
keywords only if you want to deviate from the default left-to-right order of
the ring menu.

The HIDE OPTION and SHOW OPTION Keywords
When you want to display a subset of the menu options, use the HIDE
OPTION and SHOW OPTION keywords to specify which options appear on a
menu. The HIDE OPTION keywords can conceal some menu options from
users. 4GL does not display a hidden option in the menu, and does not
recognize as valid any keystroke that would otherwise select the option (if it
were visible). Such options remain hidden and disabled, until 4GL executes a
SHOW OPTION clause that references their option name.

MENU

INFORMIX-4GL Statements 4-261

The following MENU statement creates a menu with seven options. The
Long_menu option shows all options; the Short_menu options shows only
the Query, Long_menu, and Exit options:

MENU "Order Management"
COMMAND "Query" "Search for orders"

CALL get_orders()
COMMAND "Add" "Add a new order"

CALL add_order()
COMMAND "Update" "Update the current order"

CALL upd_order()
COMMAND "Delete" "Delete the current order"

CALL del_order()
COMMAND "Long_menu" "Display all menu options"

SHOW OPTION ALL
COMMAND "Short_menu" "Display a short menu"

HIDE OPTION ALL
SHOW OPTION "Query", "Long_menu", "Exit"

COMMAND "Exit" "Exit from the Order Management Form"
EXIT MENU

END MENU

If you specify the options to hide by listing them in character variables, you
must assign values to the variables before you can include the variables in a
HIDE OPTION clause. (For more information about variables, see “Identifiers
in the MENU Statement” on page 4-263.)

The ALL keyword in a SHOW OPTION or HIDE OPTION clause specifies all of
the menu options that you created in any COMMAND clause.

Use the SHOW OPTION keywords to restore a list of menu options that the
HIDE OPTION keywords disabled. By default, 4GL displays all menu options.
You only need to use this statement if you have previously specified the HIDE
OPTIONS keywords to disable at least one menu option.

4GL displays menu options in the same order in which their COMMAND
clauses defined them. The order in which a SHOW OPTION clause lists
options has no effect on the order of their subsequent appearance in the
menu.

Do not confuse hidden options with invisible options. Neither appears on the
menu, but hidden options cannot be accessed by the user until after they have
been enabled by the SHOW OPTION keywords. Invisible options have an
activation key, but no command name. Their statement blocks can be
accessed by pressing an activation key, but they do not appear in the menu.

MENU

4-262 HCL Informix 4GL Reference Guide

The HIDE OPTION and SHOW OPTION keywords cannot affect invisible
options, because (as their name suggests) invisible options are never
displayed. Use some other approach to enable and disable invisible options;
for example, you might specify their actions within a conditional statement.

The following example MENU statement populates a menu with eight
options. The Long_menu option shows all options; the Short_menu option
shows only the Query, Details, Long_menu, and Exit options.

MENU "Order Management"
COMMAND "Query" "Search for orders"

CALL get_orders()
COMMAND "Add" "Add a new order"

CALL add_order()
COMMAND "Update" "Update the current order"

CALL upd_order()
COMMAND "Delete" "Delete the current order"

CALL del_order()
COMMAND "Details" "Display details about current order"

CALL det_order()
COMMAND "Long_menu" "Display all menu options"

SHOW OPTION ALL
COMMAND "Short_menu" "Display a short menu"

HIDE OPTION ALL
SHOW OPTION "Query", "Details", "Long_menu", "Exit"

COMMAND "Exit" "Exit the Order Management Form"
EXIT MENU

END MENU

The HIDE OPTION and SHOW OPTION keywords are valid in a BEFORE MENU
clause or in a COMMAND clause.

You must assign a value to a variable used to specify a menu option before
you can include the variable in a HIDE OPTION statement.

Nested MENU Statements
You can nest MENU statements within MENU control blocks, so that the
menus form a tree hierarchy. Nested MENU statements can appear either
directly in a statement block or in 4GL functions that are called directly or
indirectly when the user chooses options of the enclosing menu.

MENU

INFORMIX-4GL Statements 4-263

The END MENU Keywords
Use the END MENU keywords to indicate the end of the MENU statement. The
END MENU keywords must follow the last statement in the last MENU control
block. These keywords are required in every MENU statement. If you are
nesting menus within menus, you must include a separate set of END MENU
keywords to mark the end of each MENU statement construct.

If 4GL encounters the EXIT MENU statement within any MENU control block,
control of execution is immediately transferred to the first statement that
follows the END MENU keywords. (To terminate the current MENU control
block without exiting from the MENU statement, use the CONTINUE MENU
keywords, rather than END MENU or EXIT MENU.)

Identifiers in the MENU Statement
You can specify a character variable for the following items:

■ The menu title
■ The option name
■ The option description
■ The NEXT OPTION option name
■ The SHOW OPTION or HIDE OPTION option name

Assignment statements can appear before 4GL executes the MENU statement
or within the MENU statement. You can specify variable values in the BEFORE
MENU block and in one or more of the subsequent MENU control blocks.
Make sure, however, that a variable has a value before you include it in the
MENU statement.

MENU

4-264 HCL Informix 4GL Reference Guide

Keep the following considerations in mind if you change the value of a
variable that was used as the menu title or as an option name in a MENU
statement:

■ 4GL determines the length of the menu title and of each option name
when it first displays the menu. This length does not change during
the MENU statement. If you subsequently assign a new value to a
variable, 4GL displays as much of the new value as can fit in the
existing space.
For example, suppose that you assign the string Short_Menu
(10 characters) to a variable, and later specify that variable as a menu
title. If a subsequent statement in a control block of the same MENU
statement assigns the new value Very_Long_Menu (14 characters)
to the variable, 4GL displays only the first 10 characters of the new
title.
Similarly, if a second MENU control block assigns the value Menu (4
characters) to the variable that you specified as the menu title, 4GL
displays the new title with 6 trailing blank spaces. For examples of
using a variable as a menu title, an option name, and an option
description in the MENU statement, see the program fragment in
“Completing the MENU Statement” on page 4-268.

■ If you use an array element (for example, p_array[i]) as a variable in
a MENU statement, be aware that 4GL calculates the value of the
index variable only once, before it first displays the menu. To index
into the array, 4GL uses the value of the index variable after executing
the BEFORE MENU block (if that block is included). Any subsequent
changes to the index variable made in subsequent MENU CONTROL
BLOCKS do not affect the way that 4GL evaluates the array element
variable.

4GL produces a runtime error if the length of a variable or quoted string that
specifies a menu name, an option name, or an option description exceeds the
width of the current 4GL window.

MENU

INFORMIX-4GL Statements 4-265

Choosing a Menu Option
The user can choose a menu option in any of the following ways:

■ Using the arrow keys to position the menu cursor on the option and
pressing RETURN (See also “Scrolling the Menu Options” on

page 4-266.)
■ Typing a key sequence that the KEY clause associated with the option

■ Typing the first letter or letters of the option name (regardless of
whether the option is currently displayed on the screen)

When the user types a letter, 4GL looks for a unique match among options:

■ If only one option begins with the letter, or only one option is
associated in a KEY clause with the letter, the choice is unambiguous.
4GL executes the commands associated with the option.

■ If more than one option begins with the same letter, 4GL clears the
second line of the menu and prompts the user to clarify the choice.
4GL displays each keystroke, followed by the names of the menu
options that begin with the typed letters. When 4GL identifies a
unique option, it closes this prompt line and executes the statements
associated with the selected menu option.

For example, the next menu includes three options that begin with the letters
Ma. The following screen is displayed when the user types the letter M:

Resorts: Oxnard Malaysia Malta Manteca Pittsburgh Portugal Exit
Select: M Malay Malta Manteca

MENU

4-266 HCL Informix 4GL Reference Guide

When the user types Mal, 4GL drops Manteca from the list and displays the
two remaining options:

At this point, the user can type an a to select Malay or a t to select Malta.

The arrow keys have no effect when choosing among menu options that
begin with the same letters. Pressing BACKSPACE deletes the keystroke to the
left of the cursor.

Scrolling the Menu Options
When 4GL displays a menu, it adds a colon (:) symbol and a blank space after
the menu name, and a blank space before and after each menu option. If the
width of the menu exceeds the number of characters that the screen or a 4GL
window can display on a single line, 4GL displays the first page of options
followed by ellipsis (…) points. This indicates that additional options exist.

For example, the following menu displays an ellipsis:

Resorts: Oxnard Malaysia Malta Manteca Pittsburgh Portugal Exit
Select: Mal Malay Malta

menu-name:
optional Help line

menu-option2 menu-option3 menu-option4 ... menu-option1

MENU

INFORMIX-4GL Statements 4-267

If the user presses SPACEBAR or RIGHT ARROW to move past the right-most
option (menu-option4 in this case), 4GL displays the next page of menu
options. In the following example, the ellipses at both ends of the menu
indicate that more menu options exist in both directions:

If the user moves the highlight to the right past menu-option8 in this
example, 4GL displays a page of menu options:

Here no ellipsis appears at the right of the menu, because the user has come
to the last page of the menu options. The user can display the previous page
of menu options again by using ← to move the highlight past the left-most
menu option, or can press → to move past the right-most option to display
the first page, as if the first option followed the last. (This is why 4GL menus
are called ring menus.)

menu-name: ...
optional Help line

menu-option6 menu-option7 menu-option8 ... menu-option5

menu-name: ...
optional Help line

menu-option10 menu-option11 menu-option12 menu-option9

MENU

4-268 HCL Informix 4GL Reference Guide

The following keys can move through a menu.

Key Effect

→,
SPACEBAR

Moves the menu cursor to the next option. If the menu displays an
ellipsis (…) on the right, pressing RIGHT ARROW from the right-most
option displays the next page of menu options. If the last menu option
is current and no ellipsis is on the right, RIGHT ARROW returns to the
first option in the first page of menu options.

← Moves the menu cursor to the previous option. If the menu displays
an ellipsis (…) on the left, pressing LEFT ARROW from the left-most
option displays the previous page of menu options. If the first menu
option is current and no ellipsis is on the left, pressing LEFT ARROW
returns to the last option on the last page of menu options.

↑ Moves the menu cursor to the first option on the previous menu page.

↓ Moves the menu cursor to the first option on the next page of options.

During interactive statements like INPUT, CONSTRUCT, or INPUT ARRAY,
errors would be likely to result if the user could interrupt the interaction with
menu choices. 4GL prevents this possibility by disabling the entire menu
during the execution of these statements. The menu does not change its
appearance when it is disabled.

Completing the MENU Statement
Any of the following actions can terminate the MENU statement:

■ The user presses the Interrupt key.
■ 4GL encounters the EXIT MENU statement.

By default, pressing the Interrupt key terminates program execution immedi-
ately. Unlike the CONSTRUCT, DISPLAY ARRAY, and INPUT statements, the
MENU statement is not terminated by the Interrupt key if 4GL has executed
the DEFER INTERRUPT statement. In these cases, an Interrupt signal causes
4GL to take the following actions:

■ Set the global variable int_flag to a non-zero value.
■ Remain in the MENU statement until EXIT MENU is encountered.

MENU

INFORMIX-4GL Statements 4-269

The EXIT MENU statement is typically included in a MENU control block that
is activated when the user chooses an Exit or Quit option, as in the next
example. If menus are nested, EXIT MENU terminates only the current MENU
statement, passing control to the innermost enclosing MENU statement.

In the following program fragment, the MENU statement uses variables for
the menu name, command name, and option description:

DEFINE menu_name, command_name CHAR(10),
option_desc CHAR(30),
priv_flag SMALLINT

LET menu_name = "NOVICE"
LET command_name = "Expert"
LET option_desc = "Display all menu options."

IF ... THEN
LET priv_flag = 1

END IF

MENU menu_name
BEFORE MENU

HIDE OPTION ALL
IF priv_flag THEN -- expert user

LET menu_name = "EXPERT"
LET command_name = "Novice"
LET option_desc = "Display a short menu."
SHOW OPTION ALL

ELSE -- novice user
SHOW OPTION "Query", "Detail", "Exit", command_name

END IF

COMMAND "Query" "Search for rows." HELP 100
CALL get_cust()

COMMAND "Add" "Add a new row." HELP 101
CALL add_cust()

COMMAND "Update" "Update the current row." HELP 102
CALL upd_cust()
NEXT OPTION "Query"

COMMAND "Delete" "Delete the current row." HELP 103
CALL del_cust()
NEXT OPTION "Query"

COMMAND "Detail" "Get details." HELP 104
CALL det_ord()
NEXT OPTION "Query"

COMMAND command_name option_desc HELP 105
IF priv_flag THEN -- EXPERT menu visible

LET menu_name = "NOVICE"
LET command_name = "Expert"
LET option_desc = "Display all menu options."
HIDE OPTION ALL
SHOW OPTION "Query", "Detail", "Exit", command_name
LET priv_flag = 0

ELSE -- NOVICE menu visible
LET menu_name = "EXPERT"
LET command_name = "Novice"
LET option_desc = "Display a short menu."

MENU

4-270 HCL Informix 4GL Reference Guide

SHOW OPTION ALL
LET priv_flag = 1

END IF
COMMAND KEY ("!")

CALL bang()
COMMAND "Exit" "Leave the program." HELP 106

EXIT MENU
END MENU

These statements produce two menus. This is the EXPERT menu:

This is the simpler NOVICE menu:

EXPERT: Add Update Delete Detail Novice Exit
Search for rows.

Query

NOVICE: Detail Expert Exit
Search for rows.

Query

MENU

INFORMIX-4GL Statements 4-271

COMMAND KEY Conflicts
In 4GL releases earlier than 6.x, the runtime MENU code gave inconsistent
visual results and hung menus if a conflict existed between COMMAND KEY
clauses of the same menu or between a COMMAND KEY clause and the
default activation key of a COMMAND clause.

Because a single keystroke immediately activates the statements in a
COMMAND KEY code structure (without waiting for you to press RETURN), no
key specification in a COMMAND KEY clause can logically appear more than
once in a given menu. The runtime code, however, did not check for such a
programming error, and confusing prompts might be issued to the user if
such an error existed in a menu.

The following example illustrates the improper coding methods and typical
runtime results. Here is a conflict between two COMMAND KEY clauses:

MENU "main 1"
COMMAND KEY (F3, "a")

MESSAGE "This is F3 or <a> only"
SLEEP 1

COMMAND KEY (F3, CONTROL-F)
MESSAGE "This is F3 or CONTROL-F"
SLEEP 1

If the F3 key were pressed while this menu was active, the program entered
an error state from which it could not recover. A submenu of the style used
to resolve conflicts of default activation keys in COMMAND option clauses (as
illustrated in “Choosing a Menu Option” on page 4-265) appeared inappro-
priately with two invisible prompts:

Select: \072 (invisible) (invisible)

Such conflicts between COMMAND KEY clauses always produced two
(invisible) prompts, regardless of how many keys were acceptable to the
COMMAND KEY clause. Any subsequent keystroke only rang the terminal
bell, and so for the program to terminate, it had to be killed with a signal
(such as the Interrupt or Quit key).

MENU

4-272 HCL Informix 4GL Reference Guide

A related problem in 4GL releases earlier than 6.x is conflict between a
COMMAND clause and a COMMAND KEY clause, where the first character of
the COMMAND option, whether specified as a literal or as a variable, conflicts
with a printable character that can activate a COMMAND KEY clause. If the
user pressed an ambiguous key (b in the following example), a submenu
appeared with one side showing invisible:

MENU "main 1"
COMMAND KEY (F3, "a", F22, F23)

MESSAGE "This is F3, <a>, F22, or F23 only"
SLEEP 1

COMMAND KEY (F4, "b")
MESSAGE "This is F4 or only"
SLEEP 1

COMMAND "bark" "collides with command key (f4, b)"
MESSAGE "This collides with command key (f4, b)"
SLEEP 1

If the proper second letter was pressed (in this case), the menu proceeded
normally; any other keystroke simply activated the terminal bell.

In this release, the runtime menu library detects such collisions. If such a
conflict occurs, error -1176 is issued:

,A COMMAND KEY value occurs elsewhere in the current menu

and the program terminates.

If you encounter error -1176, it means that a COMMAND KEY conflict already
exists in that menu. You need to revise the offending COMMAND KEY clauses
to remove the conflict.

References
CONTINUE, DEFER, OPEN WINDOW, OPTIONS

MESSAGE

INFORMIX-4GL Statements 4-273

MESSAGE
The MESSAGE statement displays a character string on the Message line.

Usage
You can specify any combination of variables and strings for the message
text. 4GL generates the message to display by replacing any variables with
their values and concatenating the strings. If the length of the message text
exceeds the width of the screen or 4GL window, the text is truncated to fit.

The Message Line
4GL displays message text in the Message line. 4GL positions this reserved
line according to default or explicit Message line specification for the
program or for the current 4GL window, in this order of descending
precedence:

1. A MESSAGE LINE specification in the most recent OPTIONS statement
2. A MESSAGE LINE specified in the most recent OPEN WINDOW

statement
3. The default Message line, or the second line of the current 4GL

window

The message remains on the screen until you display a menu or another
message.

MESSAGE

,

"string"

variable

string is a quoted string that contains message text.
variable is a CHAR or VARCHAR variable that contains message text.

Element Description

ATTRIBUTE
Clause
p. 3-96

MESSAGE

4-274 HCL Informix 4GL Reference Guide

To clear the Message line, you can display a blank message, like this:

MESSAGE " "

You can include the CLIPPED and USING operators in a MESSAGE statement.
For example, the following MESSAGE statement uses the CLIPPED operator to
remove any trailing blanks from the string in the variable file_name:

DEFINE file_name CHAR(20)
...
MESSAGE "Printing mailing labels to", file_name CLIPPED,

" -- Please wait"

You can also use the ASCII and COLUMN operators. For information on using
the 4GL built-in functions and operators, see Chapter 5.

If you position the Message line so that it coincides with the Comment line,
Menu line, or fields of a form, output from the MESSAGE statement is not
visible. For example:

DATABASE stores
MAIN

DEFINE p_customer RECORD LIKE customer.*
OPEN WINDOW r1 AT 4,1 WITH FORM "platonic"

ATTRIBUTE (MESSAGE LINE LAST)
MESSAGE "This is a word to the wise."
INPUT BY NAME p_customer.*
CLOSE WINDOW r1

END MAIN

This program does not display the text of the MESSAGE statement, because
the default position of the Comment line is also the last line. If the ATTRIBUTE
clause of OPEN WINDOW in the same example were revised to specify

ATTRIBUTE (MESSAGE LINE LAST, COMMENT LINE FIRST)

so that there was no conflict between those reserved lines, the message text
would appear when the MESSAGE statement was executed. For a description
of the syntax used to position reserved lines, see the “Positioning Reserved
Lines” sections of the OPEN WINDOW and OPTIONS statements.

The ATTRIBUTE Clause
For general information about syntax, see “The ATTRIBUTE Clause” on
page 4-41. This section describes specific information about using the
ATTRIBUTE clause within a MESSAGE statement.

MESSAGE

INFORMIX-4GL Statements 4-275

The default display attribute for the Message line is the NORMAL display.
You can use the ATTRIBUTE clause to alter the default display attribute of the
Message line. For example, the following statement changes the display
attribute of the message text to reverse video:

MESSAGE "Please enter a value " ATTRIBUTE (REVERSE)

4GL ignores the INVISIBLE attribute if you include it in the ATTRIBUTE clause
of the MESSAGE statement.

You can refer to substrings of CHAR, VARCHAR, and TEXT type variables by
following the variable name with a pair of integers to indicate the starting
and ending position of the substring, enclosed between brackets ([]) and
separated by a comma. For example, the following MESSAGE statement
displays a 10-character substring of the full_name variable:

MESSAGE "Customer ", full_name[11,20]
CLIPPED, " added to the database"

Statements in the next program fragment perform the following tasks:

1. Use a MESSAGE statement to clear the Message line of any text.
2. Clear all the fields of the current form.
3. Use a PROMPT statement to instruct the user to type a name.
4. Assign the value of the entered string to the variable last_name.
5. Use another MESSAGE statement to indicate to the user that the

program is retrieving rows.
6. Clear the second message after a three -second delay:

MESSAGE ""
CLEAR FORM
PROMPT "Enter a last name:" FOR last_name
MESSAGE "Selecting rows for customer with last name ",

last_name, ". . ." ATTRIBUTE (YELLOW)
SLEEP 3
MESSAGE ""

References
DISPLAY, ERROR, OPEN WINDOW, OPTIONS, PROMPT

NEED

4-276 HCL Informix 4GL Reference Guide

NEED
NEED is a conditional statement to control output from the PRINT statement.
(The NEED statement can appear only in a REPORT program block.)

Usage
The NEED statement causes subsequent report output from the PRINT
statement to start on the next page of the report, if fewer than the specified
number of available lines remain between the current line of the page and the
bottom margin. NEED has the effect of a conditional SKIP TO TOP OF PAGE,
the condition being that the number returned by the integer expression must
be greater than the number of lines that remain on the current page.

The NEED statement can prevent 4GL from separating parts of the report that
you want to keep together on a single page. In the following example, the
NEED statement causes the PRINT statement to send output to the next page,
unless at lease six lines remain on the current page:

AFTER GROUP OF r.order_num
NEED 6 LINES
PRINT " ",r.order_date, 7 SPACES,

GROUP SUM(r.total_price) USING "$$$$,$$$,$$$.&&"

NEED does not include the BOTTOM MARGIN value in calculating the lines
available. If the number of lines remaining above the bottom margin on the
page is less than lines, both the PAGE TRAILER and the PAGE HEADER are
printed before the next PRINT statement is executed. You cannot include the
NEED statement in the PAGE HEADER or PAGE TRAILER control blocks.

NEED lines LINES

is an expression, as described in “Integer Expressions” on page 3-63, that
specifies how many lines must remain in the current page between the
line above the current character position and the bottom margin.

lines

Element Description

NEED

INFORMIX-4GL Statements 4-277

References
PAUSE, PRINT, REPORT, SKIP

OPEN FORM

4-278 HCL Informix 4GL Reference Guide

OPEN FORM
The OPEN FORM statement declares the name of a compiled 4GL form.

Usage
The following steps describe how to display a form:

1. Create a form specification file (with a .per extension).
2. Compile the form by using the Compile option of the Form menu in

the Programmer’s Environment or by using the form4gl command.
The compiled form file has .frm as its file extension.

3. Declare the form name by using the OPEN FORM statement.
4. Display the form by using the DISPLAY FORM statement.

Once 4GL displays the form, you can activate the form by executing the
CONSTRUCT, DISPLAY ARRAY, INPUT, or INPUT ARRAY statement.

When it executes the OPEN FORM statement, 4GL loads the compiled form
into memory. (The CLOSE FORM statement is a memory-management feature
to recover memory from forms that 4GL no longer displays on the screen.)

Specifying a Filename
The quoted string that follows the FROM keyword must specify the name of
the file that contains the compiled screen form. This filename can include a
pathname. You can omit or include the .frm extension:

OPEN FORM frmofmor FROM "/fomr/fmro.frm"

OPEN FORM form FROM "filename"

filename is a quoted string that specifies the name of a file that contains the
compiled screen form. This can also include a pathname.

form is a 4GL identifier that you assign here as the name of the form.

Element Description

OPEN FORM

INFORMIX-4GL Statements 4-279

The Form Name
The form name need not match the name of the form specification file, but it
must be unique among form names in the program. Its scope of reference is
the entire program. For more information, see “4GL Identifiers” on page 2-14.

Displaying a Form in a 4GL Window
To position the form in a 4GL window, precede the OPEN FORM statement
with the OPEN WINDOW statement. The following program fragment opens
the w_cust1 window, opens and displays the o_cust form in that 4GL
window, and calls the cust_order() function. When the function returns, the
CLOSE WINDOW statement closes both the form and the 4GL window:

MAIN
OPEN WINDOW w_cust1 AT 10,15

WITH 11 ROWS, 63 COLUMNS
ATTRIBUTE (BORDER)

OPEN FORM o_cust FROM "custorder"
DISPLAY FORM o_cust
CALL cust_order()
CLOSE WINDOW w_cust1

END MAIN

If you execute an OPEN FORM statement with the name of an open form, 4GL
first closes the existing form before opening the new form.

The WITH FORM keywords of OPEN FORM both open and display a form in
a 4GL window. You do not need to execute the OPEN FORM, DISPLAY FORM,
and CLOSE FORM statements if you use the OPEN WINDOW statement to
display the form. You also do not need to use the CLOSE FORM statement to
release the memory allocated to the form. Instead, you can use the CLOSE
WINDOW statement to close both the form and the 4GL window, and to
release the memory. For example, the following statements open 4GL
window w_cust2, call function cust_order(), and then close the 4GL window:

OPEN WINDOW w_cust2 AT 10,15 WITH FORM "custorder"
CALL cust_order()
CLOSE WINDOW w_cust2

References
CLEAR, CLOSE FORM, CLOSE WINDOW, CURRENT WINDOW, OPEN WINDOW,
OPTIONS

OPEN WINDOW

4-280 HCL Informix 4GL Reference Guide

OPEN WINDOW
The OPEN WINDOW statement declares and opens a 4GL window.

OPEN WINDOW window AT
Clause

WITH
Clause

AT top-line , left-offset

WITH height ROWS , width COLUMNS

FORM "filename"

variable

WITH
Clause

AT
Clause

OPEN
WINDOW

ATTRIBUTE
Clause
p. 4-284

filename is a quoted string that specifies the file containing a compiled 4GL form.
This can include a pathname and file extension.

height is an integer expression to specify the height, in lines.
left-offset is an integer expression to specify the position of the left margin, in

characters, where 0 = the left edge of the 4GL screen.
top-line is an integer expression to specify the position of the top line of the 4GL

window, where 0 = the top of the 4GL screen.
variable is a CHAR or VARCHAR variable that specifies the filename.
width is an integer expression to specify the width, in characters.
window is the identifier declared here for the 4GL window to be opened.

Element Description

OPEN WINDOW

INFORMIX-4GL Statements 4-281

Usage
A 4GL window is a rectangular area in the 4GL screen that can display a form,
a menu, or output from the DISPLAY, MESSAGE, or PROMPT statement. The
4GL screen can display one or more 4GL windows concurrently.

An OPEN WINDOW statement can have the following effects:

■ Declares a name for the 4GL window

■ Specifies the position of the 4GL window on the 4GL screen

■ Defines the dimensions of the 4GL window, in lines and characters

■ Specifies the display attributes of the 4GL window

The window identifier must follow the rules for 4GL identifiers (as described
in “4GL Identifiers” on page 2-14) and be unique among 4GL windows in the
program. Its scope is the entire program. You can use this identifier to
reference the same 4GL window in other statements (for example, CLEAR,
CURRENT WINDOW, and CLOSE WINDOW).

The following topics are described in this section:

■ “The 4GL Window Stack” on page 4-281

■ “The AT Clause” on page 4-282

■ “The WITH ROWS, COLUMNS Clause” on page 4-282

■ “The WITH FORM Clause” on page 4-283

■ “The OPEN WINDOW ATTRIBUTE Clause” on page 4-284

The 4GL Window Stack
4GL maintains a window stack of all open 4GL windows. If you execute OPEN
WINDOW to open a new 4GL window, 4GL takes the following actions:

■ Saves any changes made to the current 4GL window

■ Adds the new 4GL window to the window stack

■ Makes the new 4GL window the current 4GL window

Other statements that can modify the window stack are CURRENT WINDOW
and CLOSE WINDOW.

OPEN WINDOW

4-282 HCL Informix 4GL Reference Guide

The AT Clause
The AT clause specifies the location of the top-left corner of the 4GL window.
The location is relative to the entire 4GL screen and is independent of the
position of any other 4GL windows.

You must specify these coordinates as expressions that return positive
integers within the following ranges:

■ The first expression must return an integer between 1 and (max -
lines), where max is the maximum number of lines in the 4GL screen,
and lines is the ROWS specification. The window begins on this line.

■ The second expression must return a whole number between 1 and
(length - characters), where length is the maximum number of
characters that the 4GL screen can display on one line, and characters
is the COLUMNS specification. This is the left margin.

A comma separates the two expressions in the AT clause. For example, the
following statement opens a 4GL window with the top-left corner at the third
line and the fifth character position of the 4GL screen:

OPEN WINDOW o1 AT LENGTH("Mom"), 5 WITH 10 ROWS, 40 COLUMNS

The WITH ROWS, COLUMNS Clause
The WITH lines ROWS, characters COLUMNS clause specifies explicit vertical
and horizontal dimensions for the 4GL window:

■ The expression at the left of the ROWS keyword specifies the height
of the 4GL window, in lines. This must be an integer between 1 and
max, where max is the maximum number of lines that the 4GL screen
can display.

■ The integer expression after the comma at the left of the COLUMNS
keyword specifies the width of the 4GL window, in characters. This
must return a whole number between 1 and length, where length is
the number of characters that your monitor can display on one line.

This statement opens a 4GL window 5 lines high and 74 characters wide:

OPEN WINDOW w2 AT 10, 12 WITH 5 ROWS, 74 COLUMNS

OPEN WINDOW

INFORMIX-4GL Statements 4-283

In addition to the lines needed for a form, allow room for the following
reserved lines:

■ The Comment line. (By default, this is the last line of the 4GL
window.)

■ The Form line. (By default, this is line 3 of the 4GL window.)
■ The Error line. (By default, this is the last line of the 4GL screen, not

of the 4GL window.)

4GL issues a runtime error if the 4GL window does not include sufficient lines
in to display both the form and these additional reserved lines. To reduce the
number of lines required by 4GL, you can define the Form line as line 1 or 2,
and change other reserved lines accordingly, such as the Prompt and Menu
lines. For information on how to make these changes, see “The OPEN
WINDOW ATTRIBUTE Clause” on page 4-284.

The minimum number of lines required to display a form in a 4GL window
is the number of lines in the form, plus an additional line below the form for
prompts, messages, and comments.

The WITH FORM Clause
As an alternative to specifying explicit dimensions, the WITH FORM clause
can specify a quoted string or a character variable that specifies the name of
a file that contains the compiled screen form. You can omit or include the .frm
file extension. 4GL automatically opens a 4GL window sized to the screen
layout of the form (as described in “The Screen Layout” on page 6-17) and
displays the form.

If you include a WITH FORM clause, the width of the 4GL window is from the
left-most character on the screen form (including leading blank spaces) to the
right-most character on the screen form (truncating trailing blank spaces).

The length of the 4GL window is the following sum:

(form line) + (form length)

OPEN WINDOW

4-284 HCL Informix 4GL Reference Guide

Here form line is the reserved line position on which to display the first line of
the form (by default, line 3) and form length is the number of lines in the screen
layout of the SCREEN section of the form specification file. 4GL adds one line
for the Comment line. Unless you specify FORM LINE in an ATTRIBUTE clause
or in the OPTIONS statement, the default value of this sum is form length + 2.
(For more information on screen layouts in 4GL forms, see “SCREEN Section”
on page 6-15.)

For example, the following statement opens a 4GL window called w1 and
positions its top-left corner at the fifth row and fifth column of the 4GL screen.
The WITH FORM clause opens and displays the custform form in this 4GL
window. If custform were 10 lines long and the FORM LINE option were the
default value (3), the height of w1 would be (10 + 3) = 13 lines:

OPEN WINDOW w1 AT 5, 5 WITH FORM "custform"

The WITH FORM clause is convenient if the 4GL window always displays the
same form. If you use this clause, you do not need the OPEN FORM, DISPLAY
FORM, or CLOSE FORM statement to open and close the form. The OPEN
WINDOW WITH FORM statement opens and displays the form. The CLOSE
WINDOW statement closes the 4GL window and the form.

You cannot use the WITH FORM clause for the following purposes:

■ To display more than one form in the same 4GL window
■ To display a 4GL window larger than the default dimensions (as

described earlier) when 4GL executes the WITH FORM clause

In these cases, you must specify explicit dimensions by using the WITH lines
ROWS, characters COLUMNS clause. You must also execute the OPEN FORM,
DISPLAY FORM, and CLOSE FORM statements to open, display, and close the
form or forms explicitly. (You typically are not required to use the CLOSE
FORM statement, which affects memory management, rather than the visual
interface of your program.)

The OPEN WINDOW ATTRIBUTE Clause
Use the OPEN WINDOW ATTRIBUTE clause to perform the following tasks:

■ Specify a border for the 4GL window
■ Display the 4GL window in reverse video or in a color
■ Reposition the Prompt, Message, Menu, Form, and Comment lines

OPEN WINDOW

INFORMIX-4GL Statements 4-285

The OPEN WINDOW ATTRIBUTE clause has the following syntax.

OPEN WINDOW
ATTRIBUTE Clause ,

ATTRIBUTE (REVERSE)

WHITE BORDER
YELLOW PROMPT LINE Reserved

Line
MAGENTA FORM LINE Position

RED MENU LINE p. 4-288

CYAN MESSAGE LINE

GREEN COMMENT LINE OFF

BLUE

BLACK NORMAL

BOLD

DIM

The color attributes are listed in the left-hand portion of the diagram. Besides
these, you can also specify INVISIBLE as a color, but this specification has no
effect in the OPEN WINDOW ATTRIBUTE clause. Without this clause, the
attributes and reserved line positions have the following default values.

Attribute Default Setting

Color The default foreground color on your terminal

REVERSE No reverse video

BORDER No border

PROMPT LINE line value FIRST (=1)

MESSAGE LINE line value FIRST + 1 (=2)

MENU LINE line value FIRST (=1)

FORM LINE line value FIRST + 2 (=3)

COMMENT LINE line value LAST - 1 (for the 4GL screen)
LAST (for all other 4GL windows)

OPEN WINDOW

4-286 HCL Informix 4GL Reference Guide

For more information on valid reserved line values, see “Positioning Reserved
Lines” on page 4-288. For more information about color and intensity
attributes, see Chapter 3.

If you specify a color or the REVERSE attribute in the ATTRIBUTE clause of an
OPEN WINDOW statement, it becomes the default attribute for displays in the
4GL window, except for menus. You can override this default by specifying a
different attribute in the ATTRIBUTE clause of the CONSTRUCT, DISPLAY,
DISPLAY ARRAY, DISPLAY FORM, INPUT, or INPUT ARRAY statement.

The Color and Intensity Attributes

Display attributes can be classified as color and intensity (or monochrome)
attributes. The color attributes described earlier override the default
foreground color on your terminal. On monochrome monitors, all color
attributes except BLACK are displayed as WHITE.

4GL displays the intensity attributes as follows on color monitors.

Attribute Displayed As

NORMAL WHITE

BOLD RED

DIM BLUE

For example, if you have a color monitor, the 4GL window specified in the
following statement is displayed with the BLUE attribute:

OPEN WINDOW w2 AT 10, 12 WITH 5 ROWS, 40 COLUMNS ATTRIBUTE (BLUE)

On a monochrome display, the BLUE attribute produces a white 4GL window.

The REVERSE Attribute

Use the REVERSE attribute to display the foreground of the 4GL window in
reverse video (sometimes called inverse video). The following statement
assigns the BLUE and REVERSE attributes to the w2 window:

OPEN WINDOW w2 AT 10, 12 WITH 5 ROWS, 40 COLUMNS
ATTRIBUTE (BLUE,REVERSE)

OPEN WINDOW

INFORMIX-4GL Statements 4-287

(9,9)
+

(9,40)
+

The BORDER Attribute

The BORDER attribute draws a border outside the specified 4GL window. The
border requires two lines on the screen (one above and another below the
window) and two character positions (one to the left and one to the right of
the window). Make sure to account for this space when you specify coordi-
nates in the AT clause. For example, the following statement opens a 4GL
window and displays a border around it:

OPEN WINDOW w1 AT 10,10 WITH 5 ROWS, 30 COLUMNS ATTRIBUTE (BORDER)

The following diagram indicates the coordinates of the border enclosing the
5 x 30 4GL window that was specified in the preceding example:

| |
| |
| |
| |
| |
+ +

(15,9) (15,40)

The coordinates of the top-left corner of the window border are 9, 9. The 4GL
window itself starts at 10, 10.

4GL draws the window with the characters defined in the termcap or
terminfo file. You can specify alternative characters in these files. Otherwise,
4GL uses the hyphen (-) for horizontal lines, the vertical bar (|) for vertical
lines, and the plus sign (+) for corners. Some termcap or terminfo files have
settings that require additional rows and columns to display windows. For
more information, see Appendix F, “Modifying termcap and terminfo.”

If a window and its border exceed the physical limits of the screen, a runtime
error occurs.

See also the built-in FGL_DRAWBOX() function, which displays rectangles (in
Chapter 5).

OPEN WINDOW

4-288 HCL Informix 4GL Reference Guide

Positioning Reserved Lines

The Reserved Line Position segment has the following syntax.

Line values specified in the OPTIONS ATTRIBUTE clause of the most recently
executed OPTIONS statement can position the Form, Prompt, Menu,
Message, Comment, and Error lines. (For more information, see “Positioning
Reserved Lines” on page 4-295.) If no line positions are specified in the
OPTIONS ATTRIBUTE or OPEN WINDOW ATTRIBUTE clauses, the 4GL window
uses the following default positions for its reserved lines.

Default Location Reserved for

First line Prompt line (output from PROMPT statement); also Menu line
(command value from MENU statement)

Second line Message line (output from MESSAGE statement; also the
description value output from MENU statement)

Third line Form line (output from DISPLAY FORM statement)

Last line Comment line in any 4GL window except SCREEN

These positional values are relative to the first or last line of the 4GL window,
rather than to the 4GL screen. (The Error line is always the last line of the 4GL
screen.) When you open a new 4GL window, however, the OPEN WINDOW
ATTRIBUTE clause can override these defaults for every reserved line (except
the Error line). This disables the OPTIONS statement reserved line specifica-
tions only for the specified 4GL window.

FIRST

+
integer

-

LAST

Reserved Line
Position

OPEN WINDOW

INFORMIX-4GL Statements 4-289

Except for the cases that are described later in this section, you can specify
any of the following positions for the reserved lines of 4GL:

■ FIRST

■ FIRST + integer
■ integer
■ LAST - integer
■ LAST

Here integer is a literal or variable that returns a positive whole number, such
that the LINE specification is no greater than the number of lines in the 4GL
window. This is true for all reserved lines except:

■ The Menu line: do not specify LAST

A menu requires two lines. The menu title and commands appear on
the Menu line, and command description appears on the next line. To
display a menu at the bottom of a 4GL window, specify MENU LINE
LAST - 1.

■ The Form line: do not specify LAST or LAST - integer

FIRST is the first line of the 4GL window (line 1), and LAST is the last line. The
following statement sets three reserved line positions:

OPEN WINDOW wcust AT 3,6 WITH 10 ROWS, 50 COLUMNS
ATTRIBUTE (MESSAGE LINE 20,

PROMPT LINE LAST-2,
FORM LINE FIRST)

If a 4GL window is not large enough to contain the specified value for one or
more of these reserved lines, 4GL increases its line value to FIRST or decreases
it to LAST, whichever is appropriate.

If the 4GL window is not wide enough to display all the text that you specify,
4GL truncates the message. You can use these features to display text:

■ PROMPT statement
■ MESSAGE statement
■ DISPLAY statement
■ COMMENTS attribute of a screen form

OPEN WINDOW

4-290 HCL Informix 4GL Reference Guide

Because the position of the Error line is relative to the 4GL screen, rather than
to the current 4GL window, the ATTRIBUTE clause of an OPEN WINDOW
statement cannot change the location of the Error line. Use the OPTIONS
statement to change the position of the Error line. (For details, see “Features
Controlled by OPTIONS Clauses” on page 4-292.)

Because the INPUT statement clears both the Comment line and the Error line
when moving between fields, do not use either of the following settings for
the Message or Prompt line:

■ The last line of the 4GL window (the default Comment line)

■ The last line of the 4GL screen (the default Error line)

If you intend to use these lines for messages or prompts, be sure to redefine
the Comment and Error lines too.

Hiding the Comment Line

By default, the last line of the current 4GL window is the Comment line,
which can display messages that the COMMENTS attribute of a 4GL form
specifies. The Comment line is a reserved line, which is cleared when the user
moves the visual cursor to a new line of the current screen form.

It is typically used to send messages to the user, rather than for data entry
or data display. In 4GL forms that do not use the COMMENTS attribute, the
Comment line is unused space on the screen.

You can conserve display space within a 4GL window by hiding the
Comment line. The syntax to do this (in the OPEN WINDOW ATTRIBUTE
clause) is:

COMMENT LINE OFF

If you use this syntax, the Comment line is hidden for that 4GL window and
cannot display messages from the form specification, even if some fields of a
form that this window displays have the COMMENTS attribute.

References
CLEAR, CLOSE FORM, CLOSE WINDOW, CURRENT WINDOW, DISPLAY,
MESSAGE, OPEN FORM, OPTIONS, PROMPT

OPTIONS

INFORMIX-4GL Statements 4-291

UNCONSTRAINED

-

number

+
LINE

COMMENT

ERROR

FORM

MENU
MESSAGE

PROMPT

OPTIONS

OPTIONS
The OPTIONS statement sets default features of screen interaction statements.

 ,

HELP FILE "filename "

LAST

DISPLAY ATTRIBUTE

ACCEPT KEY key

DELETE

INSERT

NEXT

PREVIOUS

INPUT WRAP
E

NO WRAP

FIELD ORDER

CONSTRAINED ON

SQL INTERRUPT OFF

PIPE IN FORM MODE

RUN IN LINE MODE

Element Description
filename is a quoted string that specifies the name of a file that contains the

compiled help messages. This can include a pathname.
key is a keyword to specify a physical or logical key.
number is a literal integer to specify a line number.

C la us e
p. 4-297

ATTR IBUT
OPTIONS

FIRST

OPTIONS

4-292 HCL Informix 4GL Reference Guide

Usage
The OPTIONS statement specifies default features for form-related statements
and for other 4GL screen-interaction statements.

The following topics are described in this section:

■ “Features Controlled by OPTIONS Clauses” on page 4-292

■ “Positioning Reserved Lines” on page 4-295

■ “Cursor Movement in Interactive Statements” on page 4-296

■ “The OPTIONS ATTRIBUTE Clause” on page 4-297

■ “The HELP FILE Option” on page 4-299

■ “Assigning Logical Keys” on page 4-299

■ “Interrupting SQL Statements” on page 4-301

■ “Setting Default Screen Modes” on page 4-307

Features Controlled by OPTIONS Clauses
A program can include several OPTIONS statements. If these statements
conflict in their specifications, the OPTIONS statement most recently encoun-
tered at runtime prevails. OPTIONS can specify the following features of other
4GL statements, including CONSTRUCT, DISPLAY, DISPLAY ARRAY, DISPLAY
FORM, ERROR, INPUT, INPUT ARRAY, MESSAGE, OPEN FORM, OPEN
WINDOW, PROMPT, REPORT, RUN, and START REPORT:

■ Positions of the reserved lines of 4GL

■ Input and display attributes

■ Logical key assignments

■ The name of the Help file

■ Whether SQL statements can be interrupted

■ Field traversal constraints

■ The default screen display mode

OPTIONS

INFORMIX-4GL Statements 4-293

If you omit the OPTIONS statement, 4GL uses defaults that are described in
the following table.

Clause Effect

COMMENT LINE Specifies the position of the Comment line. This displays
messages defined with the COMMENT attribute in the
form specification file. The default is (LAST - 1) for the
4GL screen, and LAST for all other 4GL windows.

ERROR LINE Specifies the position in the 4GL screen of the Error line
that displays text from the ERROR statement. The default
is the LAST line of the 4GL screen.

FORM LINE Specifies the position of the first line of a form. The
default is (FIRST + 2), or line 3 of the current 4GL
window.

MENU LINE Specifies the position of the Menu line. This displays the
menu name and options, as defined by the MENU
statement. The default is the FIRST line of the 4GL
window.

MESSAGE LINE Specifies the position of the Message line. This reserved
line displays the text listed in the MESSAGE statement.
The default is (FIRST + 1), or line 2 of the current 4GL
window.

PROMPT LINE Specifies the position of the Prompt line, to display text
from PROMPT statements. The default value is the FIRST
line of the 4GL window.

ACCEPT KEY Specifies the key to terminate an CONSTRUCT, INPUT,
INPUT ARRAY, or DISPLAY ARRAY statement. The
default is ESCAPE.

DELETE KEY Specifies the key in INPUT ARRAY statements to delete a
screen record. The default Delete key is F2.

INSERT KEY Specifies the key to open a screen record for data entry in
INPUT ARRAY. The default Insert key is F1.

NEXT KEY Specifies the key to scroll to the next page of a program
array of records in an INPUT ARRAY or DISPLAY
ARRAY statement. The default Next key is F3.

(1 of 2)

OPTIONS

4-294 HCL Informix 4GL Reference Guide

Clause Effect

PREVIOUS KEY Specifies the key to scroll to the previous page of program
records in an INPUT ARRAY or DISPLAY ARRAY
statement. The default Previous key is F4.

HELP KEY Specifies the key to display help messages. The default
Help key is CONTROL-W.

HELP FILE Specifies the file (produced by the mkmessage utility)
containing programmer-defined help messages.

DISPLAY ATTRIBUTE Specifies default attributes to use during a DISPLAY or
DISPLAY ARRAY statement when none is specified by
those statements or in the form specification file.

INPUT ATTRIBUTE Specifies the attributes to use during a CONSTRUCT or
INPUT statement when no attributes are specified by
those statements or in the form specification file.

INPUT NO WRAP Specifies that the cursor does not wrap. An INPUT or
CONSTRUCT statement terminates when a user presses
RETURN after the last field. This is the default value.

INPUT WRAP Specifies that the cursor wraps between the last and first
input fields during INPUT, INPUT ARRAY, and
CONSTRUCT statements, until the user presses the
Accept key. Pressing RETURN at the last field does not
deactivate the form.

FIELD ORDER
CONSTRAINED

FIELD ORDER
UNCONSTRAINED

Specifies that the UP ARROW key moves the cursor to the
previous field and the DOWN ARROW key moves the
cursor to the next field when users enter values for
CONSTRUCT or INPUT statements.

Specifies that the UP ARROW key moves the cursor to the
field above the current position and the DOWN ARROW
key moves the cursor to the field below the current cursor
position when users enter values for CONSTRUCT or
INPUT statements.

SQL INTERRUPT ON Specifies that the user can interrupt SQL statements as
well as 4GL statements.

SQL INTERRUPT OFF Specifies that the user cannot interrupt SQL statements.

(2 of 2)

OPTIONS

INFORMIX-4GL Statements 4-295

Positioning Reserved Lines
Except for the cases that are described later in this section, you can specify
any of the following positions for each reserved line of 4GL:

■ FIRST

■ FIRST + integer
■ integer
■ LAST - integer
■ LAST

Here integer is a variable or a literal that returns a positive whole number,
such that the LINE specification is no greater than the number of lines in the
4GL window or 4GL screen, except for these reserved lines:

■ The Form line: do not specify LAST or LAST - integer
■ The Menu line: do not specify LAST

A menu requires two lines. The menu title and commands appear on the Menu
line, and the command description appears on the following line. If you want a
menu to appear at the bottom of a 4GL window, specify MENU LINE LAST - 1.

FIRST is the top line of the current 4GL window (line 1), and LAST is the last
line. For example, the following statement sets three reserved line positions:

OPTIONS MENU LINE 20, PROMPT LINE LAST-2, FORM LINE FIRST

The line position for the Error line is relative to the 4GL screen, rather than to
the current 4GL window. The line value of any other reserved line is relative
to the first line of the current 4GL window (or to the 4GL screen, if that is the
current 4GL window). If the 4GL window is not wide enough to display all
the message text that you specify, 4GL truncates the message. You can use
these features of 4GL to display message text:

■ PROMPT statement
■ MESSAGE statement
■ DISPLAY statement
■ ERROR statement
■ COMMENTS attribute of a form specification file

OPTIONS

4-296 HCL Informix 4GL Reference Guide

Because the INPUT statement clears both the Comment line and the Error line
when the cursor moves between fields, it is not a good idea to set the Message
line or the Prompt line to either of the following positions:

■ The last line of the current 4GL window (the default Comment line)
■ The last line of the 4GL screen (the default Error line)

If a 4GL window is not large enough to contain the specified value for one or
more of these reserved lines, 4GL automatically decreases the position value
to FIRST or increases it to LAST, as appropriate. If the value that you specify
for the Prompt line exceeds the number of rows in the current window,
PROMPT LINE is set to its default value, the first row of the window.

Default line positions set by OPTIONS remain in effect until another OPTIONS
statement redefines them. They can also be reset by the ATTRIBUTE clause of
the OPEN WINDOW statement (as described in “Positioning Reserved Lines”
on page 4-288), but only for the specified 4GL window; after it closes, the
reserved line positions are restored to their values from the most recently
executed OPTIONS statement.

Cursor Movement in Interactive Statements
The tab order in which the screen cursor visits fields of a form is that of the
field list of currently executing CONSTRUCT, INPUT, or INPUT ARRAY state-
ments, except as modified by NEXT FIELD clause. By default, the interactive
statement terminates if the user presses RETURN in the last field (or if entered
data fills the last field, if that field has the AUTONEXT attribute).

The INPUT WRAP keywords change this behavior, causing the cursor to move
from the last field to the first, repeating the sequence of fields until the user
presses the Accept key. The INPUT NO WRAP option restores the default
cursor behavior.

Specify FIELD ORDER UNCONSTRAINED to cause the UP ARROW and DOWN
ARROW keys to move the cursor to the field above or below, respectively. Use
the FIELD ORDER CONSTRAINED option to restore the default behavior of the
UP ARROW and DOWN ARROW keys moving the cursor to the previous or next
field, respectively.

OPTIONS

INFORMIX-4GL Statements 4-297

The OPTIONS ATTRIBUTE Clause
This section describes the OPTIONS ATTRIBUTE clause. It explains the FORM
keyword and the WINDOW keyword in detail. For generic information about
the ATTRIBUTE clause, see Chapter 3.

This clause can specify features for input statements (CONSTRUCT, INPUT,
and INPUT ARRAY) and for display statements (DISPLAY and DISPLAY
ARRAY):

■ The attributes of the foreground of the 4GL window
■ Whether to use input attributes of the current form or 4GL window
■ Whether to use display attributes of the current form or 4GL window

 ,

ATTRIBUTE (BLINK)

BLACK

BLUE

REVERSE

UNDERLINE

CYAN

GREEN

MAGENTA

RED

BOLD

DIM

WHITE

YELLOW

INVISIBLE

NORMAL

FORM

WINDOW

OPTIONS ATTRIBUTE
Clause

OPTIONS

4-298 HCL Informix 4GL Reference Guide

If this clause conflicts with another attribute specification, 4GL applies the
precedence rules that are listed in “Precedence of Attributes” on page 3-98.
Any attribute defined by the OPTIONS statement remains in effect until 4GL
encounters an ATTRIBUTES clause that redefines the same attribute in one of
the following statements:

■ CONSTRUCT, INPUT, INPUT ARRAY, DISPLAY, or DISPLAY ARRAY

■ Another OPTIONS statement
■ An OPEN WINDOW statement

An ATTRIBUTE clause of an OPEN WINDOW, CONSTRUCT, INPUT, DISPLAY, or
DISPLAY ARRAY statement only temporarily redefines the attributes. After
the 4GL window closes (in the case of an OPEN WINDOW statement) or after
the statement terminates (in the case of an input or display statement), 4GL
restores the attributes from the most recent OPTIONS statement.

The FORM keyword in INPUT ATTRIBUTE or DISPLAY ATTRIBUTE clauses
instructs 4GL to use the input or display attributes of the current form. In the
following example, 4GL uses the display attributes from the form specifi-
cation file:

OPTIONS DISPLAY ATTRIBUTE (FORM)

Similarly, you can use the WINDOW keyword of the same options to instruct
4GL to use the input or display attributes of the current 4GL window. You
cannot combine the FORM or WINDOW attributes with any other attributes.

OPTIONS

INFORMIX-4GL Statements 4-299

The HELP FILE Option
The HELP FILE clause specifies an expression that returns the filename of a
help file. This filename can also include a pathname.

Messages in this file can be referenced by number in form-related statements,
and are displayed at runtime when the user presses the Help key. (The
mkmessage utility for help files is described in Appendix B.)

Assigning Logical Keys
The OPTIONS statement can specify physical keys to support 4GL logical key
functions in the current task. You can specify the following keywords in
uppercase or lowercase letters for key name.

DOWN NEXT or NEXTPAGE TAB
ESC or ESCAPE PREVIOUS or PREVPAGE UP
INTERRUPT RETURN or ENTER

LEFT RIGHT

F1 through F64
CONTROL-char (ex X)

For example, this statement redefines the Next Page and Previous Page keys:

OPTIONS NEXT KEY CONTROL-N, PREVIOUS KEY CONTROL-P

The keyword NEXTPAGE is a synonym for NEXT in 4GL statements (like
CONSTRUCT, DISPLAY ARRAY, INPUT, MENU, OPTIONS, and PROMPT) that
reference the Next Page key. Similarly, the keyword PREVPAGE is a synonym
for PREVIOUS in statements that reference the Previous Page key.

OPTIONS

4-300 HCL Informix 4GL Reference Guide

The following table lists keys that require special consideration before you
assign them in an OPTIONS statement.

Key Special Considerations

ESC or ESCAPE You must specify another key as the Accept key because ESCAPE
is the default Accept key. Reassign the Accept key in the
OPTIONS statement.

Interrupt You must first execute a DEFER INTERRUPT statement. When
the user presses the Interrupt key under these conditions, 4GL
executes the statements in the ON KEY block and sets the global
variable int_flag to non-zero, but does not terminate the current
statement. 4GL also executes the ON KEY statement block if the
DEFER QUIT statement has executed and the user presses the
Quit key. In this case, 4GL sets the quit_flag variable for the
current task to non-zero.

CONTROL-char

A, D, H, K,
L, R, and X

4GL reserves these keys for field editing.

I, J, and M The standard meaning of these keys (TAB, LINEFEED, and
RETURN, respectively) is not available to the user. Instead, the key
is trapped by 4GL and used to trigger the commands in the
OPTIONS statement. For example, if CONTROL-M appears in an
OPTIONS statement, the user cannot press RETURN to advance
the cursor to the next field. If you include one of these keys in an
OPTIONS statement, also restrict the scope of the statement.

You might not be able to use other keys that have special meaning to your
version of the operating system. For example, CONTROL-C, CONTROL-Q, and
CONTROL-S specify the Interrupt, XON, and XOFF signals on many systems.

To disable a key function, you can assign it to a control sequence that will
never be executed. For example, the editing control sequences (CONTROL-A, -D,
-H, -K, -L, -R, and -X) are always interpreted as field editing commands. If you
assign one of these control sequences to a key function, 4GL executes the
editing sequence instead of the key function. For example, the following
statement disables the Delete key:

OPTIONS DELETE KEY CONTROL-A

OPTIONS

INFORMIX-4GL Statements 4-301

After 4GL processes this statement, the user is no longer able to delete rows
in a screen array.

Interrupting SQL Statements
The SQL INTERRUPT option specifies whether the Interrupt key interrupts
SQL statements as well as 4GL statements. By default, this option is set to OFF,
so pressing the Interrupt key cannot interrupt SQL statements. If the user
presses the Interrupt key when an SQL statement is executing, 4GL waits for
the database server to complete the SQL statement before processing the
Interrupt as follows:

■ If the program contains the DEFER INTERRUPT statement, 4GL sets
the int_flag built-in variable to TRUE and continues execution.

■ If the program does not contain DEFER INTERRUPT, 4GL terminates
the program.

For more information on the actions of the DEFER INTERRUPT statement, see
the DEFER statement on page 4-78.

To enable the Interrupt key to interrupt SQL statements, your program must
contain:

■ the DEFER INTERRUPT statement.
■ the OPTIONS statement with the SQL INTERRUPT ON option.

OPTIONS

4-302 HCL Informix 4GL Reference Guide

When your program contains both these statements, 4GL takes the following
actions when the user presses the Interrupt key:

1. Tells the database server to terminate the current SQL statement.
The SQL statements in the following table can be terminated.

SQL Statement Considerations

ALTER INDEX Can be interrupted by Informix Dynamic Server only

ALTER TABLE

CREATE INDEX Can be interrupted by Informix Dynamic Server only

DELETE

FETCH Includes implicit FETCH during a FOREACH

INSERT Includes INSERT performed during a LOAD

OPEN If SELECT stores all the data in a temporary table

SELECT Includes SELECT performed during an UNLOAD

UPDATE

If the interrupted SQL statement is within a database transaction, the
database server must handle the interrupted transaction. For more
information, see “Interrupting Transactions” on page 4-303.

2. Sets the built-in int_flag to TRUE.

3. Sets the global SQLCA.SQLCODE and status variables to error code
-213.

4. Continues execution with the statement following the interrupted
SQL statement, if your program has the WHENEVER ERROR
CONTINUE compiler directive in effect; otherwise, the program
terminates.

For SQL statements not listed in the preceding table, 4GL will allow the
statement to complete before setting the built-in int_flag variable. It will then
continue execution with the statement following the SQL statement (if your
program has the WHENEVER ERROR CONTINUE compiler directive in effect).

OPTIONS

INFORMIX-4GL Statements 4-303

If the DEFER QUIT statement has been executed and the user presses the Quit
key (or sends a SIGQUIT signal), 4GL takes the same four actions, except that
it sets the global variable quit_flag, rather than int_flag.

If you specify SQL INTERRUPT ON, but later in the program you wish to
disable the SQL interruption feature, execute an OPTIONS SQL INTERRUPT
OFF statement. This statement restores the default of uninterruptable SQL
statements.

Interrupting Transactions

Interrupting an SQL statement has consequences for database transactions. In
typical 4GL applications, the SQL INTERRUPT ON feature is of very limited
value unless the database supports transaction logging. How to handle an
interrupted SQL statement depends on whether the database is ANSI-
compliant and on what type of transaction includes the SQL statement:

■ In non-ANSI-compliant databases that support transaction logging, a
transaction is either:
❑ an explicit transaction. This starts with a BEGIN WORK statement

and ends with either the COMMIT WORK (save the transaction)
or ROLLBACK WORK (cancel the transaction) statement.

❑ a singleton transaction. An SQL statement that is not within an
explicit transaction (preceded by BEGIN WORK) is in a trans-
action of its own. The transaction ends when the SQL statement
completes.

■ In ANSI-compliant databases, a transaction is always in effect. Trans-
actions in such databases are called implicit transactions.

In all three cases, the WORK keyword is optional in transaction management
statements. Your code might be easier to read, however, if you include it.

Interrupting Implicit Transactions

In ANSI-compliant databases, a transaction is always in effect. BEGIN WORK
is not needed because any COMMIT WORK or ROLLBACK WORK statement
that ends a transaction automatically marks the beginning of a new implicit
transaction. No SQL statement can be executed outside of a transaction.

If a user interrupts an implicit transaction, no automatic ROLLBACK WORK
occurs. The current transaction is still in progress. ♦

ANSI

OPTIONS

4-304 HCL Informix 4GL Reference Guide

Interrupting Singleton Transactions

A singleton transaction occurs for every SQL statement executed outside a
transaction. Singleton transactions occur only in databases that are not ANSI-
compliant.

In a database that is not ANSI-compliant, and that uses transaction logging,
the BEGIN WORK statement is required to begin a transaction. The database
server treats any SQL statement that you execute outside of a transaction as a
singleton transaction.

If an interruptable SQL statement (those listed in “Interrupting SQL State-
ments” on page 4-301) is within a singleton transaction and is interrupted,
the database server automatically rolls back the current transaction before
returning control to the 4GL program. Just as before the SQL statement was
interrupted, no transaction is currently in progress.

Interrupting Explicit Transactions

An explicit transaction is enclosed between a BEGIN WORK and COMMIT
WORK or ROLLBACK WORK statement. Explicit transactions occur only in
databases that are not ANSI-compliant.

The following table summarizes what the database server does when an
explicit transaction is interrupted.

Database Server Database Server Response to Interrupt

Informix Dynamic Server All interruptable SQL statements: automatic undo of
SQL statement.

INFORMIX-SE All interruptable SQL statements (ALTER INDEX and
CREATE INDEX are not interruptable): no automatic
undo for current SQL statement (interrupted statement
can be in a partially completed state). The current trans-
action is still in progress.

OPTIONS

INFORMIX-4GL Statements 4-305

Handling Interrupted Transactions

When the database server does not perform an automatic rollback, an inter-
rupted transaction can leave the database in an unknown state. In these cases,
your program should decide how to proceed.

To check for an interrupted SQL statement, a program can test the following
values:

■ The int_flag built-in variable: if your program contains the DEFER
INTERRUPT statement, int_flag will have a value of TRUE if the user
presses the Interrupt key during an interruptable SQL statement.

■ The SQLCA.SQLCODE or status built-in variables, if the inter-
ruptable SQL statement is preceded by the WHENEVER ERROR
CONTINUE statement. This variable will have the value of -213 if the
SQL statement failed due to user interruption.

If the database is in an unknown state, your program should explicitly
perform a ROLLBACK WORK statement. The ROLLBACK WORK statement
reverses the current transaction while the COMMIT WORK statement commits
all modifications made to the database since the beginning of the transaction.
To begin a new transaction, you must use the BEGIN WORK statement.

In ANSI-compliant databases, the ROLLBACK WORK statement reverses the
current implicit transaction and automatically begins a new transaction. No
BEGIN WORK statement is needed. ♦

Avoid use of the COMMIT WORK statement when the database is in an
unknown state.

The following code fragment checks for an interrupted DELETE statement.
This fragment assumes that the database server is not ANSI-compliant but
that it supports transaction logging. Therefore the current transaction is
explicit (not a singleton).

DEFER INTERRUPT
OPTIONS
SQL INTERRUPT ON
...
OPEN WINDOW w_purge AT 2,2
WITH 10 ROWS, 50 COLUMNS
ATTRIBUTE (BORDER, PROMPT LINE 9)

DISPLAY "ACCOUNT PURGE" AT 1, 2
DISPLAY "Purging customer account of last year's info. .. "
AT 3, 2

DISPLAY "Press Cancel to interrupt." AT 4, 2

ANSI

OPTIONS

4-306 HCL Informix 4GL Reference Guide

LET cancelled = FALSE
LET tx_status = 0
BEGIN WORK

UNLOAD TO filename
SELECT *
FROM accthistory
WHERE customer_num = cust_num AND tx_date < start_fiscal

IF int_flag THEN
LET int_flag = FALSE
IF (SQLCA.SQLCODE < 0) THEN
IF (SQLCA.SQLCODE = -213) THEN
LET cancelled = TRUE

ELSE
LET tx_status = SQLCA.SQLCODE

END IF
END IF

ELSE

DELETE FROM accthistory
WHERE customer_num = cust_num
AND tx_date < start_fiscal

IF int_flag THEN
IF (SQLCA.SQLCODE < 0) THEN
IF (SQLCA.SQLCODE = -213) THEN
LET cancelled = TRUE

ELSE
LET tx_status = SQLCA.SQLCODE

END IF
END IF

END IF
END IF

IF (tx_status < 0) OR cancelled THEN
ROLLBACK WORK
IF cancelled THEN
ERROR "Account purge terminated at user request. ",

" No information purged."
ELSE
ERROR "Account purge terminated (status=",

tx_status USING "-<<<<<<<<<<<",
"). No information purged."

END IF
ELSE
COMMIT WORK
MESSAGE "Account purge complete."

END IF

CLOSE WINDOW w_purge

For more information on data integrity, refer to the Informix Guide to SQL:
Syntax.

OPTIONS

INFORMIX-4GL Statements 4-307

Setting Default Screen Modes
4GL recognizes two screen display modes: line mode (IN LINE MODE) and
formatted mode (IN FORM MODE). Besides OPTIONS, the RUN, START REPORT,
and REPORT statements can explicitly specify a screen mode. The OPTIONS
statement can set separate defaults for the screen mode of the RUN statement
and for the screen mode of REPORT output that is sent to a pipe.

After IN LINE MODE is specified, the terminal is in the same state (in terms of
stty options) as when the program began. This usually means that the
terminal input is in cooked mode, with interrupts enabled, and input not
becoming available until after a newline character is typed.

The IN FORM MODE keywords specify raw mode, in which each character of
input becomes available to the program as it is typed or read.

By default, 4GL programs operate in line mode, but so many statements take
it into formatted mode (including OPTIONS statements that set keys, DISPLAY
AT, OPEN WINDOW, DISPLAY FORM, and other screen interaction statements),
that typical 4GL programs are actually in formatted mode most of the time.

The default behavior for PIPE is IN FORM MODE (in which the screen is not
cleared), for compatibility with releases earlier than INFORMIX-4GL 6.0. This
mode is the opposite of the default screen mode for RUN specifications.

When the OPTIONS statement specifies RUN IN FORM MODE, the program
remains in formatted mode if it currently is in formatted mode, but it does
not enter formatted mode if it is currently in line mode.

When the OPTIONS statement specifies RUN IN LINE MODE, the program
remains in line mode if it is currently in line mode, and it switches to line
mode if it is currently in formatted mode.

References
CONSTRUCT, DISPLAY, DISPLAY ARRAY, DISPLAY FORM, ERROR, INPUT,
INPUT ARRAY, MENU, MESSAGE, OPEN FORM, OPEN WINDOW, PROMPT

OUTPUT TO REPORT

4-308 HCL Informix 4GL Reference Guide

OUTPUT TO REPORT
The OUTPUT TO REPORT statement passes a single set of data values (called
an input record) to a REPORT statement.

Usage
The OUTPUT TO REPORT statement passes data to a report and instructs 4GL
to process and format the data as the next input record of the report.

An input record is the ordered set of values returned by the expressions that
you list between the parentheses. Returned values are passed to the specified
report, as part of the input record. The input record can correspond to a
retrieved row from the database, or to a 4GL program record, but 4GL does
not require this correspondence.

The members of the input record that you specify in the expression list of the
OUTPUT TO REPORT statement must correspond to elements of the formal
argument list in the REPORT definition in their number and their position,
and must be of compatible data types (see “Summary of Compatible 4GL
Data Types” on page 3-46).

 ,

OUTPUT TO REPORT report (4GL Expression
p. 3-49

 large

)

is the name of a TEXT or BYTE variable to be passed to the report.
is the name of a 4GL report by which to format the input record. You
must also declare this identifier in a REPORT statement and invoke the
report with a previous START REPORT statement.

large
report

Element Description

OUTPUT TO REPORT

INFORMIX-4GL Statements 4-309

Arguments of the TEXT and BYTE data types are passed by reference rather
than by value; arguments of other data types are passed by value. A report
can use the WORDWRAP operator with the PRINT statement to display TEXT
values. (For more information, see “The WORDWRAP Operator” on
page 7-65.) A report cannot display BYTE values; the character string <byte
value> in output from the report indicates a BYTE value.

You typically include the OUTPUT TO REPORT statement within a WHILE,
FOR, or FOREACH loop, so that the program passes data to the report one
input record at a time. The portion of the 4GL program that includes START
REPORT, OUTPUT TO REPORT, and FINISH REPORT statements that reference
the same report is sometimes called the report driver. (For more information
about 4GL reports, see Chapter 7.)The following program fragment uses a
FOREACH loop to pass input records to a report:

START REPORT cust_list
...

FOREACH q_curs INTO p_customer.lname, p_customer.company
OUTPUT TO REPORT cust_list

(p_customer.lname, p_customer.company,
"San Francisco", TODAY)

END FOREACH

Each input record consists of four values:

■ The lname and company values from columns of a database table
■ The literal string constant "San Francisco"
■ The DATE value returned by the TODAY operator

The following program creates a report, with default formatting, of all the
customers in the customer table, and sends the resulting output to a file:

DATABASE stores7
MAIN

DEFINE p_customer RECORD LIKE customer.*
DECLARE q_curs CURSOR FOR SELECT * FROM customer
START REPORT cust_list TO "cust_listing"
FOREACH q_curs INTO p_customer.*

OUTPUT TO REPORT cust_list(p_customer.*)
FINISH REPORT cust_list

END MAIN
REPORT cust_list(r_customer)

DEFINE r_customer RECORD LIKE customer.*
FORMAT EVERY ROW

END REPORT

OUTPUT TO REPORT

4-310 HCL Informix 4GL Reference Guide

If OUTPUT TO REPORT is not executed, no control blocks of the report
definition are executed, even if your report driver also includes the START
REPORT and FINISH REPORT statements.

References
CALL, FINISH REPORT, PAUSE, REPORT, START REPORT, TERMINATE REPORT

PAUSE

INFORMIX-4GL Statements 4-311

PAUSE
The PAUSE statement suspends the display of output from a 4GL report to
the 4GL screen. The PAUSE statement can only appear in the FORMAT section
of a REPORT program block and only affects report output sent to the screen.

Usage
The PAUSE statement affects the behavior of the report output in the 4GL
screen as follows. It has no effect on the formatted report output.

■ If a PAUSE statement appears in the REPORT definition, the report
displays a screenful of output and then pauses. The user needs to
press RETURN to view the next screenful of output. If a quoted string
is specified, its text appears on the 4GL screen.

■ In the absence of a PAUSE statement, the report output scrolls down
the 4GL screen.

The PAUSE statement has no effect if you include a REPORT TO clause in the
OUTPUT section, or a TO clause in the START REPORT statement.

References
NEED, PRINT, REPORT, SCROLL, SKIP, START REPORT

PAUSE

"string "

is a quoted string. string

Element Description

PREPARE

4-312 HCL Informix 4GL Reference Guide

PREPARE
Use the PREPARE statement to parse, validate, and generate an execution
plan for SQL statements in a 4GL program at runtime.

Usage
This statement assembles the text of an SQL statement at runtime and makes
it executable. This dynamic form of SQL is accomplished in three steps:

1. PREPARE accepts SQL statement text as input, either as a quoted
string or stored within a character variable; this text can contain
question mark (?) placeholders to represent data values that the user
must specify at runtime when the statement is executed.

2. The EXECUTE or OPEN statement can supply input values in the
USING clause and can execute the prepared statement once or many
times.

3. Resources allocated to the prepared statement can be released later
by the FREE statement.

For more about FREE, EXECUTE, and OPEN, see the documentation of your
Informix database server. See also “SQL” on page 4-349, which describes an
alternative to PREPARE for using SQL statements in 4GL programs.

,

PREPARE
statement
identifier FROM "string"

variable

statement identifier is an SQL statement identifier. This must be unique (within its
scope) among the names of prepared statements and cursors.

string is a quoted string containing part or all of the text of one or
more SQL statements to be prepared.

variable is a variable containing text of one or more SQL statements to
be prepared.

Description Element

PREPARE

INFORMIX-4GL Statements 4-313

Important: You cannot reference a 4GL variable in the text of a prepared statement.
Use an SQL…END SQL block, rather than PREPARE, for SQL statements that cannot
be embedded, but that require host variables as input or output parameters.

The number of prepared objects in a single program is limited only by
available memory. Prepared objects include both statement identifiers named
in PREPARE statements and cursor declarations that incorporate SELECT,
EXECUTE PROCEDURE, or INSERT statements. (To deallocate these objects,
you can use a FREE statement to release some statements or cursors.)

The following topics are described in this section:

■ “Statement Identifier” on page 4-313
■ “Statement Text” on page 4-314
■ “Preparing a SELECT Statement” on page 4-315
■ “Statements That Can or Must Be Prepared” on page 4-315
■ “Statements That Cannot Be Prepared” on page 4-317
■ “Using Parameters in Prepared Statements” on page 4-319
■ “Preparing Statements with SQL Identifiers” on page 4-321
■ “Preparing Sequences of Multiple SQL Statements” on page 4-321
■ “Runtime Errors in Multistatement Texts” on page 4-322
■ “Using Prepared Statements for Efficiency” on page 4-323

Statement Identifier
The PREPARE statement sends statement text to the database server where it
is analyzed. If it contains no syntax errors, the text is converted to an internal
form. This translated statement is saved for later execution in a data structure
that the PREPARE statement allocates. The structure has the name specified by
the statement identifier in the PREPARE statement. Subsequent SQL statements
can refer to the prepared statement by using the statement identifier.

By default, the scope of reference of a statement identifier is the 4GL module
in which it was declared. The identifier of a statement that was prepared in
one 4GL module cannot be referenced from another module. To reference a
statement identifier outside the module in which it was declared, compile the
module in which it is declared with the -globcurs option.

PREPARE

4-314 HCL Informix 4GL Reference Guide

For some database servers, unless you use the -global command-line option
to compile your program, the name cannot be longer than nine characters.
Read the documentation for your database server to see if this restriction on
the length of statement identifiers affects your application.

A subsequent FREE statement identifier statement releases the resources
allocated to the prepared statement. After FREE releases it, the statement
identifier cannot be referenced by a cursor, or by the EXECUTE statement,
until you prepare the statement again.

A statement identifier can represent only one SQL statement (or one sequence
of statements) at a time. You can execute a new PREPARE statement with an
existing statement identifier if you wish to assign the text of a different SQL
statement to the statement identifier.

Statement Text
The statement text can be a quoted string or text stored in a variable. The
following restrictions apply to the statement text:

■ Text can contain only SQL or SPL statements. Not valid are 4GL state-
ments that are not SQL statements, C or C++ statements, or SQL
statements that cannot be prepared (as listed in “Statements That
Cannot Be Prepared” on page 4-317).

■ The text can contain either a single SQL statement or a sequence of
statements. If the text contains more than a single statement,
successive statements must be separated by semicolons.

■ Comments preceded by two hyphens (--), or enclosed in braces
({ }) are allowed in the statement text. The comment ends at the end
of the line (after --) or at the right-brace (}); see also “Comments”
on page 2-8. The pound sign (#) symbol is not valid here as a
comment indicator. Comment text is restricted to the code set of the
locale.

■ The only valid identifiers are SQL names of database entities, such as
tables and columns. You cannot prepare a SELECT statement that
contains an INTO variable clause, which requires a 4GL variable.

■ The question mark (?) placeholder can indicate where a data value
(but not an SQL identifier) needs to be supplied at runtime.

PREPARE

INFORMIX-4GL Statements 4-315

The following example includes placeholders for values that are to be input:

PREPARE nt FROM "INSERT INTO cust(fname,lname) VALUES(?,?)"

Preparing a SELECT Statement
You can prepare a SELECT statement. If the SELECT statement includes the
INTO TEMP clause, you can only execute the prepared statement with an
EXECUTE statement. If SELECT does not include the INTO TEMP clause, you
must use DECLARE cursor and either the FOREACH statement or the OPEN
cursor and FETCH cursor statements to retrieve the specified rows. You cannot
use FOREACH with a prepared SELECT statement that includes a question
mark placeholder.

A prepared SELECT statement can include a FOR UPDATE clause. This clause
normally is used with the DECLARE statement to create an update cursor.
This example shows a SELECT statement with a FOR UPDATE clause:

PREPARE up_sel FROM
"SELECT * FROM customer ",
"WHERE customer_num between ? and ? ",
"FOR UPDATE"

DECLARE up_curs CURSOR FOR up_sel

OPEN up_curs USING low_cust, high_cust

Statements That Can or Must Be Prepared
The 4GL compiler supports directly embedded 4GL statements that include
only the syntax of Informix 4.1 database servers. See Appendix I, “SQL State-
ments That Can Be Embedded in 4GL Code,” for a list of the SQL 4.1
statements that can be directly embedded. Most (but not all) SQL statements
can be prepared; some must either be prepared or else enclosed within the
SQL…END SQL delimiters if they are to be used in a 4GL program.

PREPARE

4-316 HCL Informix 4GL Reference Guide

You must prepare most SQL statements that include syntax introduced after
Version 4.1 of Informix database servers. Thus, the ON DELETE CASCADE
clause in the CREATE TABLE statement requires PREPARE. But you do not
need to prepare the following statements, if they include only Informix 4.1
syntax.

ALTER TABLE CREATE SYNONYM INSERT INTO
CREATE INDEX DROP TABLE REVOKE
CREATE TABLE DROP VIEW UPDATE STATISTICS
CREATE SCHEMA GRANT

Statements That Cannot Be Embedded

Some SQL statements cannot be directly embedded; they must be prepared
(or else enclosed in SQL…END SQL delimiters) to be used in a 4GL program.
None of the statements in the following table can be directly embedded. For
more information, see “Statements That Cannot Be Prepared” on page 4-317.

ALTER FRAGMENT SET CONSTRAINT
ALTER OPTICAL CLUSTER SET DATABASE OBJECT MODE
CREATE EXTERNAL TABLE SET DATASKIP
CREATE OPTICAL CLUSTER SET DEBUG FILE TO
CREATE ROLE SET LOG
CREATE SCHEMA SET MOUNTING TIMEOUT
CREATE TRIGGER SET OPTIMIZATION
DROP OPTICAL CLUSTER SET PDQPRIORITY
DROP PROCEDURE SET PLOAD FILE
DROP ROLE SET RESIDENCY
DROP TRIGGER SET ROLE
EXECUTE PROCEDURE SET SCHEDULE LEVEL
GRANT FRAGMENT SET SESSION AUTHORIZATION
RELEASE SET TRANSACTION
RENAME DATABASE SET TRANSACTION MODE
RESERVE START VIOLATIONS TABLE
REVOKE FRAGMENT STOP VIOLATIONS TABLE

PREPARE

INFORMIX-4GL Statements 4-317

Statements That Might Need to Be Prepared

Some SQL statements require you to prepare them only if you are using a 5.0
or later syntax in the statement. For example, if you use the PUBLIC or
PRIVATE clause of the CREATE SYNONYM statement, you need to prepare the
CREATE SYNONYM statement. If you do not include the PUBLIC or PRIVATE
clause, you do not need to prepare the statement. See Appendix I, “SQL State-
ments That Can Be Embedded in 4GL Code,” for the syntax of SQL
statements that do not require PREPARE or SQL…END SQL delimiters in 4GL
programs.

Statements That Cannot Be Prepared
This release of 4GL can embed CREATE PROCEDURE FROM statements
directly, unless the procedure includes SPL statements that perform I/O.

In addition, the following SQL statements, which are supported in some
releases of Informix database servers, cannot appear as text in PREPARE state-
ments. (In this release of 4GL, the SQL statements that are marked by an ✖

symbol are not available, prepared nor otherwise.)

✖ ALLOCATE COLLECTION FREE
✖ ALLOCATE DESCRIPTOR ✖ GET DESCRIPTOR
✖ ALLOCATE ROW ✖ GET DIAGNOSTICS
✖ CHECK TABLE ✖ INFO

 CLOSE LOAD
 CONNECT OPEN
 CREATE PROCEDURE FROM ✖ OUTPUT
✖ DEALLOCATE COLLECTION PREPARE
✖ DEALLOCATE DESCRIPTOR PUT
✖ DEALLOCATE ROW ✖ REPAIR TABLE

 DECLARE ✖ SET AUTOFREE
✖ DESCRIBE SET CONNECTION

 DISCONNECT ✖ SET DEFERRED_PREPARE
 EXECUTE ✖ SET DESCRIPTOR
 EXECUTE IMMEDIATE UNLOAD
 FETCH WHENEVER
 FLUSH

PREPARE

4-318 HCL Informix 4GL Reference Guide

Additionally, you cannot use the following statements in prepared statement
text that contains multiple SQL statements separated by semicolons.

CLOSE DATABASE DATABASE SELECT
CREATE DATABASE DROP DATABASE START DATABASE

Thus, the SELECT statement (except for SELECT INTO TEMP) is not valid
within the text of a multistatement PREPARE. In addition, statements
that could cause the current database to be closed during execution of
the sequence of prepared statements (such as CONNECT, DISCONNECT,
and SET CONNECTION) are also not valid in this context.

For general information about multistatement prepares, see “Preparing
Sequences of Multiple SQL Statements” on page 4-321.

Executing Stored Procedures Using PREPARE

The following steps describe how to define and execute a stored procedure in
a 4GL program:

1. Put the text of the CREATE PROCEDURE statement in a separate file.
Use SPL statements to define the procedure.

2. Directly embed a CREATE PROCEDURE FROM filename statement that
references the text file created in step 1.

3. Use a PREPARE statement to prepare the text of an EXECUTE
PROCEDURE statement to execute the same stored procedure.

4. Use an EXECUTE statement to execute the EXECUTE PROCEDURE
statement that you prepared in step 3.

Warning: The Stored Procedure Language (SPL) is not a part of the 4GL language.
Attempting to include SPL statements directly within a 4GL program, rather than
through a CREATE PROCEDURE FROM filename statement, causes compile errors.

You can also invoke a stored procedure implicitly through a reference to that
procedure within the context of an SQL expression. For example, the
reference to avg_price() in the following SELECT statement implicitly
invokes the stored procedure called avg_price:

SELECT
manu_code, unit_price, (avg_price(1) - unit_price)
FROM stock
WHERE stock_num = 1

PREPARE

INFORMIX-4GL Statements 4-319

Such implicit references to stored procedures do not require the statement to
be prepared, because the database server processes them in a manner that is
transparent to the 4GL program.

The Informix Guide to SQL: Tutorial describes how to create and execute stored
procedures. See the Informix Guide to SQL: Syntax for complete descriptions of
the CREATE PROCEDURE and CREATE PROCEDURE FROM statements.

Using Parameters in Prepared Statements
You can pass values to a prepared statement either when you prepare the
statement or at execution time.

Preparing Statements When Parameters Are Known

In some prepared statements, all needed information is known at the time the
statement is prepared. Although all parts of the statement are known prior to
the prepare, they also can be derived dynamically from program input. In the
following example, user input is incorporated into a SELECT statement,
which is then prepared and associated with a cursor:

DEFINE u_po LIKE orders.po_num
PROMPT "Enter p.o. number please: " FOR u_po
PREPARE sel_po FROM

"SELECT * FROM orders ",
"WHERE po_num = '", u_po, "'"

DECLARE get_po CURSOR FOR sel_po

Preparing Statements That Receive Parameters at Execution

In some statements, parameters are unknown when the statement is
prepared because a different value can be inserted each time the statement is
executed. In these statements, you can use a question mark placeholder
where a parameter must be supplied when the statement is executed.

PREPARE

4-320 HCL Informix 4GL Reference Guide

The PREPARE statements in the following example show some uses of
question mark placeholders:

PREPARE s3 FROM
"SELECT * FROM customer WHERE state MATCHES ?"

PREPARE in1 FROM
"INSERT INTO manufact VALUES (?,?,?)"

PREPARE update2 FROM
"UPDATE customer SET zipcode = ?",
"WHERE CURRENT OF zip_cursor"

You can use a placeholder only to supply a value for an expression. You
cannot use a question mark placeholder to represent an SQL identifier such
as a database name, a table name, or a column name.

The USING clause is available in both OPEN statements (for statements
associated with a cursor) and EXECUTE statements (for all other prepared
statements). For example:

DEFINE zip LIKE customer.zipcode
PREPARE zip_sel FROM

"SELECT * FROM customer WHERE zipcode MATCHES ?"
DECLARE zip_curs CURSOR FOR zip_sel
PROMPT "Enter a zipcode: " FOR zip
OPEN zip_curs USING zip

If the prepared SELECT statement contains a question mark placeholder, you
cannot execute the statement with a FOREACH statement; you must use the
OPEN, FETCH, and CLOSE group of statements.

PREPARE

INFORMIX-4GL Statements 4-321

Preparing Statements with SQL Identifiers
You cannot use question mark placeholders for SQL identifiers such as a table
name or a column name; you must specify these identifiers in the statement
text when you prepare it.

If these identifiers are not available when you write the statement, however,
you can construct a statement that receives SQL identifiers from user input.
In the following example, the name of the column is supplied by the user and
inserted in the statement text before the PREPARE statement. The search value
in that column also is taken from user input, but it is supplied to the
statement with a USING clause:

DEFINE column_name CHAR(30),
column_value CHAR(40),
del_str CHAR(100)

PROMPT "Enter column name: " FOR column_name

LET del_str =
"DELETE FROM customer WHERE ",
column_name CLIPPED, " = ?"

PREPARE de4 FROM del_str

PROMPT "Enter search value in column ",column_name, ":"
FOR column_value

EXECUTE de4 USING column_value

Preparing Sequences of Multiple SQL Statements
You can execute several SQL statements as one action if you include them in
the same PREPARE statement. Multistatement text is processed as a unit;
actions are not treated sequentially. Therefore, multistatement text cannot
include statements that depend on action that occurs in a previous statement
in the text. For example, you cannot create a table and insert values into that
table in the same prepared block. Avoid placing BEGIN WORK and COMMIT
WORK statements with other statements in a multistatement prepare.

In most situations, 4GL returns error status information on the first error in
the multistatement text. No indication exists of which statement in the
sequence causes an error. You can use SQLCA to find the offset of the
SQLERRD[5] errors. For more information, see “Exception Handling” on
page 2-40.

PREPARE

4-322 HCL Informix 4GL Reference Guide

The following example updates the stores7 database by replacing existing
manufacturer codes with new codes. Because the manu_code columns are
potential join columns that link four of the tables, the new codes must replace
the old codes in three tables:

DATABASE stores7
MAIN

DEFINE code_chnge RECORD
new_code LIKE manufact.manu_code,
old_code LIKE manufact.manu_code

END RECORD
sqlmulti CHAR(250)

PROMPT "Enter new manufacturer code: "
FOR code_chnge.new_code

PROMPT "Enter old manufacturer code: "
FOR code_chnge.old_code

LET sqlmulti =
"UPDATE manufact SET manu_code = ? WHERE manu_code = ?;",
"UPDATE stock SET menu_code = ? WHERE manu_code = ?;",
"UPDATE items SET manu_code = ? WHERE manu_code = ?;",
"UPDATE catalog SET manu_code = ? WHERE manu_code = ?;"

PREPARE exmulti FROM sqlmulti
EXECUTE exmulti USING code_chnge.*, code_chnge.*, code_chnge.*

code_chnge.*
END MAIN

Runtime Errors in Multistatement Texts
If an error is returned while any SQL statement within multistatement
prepared text is being processed, no subsequent prepared SQL statements
within the same text are executed. (If another statement in that text is also
capable of producing an error, this additional error cannot be issued until
after you correct the prior errors within the multistatement text.)

Thus, 4GL returns error status information on only the first error that it finds
in the multistatement text, with no indication of which statement in the
sequence caused the error. You can use SQLCA to find the offset of the
SQLERRD[5] errors. For more information about SQLCA and error-status
information, see “Error Handling with SQLCA” on page 2-45.

Any error or warning message that the database server returns, regardless of
the severity, terminates execution of the multistatement prepared text. For
example, the NOTFOUND end-of-data condition terminates execution of the
prepared text.

PREPARE

INFORMIX-4GL Statements 4-323

Using Prepared Statements for Efficiency
To increase performance efficiency, you can use the PREPARE statement and
an EXECUTE statement in a loop to eliminate overhead caused by redundant
parsing and optimizing. For example, an UPDATE statement located within a
WHILE loop is parsed each time the loop runs. If you prepare the UPDATE
statement outside the loop, the statement is parsed only once, eliminating
overhead and speeding statement execution. The following example shows
how to prepare statements to improve performance:

PREPARE up1 FROM "UPDATE customer ",
"SET discount = 0.1 WHERE customer_num = ?"

WHILE TRUE
PROMPT "Enter Customer Number" FOR dis_cust
IF dis_cust = 0 THEN

EXIT WHILE
END IF
EXECUTE up1 USING dis_cust

END WHILE

References
See the DECLARE, DESCRIBE, EXECUTE, FREE, and OPEN statements in the
Informix Guide to SQL: Syntax. See also “SQL” on page 4-349.

PRINT

4-324 HCL Informix 4GL Reference Guide

PRINT
The PRINT statement produces output from a report definition.

,
PRINT 4GL Expression

p. 3-49

COLUMN left offset ;

PAGENO

LINENO

BYTE variable

Integer Expression SPACE p. 3-63

Aggregate Report Functions SPACES

p. 5-14

Character
Expression

p. 3-69 WORDWRAP RIGHT MARGIN temporary

TEXT variable

FILE "filename"

Element Description
BYTE variable is the identifier of a 4GL variable of data type BYTE.
filename is a quoted string that specifies the name of a text file to include in

the output from the report. This can include a pathname.
left offset is an expression that return a positive whole number. It specifies a

character position offset (from the left margin) no greater than the
difference (right margin - left margin).

temporary is an expression that evaluates to a positive whole number. It
specifies the absolute position of a temporary right margin.

TEXT variable is the identifier of an 4GL variable of the TEXT data type.

For details of the syntax and usage of the PRINT statement in 4GL report
definitions, see “PRINT” on page 7-55.

PROMPT

INFORMIX-4GL Statements 4-325

PROMPT
The PROMPT statement can assign a user-supplied value to a variable.

 ,

PROMPT variable FOR response
"string " ATTRIBUTE HELP number

Clause
p. 3-96

CHAR

ATTRIBUTE

Clause
p. 3-96 ,

ON KEY (key) statement END PROMPT

 Element Description
key is a keyword to specify an activation key. (For more information, see

“The ON KEY Blocks” on page 4-329.)
number is a literal integer (as described in “Literal Integers” on page 3-65) to

specify a help message number.
response is the name of a variable to store the response of the user to the

PROMPT character string. This cannot be of data type TEXT or BYTE.
statement is an SQL statement or other 4GL statement.
string is a quoted string that 4GL displays on the Prompt line.
variable is a CHAR or VARCHAR variable that contains all or part of a message

to the user, typically prompting the user to enter a value.

Usage
The PROMPT statement displays the specified character string on the Promp
line, and then waits for input from the user. What the user types is saved
the response variable, unless what the user typed was one of the keys that a
ON KEY clause specified as its activation key.

PROMPT

4-326 HCL Informix 4GL Reference Guide

4GL takes the following actions when it executes a PROMPT statement:

1. Replaces any variables with their current values
2. Concatenates the list of values into a single prompt string

(The total length of this string, plus the length of the response that the
user enters, cannot exceed 80 bytes.)

3. Displays the resulting string on the Prompt line of the current form
(or in the line mode overlay, if it currently covers the 4GL screen)

4. Waits for the user to enter a value
5. Reads whatever value was entered until the user presses RETURN,

and then stores this value in response variable.

The prompt string remains visible until the user enters a response.

The following topics are described in this section:

■ “The PROMPT String” on page 4-326

■ “The Response Variable” on page 4-327

■ “The FOR Clause” on page 4-327

■ “The ATTRIBUTE Clauses” on page 327

■ “The HELP Clause” on page 4-329

■ “The ON KEY Blocks” on page 4-329

■ “The END PROMPT Keywords” on page 4-331

The PROMPT String
Depending on whether the line mode overlay is visible when the PROMPT
statement is executed, PROMPT can produce two types of displays:

■ If PROMPT is the next interactive statement after a line mode
DISPLAY statement, the prompt string appears in the bottom line of
the line mode overlay. The prompt string does not scroll with any
subsequent output from line mode DISPLAY statements. (See
“Sending Output to the Line Mode Overlay” on page 4-91.)

■ If the 4GL screen or any other 4GL window is visible, the prompt
string appears on the Prompt line of the current 4GL window. (If this
is not as wide as the prompt string, runtime error -1146 occurs.)

PROMPT

INFORMIX-4GL Statements 4-327

The Response Variable
The PROMPT statement returns the value entered by the user in a response
variable, which can be of any data type except TEXT and BYTE. If it has a
character data type, its returned value can include blank spaces. If 4GL cannot
convert the value entered by the user to the data type of the response variable,
a negative error code is assigned to the global status variable.

The FOR Clause
The FOR clause specifies the name of the response variable to store input from
the user. When the user types a response and presses RETURN, 4GL saves the
response in the response variable. You can optionally include the CHAR
keyword to accept a single-character input without requiring that the user
press RETURN. For example, the following program fragment checks the
response input for an uppercase or lowercase y:

PROMPT "Do you want to continue: " FOR CHAR ans
IF ans MATCHES "[Yy]" THEN

CALL next_form()
END IF

The ATTRIBUTE Clauses
The ATTRIBUTE clauses of the PROMPT statement temporarily override any
attributes specified in OPTIONS or OPEN WINDOW statements for the prompt
string and for the response from the user. You can set the following attributes
independently:

■ The first ATTRIBUTE clause specifies display attributes of the prompt
string text. The default display attribute for this text is NORMAL.

■ The second ATTRIBUTE clause specifies display attributes of the
response. The default is REVERSE.

The CENTURY Attribute

If the response variable has the DATE or DATETIME data type, this clause can
include the CENTURY attribute, with the same syntax and semantics as the
CENTURY field attribute (as described in “CENTURY” on page 6-35).

PROMPT

4-328 HCL Informix 4GL Reference Guide

The CENTURY attribute specifies how to expand abbreviated one- and two-
digit year specifications in a DATE and DATETIME field. Expansion is based on
this setting (and on the year value from the system clock at runtime).

CENTURY can specify any of four algorithms to expand abbreviated years
into four-digit year values that end with the same digits (or digit) that the
user entered. CENTURY supports the same settings as the DBCENTURY
environment variable, but with a scope that is restricted to a single field.

Symbol Algorithm for Expanding Abbreviated Years

C or c Use the past, future, or current year closest to the current date.

F or f Use the nearest year in the future to expand the entered value.

P or p Use the nearest year in the past to expand the entered value.

R or r Prefix the entered value with the first two digits of the current year.

Here past, closest, current, and future are all relative to the system clock.

Unlike DBCENTURY, which sets a global rule for expanding abbreviated year
values in DATE and DATETIME fields that do not have the CENTURY attribute,
CENTURY is not case-sensitive; you can substitute lowercase letters (r, c, f,
p) for these uppercase letters. If you specify anything else, an error (-2018) is
issued. If the CENTURY and DBCENTURY settings are different, CENTURY
takes precedence.

For example, the following statement prompts for a delivery date:

PROMPT "Enter the preferred delivery day for ",
customer_num, " "ATTRIBUTE (YELLOW)

FOR del_day ATTRIBUTE (BLUE, CENTURY = "F")
...

END PROMPT

CENTURY = "R"

"C"
"F"
"P"

PROMPT

INFORMIX-4GL Statements 4-329

Here the prompt string appears in yellow on color monitors or in bold on
monochrome monitors. The delivery date that the user enters appears in blue
on color monitors and in dim on monochrome monitors. If the year is entered
as two digits, 4GL assigns to the variable the nearest future date that matches
the unabbreviated portion of the response. (For more information about 4GL
display attributes, see “ATTRIBUTE Clause” on page 3-96.)

The HELP Clause
This clause specifies a literal integer (as described in “Literal Integers” on
page 3-65) that returns the number of a help message for the PROMPT
statement. 4GL displays the help message in the Help window if the user
presses the Help key from the response field. By default, the Help key is
CONTROL-W. You can redefine the Help key by using the OPTIONS statement.

You create help messages in an ASCII file whose filename you specify in the
HELP FILE clause of the OPTIONS statement. Use the mkmessage utility (as
described in Appendix B) to create a runtime version of the help file. Runtime
errors occur in these situations:

■ 4GL cannot open the help file.
■ You specify a number that is not in the help file.
■ You specify a number outside the range from -32,767 to 32,767.

The ON KEY Blocks
An ON KEY block executes a series of statements when the user presses one
of the specified keys. If the user presses a specified key, control passes to the
statements specified in the ON KEY block. After completing the ON KEY
block, 4GL passes control to the statements following the END PROMPT
statement. In this case, the value of the response variable is undetermined.

You can specify the following in uppercase or lowercase letters for key name.

ACCEPT HELP NEXT or NEXTPAGE
DELETE INSERT PREVIOUS or PREVPAGE
DOWN INTERRUPT RIGHT
ESC or ESCAPE LEFT TAB
F1 through F64
CONTROL-char (e cept A, D, H, I, J,

UP
K, L, M, R, or X)

PROMPT

4-330 HCL Informix 4GL Reference Guide

Here you can substitute NEXTPAGE for NEXT, and PREVPAGE for PREVIOUS.

The following table lists keys that require special consideration before you
assign them in an ON KEY clause.

Key Special Considerations

ESC or ESCAPE You must use the OPTIONS statement to specify another key as
the Accept key because ESCAPE is the default Accept key.

Interrupt

Quit

CONTROL-char

A, D, H, K,
L, R, and X

You must execute a DEFER INTERRUPT statement. When the
user presses the Interrupt key under these conditions, 4GL
executes the ON KEY block statements and sets int_flag to non-
zero, but does not terminate the PROMPT statement.
4GL also executes the statements in this ON KEY clause if the
DEFER QUIT statement has executed and the user presses the
Quit key. In this case, 4GL sets quit_flag to non-zero.

4GL reserves these keys for field editing.

I, J, and M The usual meaning of these keys (TAB, LINEFEED, and RETURN,
respectively) is not available to the user, because 4GL traps the
key and uses it to activate the commands in the ON KEY clause.
For example, if CONTROL-M appears in an ON KEY clause, the user
cannot press RETURN to advance the cursor to the next field. If
you must include one of these keys in an ON KEY clause, be
careful to restrict the scope of the clause to specific fields.

You might not be able to use other keys that have special meaning to your
version of the operating system. For example, CONTROL-C, CONTROL-Q, and
CONTROL-S specify the Interrupt, XON, and XOFF signals on many systems.

The next example specifies two ON KEY clauses:

PROMPT "Enter the preferred delivery day for ", customer_num, " "
ATTRIBUTE (YELLOW) FOR del_day
ON KEY (CONTROL_B) LET del_day = set_day()
ON KEY (F6, CONTROL_F) CALL delivery_help()

END PROMPT

In this example, if the user presses CONTROL-B, 4GL calls the set_day()
function and sets the del_day variable to the value returned by set_day. If the
user presses F6 or CONTROL-F, the delivery_help() function is invoked.

PROMPT

INFORMIX-4GL Statements 4-331

The END PROMPT Keywords
The END PROMPT keywords indicate the end of the PROMPT statement.
These keywords are required only if you specify an ON KEY block. Place the
END PROMPT keywords after the last statement of the last ON KEY block.

You can optionally include the END PROMPT keywords as a statement termi-
nator for a PROMPT statement that has no ON KEY block.

The Position of the Prompt Line
Either of the following statements can change the default position of the
Prompt line (the first line of the current window):

■ A PROMPT LINE specification in the OPEN WINDOW statement
■ A PROMPT LINE specification in the OPTIONS statement

If PROMPT LINE assigns a position that is outside the range of lines in the
current window, the position defaults to the first line. For example, the next
program increments the position of the PROMPT LINE in a WHILE loop:

MAIN
DEFINE ans CHAR(1)
DEFINE pline INTEGER
DEFINE flag CHAR(1)
LET pline = 7
OPTIONS PROMPT LINE pline
WHILE pline <> 10

OPEN WINDOW wdw AT 4,6 WITH 7 ROWS, 60 COLUMNS ATTRIBUTE (BORDER)
DISPLAY " winrowsize = 7, PROMPT LINE is set to ", pline at 2, 6
PROMPT "123456789012345678901234567890abcdef" FOR CHAR ans
CLOSE WINDOW wdw
LET pline = pline + 1
OPTIONS PROMPT LINE pline

END WHILE
END MAIN

When the incremented value of the PROMPT LINE becomes 8, 4GL detects that
this value is larger than the vertical size of the window and silently resets the
value of PROMPT LINE to the default value (that is, to the first line of the
window).

References
DISPLAY, DISPLAY ARRAY, INPUT, INPUT ARRAY, OPEN WINDOW, OPTIONS

REPORT

4-332 HCL Informix 4GL Reference Guide

REPORT
The REPORT statement declares the identifier and defines the format of a 4GL
report. (For details of its syntax and usage, see Chapter 7.)

Usage
This statement defines a REPORT program block, just as the FUNCTION
statement defines a function. You can execute a report from the MAIN
program block or from a function, but the REPORT statement cannot appear
within the MAIN statement, in a FUNCTION definition, or in another REPORT
statement. Creating a 4GL report is a two-step process:

1. Use the REPORT statement to define how to format data in the report.
2. Write a report driver that passes data to the report.

The report driver typically uses a loop (such as WHILE, FOR, or FOREACH)
with the following 4GL statements to process the report:

■ START REPORT (invokes the REPORT routine)
■ OUTPUT TO REPORT (sends data to the REPORT for formatting)

REPORT report ()
FORMAT
Section
p. 7-28

END REPORT
,

argument)

DEFINE
Section
p. 7-10

argument is the name of a formal argument in each input record. The list can
include arguments of the RECORD data type, but the record.* notation
and ARRAY data type are not valid here.

report is the 4GL identifier that you declare here for the report.

Element Description

ORDER BY
Section
p. 7-23

OUTPUT
Section
p. 7-12

REPORT

INFORMIX-4GL Statements 4-333

■ FINISH REPORT (to complete execution of the REPORT routine)
■ TERMINATE REPORT (to stop processing and exit from the REPORT

routine, typically after an exceptional condition has been detected)

Unlike a FUNCTION program block, a REPORT routine is not reentrant. If a
START REPORT statement references a report that is already running, the
report is reinitialized, and any output might be unpredictable. If OUTPUT TO
REPORT is not executed, no control blocks of the report are executed, even if
your program includes the START REPORT and FINISH REPORT statements.

The Report Prototype
The report name must immediately follow the REPORT keyword. When
assigning a name to a report, follow the guidelines described in “4GL Identi-
fiers” on page 2-14. The name must be unique among function and report
names within the 4GL program. Its scope is the entire 4GL program.

The list of formal arguments of the report must be enclosed in parentheses
and separated by commas. These are local variables that store values that the
calling routine passes to the report. The compiler issues an error unless you
declare their data types in the subsequent DEFINE section (described in
Chapter 7). You can include a program record in the formal argument list, but
you cannot append the .* symbols to the name of the record. Arguments can
be of any data type except ARRAY, or a record with an ARRAY member.

When you call a report, the formal arguments are assigned values from the
argument list of the OUTPUT TO REPORT statement. These actual arguments
that you pass must match, in number and position, the formal arguments of the
REPORT statement. The data types must be compatible (as described in “Data
Type Conversion” on page 3-42), but they need not be identical. 4GL can
perform some conversions between compatible data types. The names of the
actual arguments and the formal arguments do not have to match.

REPORT

4-334 HCL Informix 4GL Reference Guide

The Report Program Block
The REPORT definition must include a FORMAT section, and can also include
DEFINE, OUTPUT, and ORDER BY sections, as described in Chapter 7. You
must declare the data types of the formal arguments and of any local
variables in the DEFINE section of the report, which must immediately follow
the formal argument list. Within the REPORT program block, these variables
take precedence over any global or module variables of the same name.
Variables local to the 4GL report cannot be referenced outside of the report,
and they do not retain values between invocations of the report.

You must include the following items in the list of formal arguments:

■ All the values for each row sent to the report in the following cases:
❑ If you include an ORDER BY section or GROUP PERCENT(*)

function
❑ If you use a global aggregate function (one over all rows of the

report) anywhere in the report, except in the ON LAST ROW
control block

❑ If you specify the FORMAT EVERY ROW default format
■ Any variables referenced in the following group control blocks:

❑ AFTER GROUP OF

❑ BEFORE GROUP OF

Two-Pass Reports
A two-pass report is one that creates a temporary table. The REPORT statement
creates a temporary table if it includes any of the following items:

■ An ORDER BY section without the EXTERNAL keyword
■ The GROUP PERCENT(*) aggregate function anywhere in the report
■ Any aggregate function that has no GROUP keyword in any control

block other than ON LAST ROW.

The FINISH REPORT statement uses values from these tables to calculate any
global aggregates, and then deletes the tables.

REPORT

INFORMIX-4GL Statements 4-335

A two-pass report requires that the 4GL program be connected to a database
when the report runs. See the DATABASE statement for information on how
to specify a current database at runtime (as described in “The Current
Database at Runtime” on page 4-74).

If the DEFINE section uses the LIKE keyword to declare local variables of the
report indirectly, you must also include a DATABASE statement in the same
module as the REPORT statement, but before the first program block, to
specify a default database at compile time. (See “The Default Database at
Compile Time” on page 4-73.)

An error occurs if you close the current database, or if you connect to another
database, while a two-pass report is running. Even if none of the input
records that the report formats are retrieved from a database, a two-pass
report requires a current database to store the temporary tables.

The Exit Report Statement
This statement can appear in the FORMAT section of the report definition. It
has the same effect as TERMINATE REPORT, except that EXIT REPORT must
appear within the REPORT program block, while TERMINATE REPORT must
appear in the report driver.

EXIT REPORT is useful after the program (or the user) becomes aware that a
problem prevents the report from producing part of its intended output. EXIT
REPORT has the following effects:

■ Terminates the processing of the current report
■ Deletes any intermediate files or temporary tables that were created

in processing the REPORT statement

You cannot use the RETURN statement as a substitute for EXIT REPORT. An
error is issued if RETURN is encountered within the definition of a 4GL report.

REPORT

4-336 HCL Informix 4GL Reference Guide

The END REPORT Keywords
The END REPORT keywords mark the end of the REPORT program block. The
following program fragment briefly illustrates some of the components of the
REPORT statement. This example creates a report named simple that displays
on the screen in default format all the rows from the customer table:

DECLARE simp_curs CURSOR FOR SELECT * FROM customer
START REPORT simple
FOREACH simp_curs INTO cust.*

OUTPUT TO REPORT simple(cust.*)
END FOREACH
FINISH REPORT simple

...
REPORT simple (x)

DEFINE x RECORD LIKE customer.*
FORMAT EVERY ROW

END REPORT

References
DATABASE, DEFINE, FINISH REPORT, OUTPUT TO REPORT, START REPORT,
TERMINATE REPORT

RETURN

INFORMIX-4GL Statements 4-337

RETURN
The RETURN statement transfers control of execution from a FUNCTION
program block. It can also return values to the calling routine. (This statement
can appear only within a FUNCTION program block.)

Usage
The RETURN statement can appear only in the definition of a function. This
statement tells 4GL to exit from the function and to return program control to
the calling routine. (The calling routine is the MAIN, FUNCTION, or REPORT
program block that contains the statement that invoked the function.)

You can use the RETURN statement in either of two ways:

■ Without values, to control the flow of program execution
■ With a list of one or more values, to control the flow of program

execution and to return values to the calling statement

If 4GL does not encounter a RETURN statement, it exits from the function after
encountering the END FUNCTION keywords.

An error is issued if RETURN appears within the MAIN statement or within a
REPORT definition. To terminate execution of MAIN or REPORT from within
the same program block, use PROGRAM or EXIT REPORT, respectively.

RETURN
 ,

4GL Expression
p. 3-49

RETURN

4-338 HCL Informix 4GL Reference Guide

The List of Returned Values
You can specify a list of one or more expressions as values to return to the
calling routine. You can use the record.* or the THRU or THROUGH notation to
specify all or part of a list of the member variables of a record.

If the RETURN statement specifies one or more values, you can do either of
the following to invoke the function:

■ Explicitly execute a CALL statement with a RETURNING clause.
■ Invoke the function implicitly within an expression (in the same way

that you would specify a variable or a list of variables).

If the function does not return any values, you must use the CALL statement
(without the RETURNING clause) to invoke the function.

The Data Types of Returned Values
4GL compares the list of expressions in the RETURN statement to arguments
in the RETURNING clause of the CALL statement. A compile-time error is
issued if any of these arguments do not agree with the RETURN expression
list in number or position, or if data types are incompatible (see “Summary
of Compatible 4GL Data Types” on page 3-46).

Similarly, if the function is invoked implicitly in an expression (as described
in “Function Calls as Operands” on page 3-58), the RETURN statement is
checked for agreement with the number and data types of the values that are
required by the context of the calling statement.

You cannot return variables of the ARRAY data type, nor RECORD variables
that contain ARRAY members. You can, however, return records that do not
include ARRAY members.

The following example returns the values of whole_price and ret_price to
the CALL statement. 4GL then assigns the whole_price and ret_price
variables to the wholesale and retail variables in the price record.

MAIN
DEFINE price RECORD wholesale, retail MONEY

END RECORD
...
CALL get_cust() RETURNING price.*
...

RETURN

INFORMIX-4GL Statements 4-339

END MAIN
FUNCTION get_cust()

DEFINE whole_price, ret_price MONEY
...
RETURN whole_price, ret_price

END FUNCTION

You cannot specify variables of the BYTE or TEXT data types in the RETURN
statement, just as you cannot include those data types in the RETURNING
clause of a CALL statement. Because 4GL passes variables of large data types
by reference, any changes made to a BYTE or TEXT variable within a function
become visible within the calling routine without being returned.

4GL allocates 5 kilobytes of memory to store character strings returned by
functions, in 10 blocks of 512 bytes. A returned character value can be no
larger than 511 bytes (because every string requires a terminating ASCII 0),
and no more than 10 of these 511-byte strings can be returned. You can use
TEXT variables to pass longer character values by reference (as described in
“Passing Arguments by Reference” on page 4-18), rather than using the
RETURN statement.

References
CALL, EXIT PROGRAM, EXIT REPORT, FUNCTION, WHENEVER

RUN

4-340 HCL Informix 4GL Reference Guide

RUN
The RUN statement executes an operating system command line.

Usage
The RUN statement executes an operating system command line. You
can even run a second 4GL application as a secondary process. When the
command terminates, 4GL resumes execution. For example, the following
statement executes the command line specified by the element i of the array
variable charval, where i is an INT or SMALLINT variable:

RUN charval[i]

Unless you specify WITHOUT WAITING, RUN also has these effects:

1. Causes execution of the current 4GL program to pause
2. Displays any output from the specified command in a new 4GL

window
3. After that command completes execution, closes the new 4GL

window and restores the previous display in the 4GL screen

If you specify WITHOUT WAITING, all of these effects except the last are
suppressed, so that the command line typically executes without any effect
on the visual display. (For more information, see “The WITHOUT WAITING
Clause” on page 4-343.)

RUN command

IN FORM MODE WITHOUT WAITING

IN LINE MODE RETURNING variable

command is a quoted string (or a CHAR or VARCHAR variable) that contains a
command line for the operating system to execute.

variable is the identifier of an INT or SMALLINT variable.

Description Element

RUN

INFORMIX-4GL Statements 4-341

Screen Display Modes
4GL recognizes two screen modes: line mode (IN LINE MODE) and formatted
mode (IN FORM MODE). Besides RUN, the OPTIONS, START REPORT, and
REPORT statements can explicitly specify a screen mode.

The default behavior for RUN is IN LINE MODE (so that the screen is cleared),
for compatibility with releases earlier than 4GL 6.0. This mode is the opposite
of the default screen mode for PIPE specifications. If no screen mode is
specified, the current value from the OPTIONS statement is used.

After IN LINE MODE is specified, the terminal is in the same state (in terms
of stty options) as when the program began. Usually the terminal input is in
cooked mode, with interrupts enabled and input not becoming available
until after a newline character is typed.

The IN FORM MODE keywords specify raw mode, in which each character of
input becomes available to the program as it is typed or read.

By default, 4GL programs operate in line mode, but so many statements take
it into formatted mode (including OPTIONS statements that set keys, DISPLAY
AT, OPEN WINDOW, DISPLAY FORM, and other screen interaction statements)
that typical 4GL programs are actually in formatted mode most of the time.

When the RUN statement specifies IN FORM MODE, the program remains in
formatted mode if it currently is in formatted mode, but it does not enter
formatted mode if it is currently in line mode. When the prevailing RUN
option specifies IN LINE MODE, the program remains in line mode if it is
currently in line mode, and it switches to line mode if it is currently in
formatted mode. The same comments apply to the PIPE option.

The RETURNING Clause
The RETURNING clause saves the termination status code of what RUN
executes in a 4GL variable. You can then examine this variable in your
program to determine the next action to take. A status code of zero usually
indicates that the command terminated normally. Non-zero exit status codes
usually indicate that an error or a signal caused execution to terminate.

RUN

4-342 HCL Informix 4GL Reference Guide

You can only use this clause if RUN invokes a 4GL program that contains an
EXIT PROGRAM statement. When this program completes execution, the
integer variable contains two bytes of termination status information:

■ The low byte contains the termination status of whatever RUN
executes. You can recover the value of the status code by calculating
the value of the integer variable modulo 256.

■ The high byte contains the low byte from the EXIT PROGRAM
statement of the 4GL program that RUN executes. You can recover
this returned code by dividing the integer variable by 256.

For example, suppose that a program consisted of these 4GL statements:

MAIN
DEFINE ret_int INT
LET ret_int = 5
EXIT PROGRAM (ret_int)

END MAIN

The following program fragment uses RUN to invoke the compiled version of
the previous program, whose filename is stored in variable prog1:

DEFINE expg_code, stat_code, ret_int INT,
prog1 CHAR(20)

. . .
RUN prog1 RETURNING ret_int
LET stat_code = (ret_int MOD 256)
IF stat_code <> 0 THEN

MESSAGE "Unable to run the ", prog1, " program."
END IF
LET expg_code = (ret_int/256)
DISPLAY " Code from the ", prog1, " program is ", expg_code

Unless an error or signal terminates the program before the EXIT PROGRAM
statement is encountered, the displayed value of expg_code is 5. Exercise
caution in interpreting the integer variable, however, because under some
circumstances the quotient (variable)/256 might not be the actual status
code value that the command line returned.

If an Interrupt signal terminates the program, the integer value is 256. If a
Quit signal causes the termination, the integer value is (3*256), or 758.

If a 4GL program that RUN executes can be terminated by actions of the user,
you could include several EXIT PROGRAM (number) statements with different
number values in different parts of the program. Examination of the code
returned by RUN could indicate which EXIT PROGRAM statement (if any) was
encountered during execution.

RUN

INFORMIX-4GL Statements 4-343

The WITHOUT WAITING Clause
The WITHOUT WAITING clause lets you execute a secondary application in
the background. The syntax of WITHOUT WAITING is illustrated in the
following example:

RUN "/$INFORMIXDIR/bin/fglgo /home/elke/sub.4gi" WITHOUT WAITING

Each 4GL application must have its own MAIN routine. The two programs
cannot share variable scope. Each must be independently terminated, either
by executing an END MAIN or EXIT PROGRAM statement in 4GL.

The WITHOUT WAITING clause is useful if you know that the command will
take some time to execute, and your 4GL program does not need the result to
continue. Because RUN WITHOUT WAITING executes the specified command
line as a background process, it generally does not affect the visual display.

A common way to use RUN WITHOUT WAITING is to execute 4GL reports in
the background.

References
CALL, FUNCTION, START REPORT

SCROLL

4-344 HCL Informix 4GL Reference Guide

SCROLL
The SCROLL statement specifies vertical movement of displayed values in all
or some of the fields of a screen array within the current form.

Usage
Here 1 ≤ lines ≤ size, where size is the number of lines in the screen array, and
lines is the positive whole number specified in the BY clause, indicating how
many lines to move the displayed values vertically in the specified fields of a
screen array. If you omit the BY lines specification, the default is one line.

Specify UP to scroll the data toward the top of the form, or DOWN to scroll
toward the bottom of the form. For example, the following statement moves
up by one line all the displayed values in the sc_item screen array and fills
with blanks all the fields of the last (that is, the bottom) screen record:

SCROLL sc_item.* UP

The BY clause indicates how many lines upwards or downwards to move the
data; if you omit it, as in the previous example, the default is one line in the
specified direction. This following example moves values in two fields down
by three lines:

SCROLL stock_num, manu_code DOWN BY 3

The SCROLL statement ignores any bracket notation (like sc_item[3].*) that
references a single record within the array; 4GL always scrolls values in the
specified fields of every screen record.

SCROLL

 ,
Field Clause

p. 3-86 DOWN

UP BY lines

is a literal integer (as described in “Literal Integers” on page 3-65), or the
name of a variable containing an integer value, that specifies how far (in
lines) to scroll the display.

lines

Element Description

SCROLL

INFORMIX-4GL Statements 4-345

If you use SCROLL, you need to keep track of the data that is left on the screen.
Many developers prefer to have the user rely on the scrolling keys of the
INPUT ARRAY statement (described in “Keyboard Interaction” on page 4-219)
or the DISPLAY ARRAY statement (described in “Scrolling During the
DISPLAY ARRAY Statement” on page 4-111), rather than the SCROLL
statement, to scroll through screen records programmatically.

References
DISPLAY ARRAY, INPUT ARRAY

SKIP

4-346 HCL Informix 4GL Reference Guide

SKIP
The SKIP statement inserts blank lines into a report, or finishes the current
page. (It can appear only in the FORMAT section of a REPORT program block.)

Usage
The SKIP statement inserts blank lines into REPORT output or advances the
current print position to the top of the next page. The LINE and LINES
keywords are synonyms in the SKIP statement. (They are not keywords in
any other statement.) Output from any PAGE TRAILER or PAGE HEADER
block appears in its usual location. The next program fragment produces a
list of names and addresses:

FIRST PAGE HEADER
PRINT COLUMN 30, "CUSTOMER LIST"
SKIP 2 LINES
PRINT "Listings for the State of ", thisstate
SKIP 2 LINES

PRINT "NUMBER", COLUMN 12, "NAME", COLUMN 35, "LOCATION",
COLUMN 57, "ZIP", COLUMN 65, "PHONE"

SKIP 1 LINE
PAGE HEADER

PRINT "NUMBER", COLUMN 12, "NAME", COLUMN 35, "LOCATION",
COLUMN 57, "ZIP", COLUMN 65, "PHONE"

SKIP 1 LINE
ON EVERY ROW

PRINT customer_num USING "####",
COLUMN 12, fname CLIPPED, 1 SPACE,

lname CLIPPED, COLUMN 35, city CLIPPED, ", " , state COLUMN 57, zipc
ode, COLUMN 65, phone

The SKIP LINES statement cannot appear within a CASE statement, a FOR
loop, or a WHILE loop. The SKIP TO TOP OF PAGE statement cannot appear in
a FIRST PAGE HEADER, PAGE HEADER, or PAGE TRAILER control block.

SKIP TO TOP OF PAGE

integer LINE

LINES

integer is a literal integer, specifying how many blank lines to insert.

Element Description

SKIP

INFORMIX-4GL Statements 4-347

References
NEED, OUTPUT TO REPORT, PAUSE, PRINT, REPORT, START REPORT

SLEEP

4-348 HCL Informix 4GL Reference Guide

SLEEP
The SLEEP statement suspends execution of the 4GL program for a specified
number of seconds.

Usage
The SLEEP statement causes the program to pause for the specified number
of seconds. This can be useful, for example, when you want a screen display
to remain visible long enough for the user to read it. The following statement
displays a screen message, and then waits three seconds before erasing it:

MESSAGE "Row has been added."
SLEEP 3
MESSAGE " "

In contexts where the PROMPT statement is valid, an alternative to SLEEP is
the PROMPT statement. The following example suspends program execution
until the user acknowledges a screen message by providing keyboard input:

PROMPT "Row was added. Press RETURN to continue:" FOR reply

Here the screen display remains visible until the user presses RETURN (or
enters anything), rather than for a fixed time interval. Entered keystrokes
are stored in the reply variable, but their actual value can be ignored.

References
DISPLAY, EXPRESSION, MESSAGE, PROMPT

SLEEP
Integer

Expression
p. 3-63

SQL

INFORMIX-4GL Statements 4-349

SQL
The SQL…END SQL keywords prepare, execute, and free an SQL statement.

Usage
Most SQL statements that Informix 4.10 databases support can be directly
embedded in 4GL source code, as well as few post-4.10 statements, such as
CONNECT, CREATE PROCEDURE FROM, CREATE TRIGGER, DISCONNECT,
FOREACH…WITH REOPTIMIZATION, OPEN…WITH REOPTIMIZATION, and
SET CONNECTION. Other SQL statements that include syntax later than 4.10
must be prepared, if the database server can prepare and execute them.

The SQL…END SQL delimiters provide an alternative facility by which an SQL
statement is automatically prepared, executed, and freed. For example, this
ALTER TABLE statement includes the DISABLED keyword, which was intro-
duced to the Informix implementation of SQL after the 4.10 release:

SQL
ALTER TABLE cust_fax MODIFY (lname CHAR(15)

NOT NULL CONSTRAINT lname_notblank DISABLED)
END SQL

A statement like this, which has no input nor output parameters, is simply
placed between the SQL and END SQL keywords. It resembles an embedded
SQL statement, except that its post-4.10 syntax would have produced a
compilation error if the SQL…END SQL delimiters were absent. Only one SQL
statement can appear in each delimited SQL statement block.

SQL statement END SQL

;

statement is a preparable SQL statement that the database server supports.

Element Description

SQL

4-350 HCL Informix 4GL Reference Guide

Host Variables
Unlike the PREPARE statement, delimited SQL blocks can include SQL state-
ments that accept host variables as input or output parameters. The 4GL host
variables must be prefixed by a dollar sign ($). You can include white space
between the $ symbol and the name of the variable.

In the next example, element is a host variable member of a RECORD variable
whose index is specified by the value of SMALLINT variable j in the ARRAY
OF RECORD arr in an INSERT statement, and str is another host variable:

SQL
INSERT INTO someTable(Column1, Column2)
SELECT TRIM(A.firstname) || " " || TRIM(A.lastname),

B.whatever FROM table1 A, Table2 B
WHERE A.PkColumn = B.FkColumn

AND A.Filter = $arr[j].element
AND B.Filter MATCHES $str

END SQL

Here the $ symbol marks arr[j].element and str as host variables, rather than
database entities. (Standard 4GL notation can prefix some SQL identifiers
with the @ symbol to distinguish them from 4GL identifiers.)

Returned Values
The SELECT INTO and EXECUTE PROCEDURE INTO SQL statements can return
values to the 4GL program. For example, the following statement executes a
stored procedure that returns two values to the 4GL program:

SQL
EXECUTE PROCEDURE someProcedure(12) INTO $rv1, $rv2
END SQL

SQL statements that have both host variables and returned values follow the
same rules, as the next example of a SELECT INTO statement illustrates:

SQL
SELECT someProcedure(colName, $inval), otherColumn

INTO $x, $y FROM someTable WHERE PkColumn=$pkval
END SQL

Although you cannot prepare EXECUTE PROCEDURE INTO and SELECT INTO
variable statements, they can appear within an SQL block. These statements
are exceptions to the rule that only preparable statements can appear in an
SQL block. SQL blocks can support 4GL variables; PREPARE cannot.

SQL

INFORMIX-4GL Statements 4-351

Referencing and Declaring Cursors
4GL does not mangle cursor names within an SQL block. You must ensure
that the application resolves cursor-name conflicts before you include state-
ments that reference a local cursor within the SQL block.

The DECLARE statement can declare a cursor for a prepared statement, but it
can also include SELECT directly (or an INSERT statement, for INSERT cursor).
In these cases, the cursor declaration must precede the SQL block, as follows:

DECLARE c_su SCROLL CURSOR WITH HOLD FOR
SQL
SELECT TRIM(Firstname)||" " || TRIM (Lastname)
INTO $var1 FROM someTable WHERE PkColumn > $pkvar
END SQL

In this example, part of the DECLARE statement precedes the beginning of the
SQL block, and part of it follows the END SQL delimiters.

Excluded Statements
Statements in the SQL block must be preparable. The SQL block cannot
include 4GL statements that are not SQL or SPL statements. In addition, the
following SQL statements, which are supported in some releases of Informix
database servers, cannot appear within an SQL block.

✖ ALLOCATE COLLECTION FREE
✖ ALLOCATE DESCRIPTOR ✖ GET DESCRIPTOR
✖ ALLOCATE ROW ✖ GET DIAGNOSTICS
✖ CHECK TABLE ✖ INFO

 CLOSE LOAD
 CONNECT OPEN
 CREATE PROCEDURE FROM ✖ OUTPUT
✖ DEALLOCATE COLLECTION PREPARE
✖ DEALLOCATE DESCRIPTOR PUT
✖ DEALLOCATE ROW ✖ REPAIR TABLE

 DECLARE ✖ SET AUTOFREE
✖ DESCRIBE SET CONNECTION

 DISCONNECT ✖ SET DEFERRED_PREPARE
 EXECUTE ✖ SET DESCRIPTOR
 EXECUTE IMMEDIATE UNLOAD
 FETCH WHENEVER
 FLUSH

SQL

4-352 HCL Informix 4GL Reference Guide

The SQL statements that are marked by the ✖symbol cannot be embedded
(and are also not valid in SQL blocks, nor as text within PREPARE statements).

SQL blocks do not support CREATE PROCEDURE statements. Use instead
directly-embedded CREATE PROCEDURE FROM filename statements.

Additional Restrictions
You cannot include an SQL block within a PREPARE statement, nor a
PREPARE statement within an SQL block. Question mark (?) placeholders
within SQL blocks are valid in strings that are prepared, but not in other
contexts. Thus, the following code generates a syntax error:

DECLARE cname CURSOR FOR
SQL

SELECT * FROM SomeWhere
WHERE SomeColumn BETWEEN ? AND ? -- Invalid!!!

END SQL

Trailing semicolon (;) delimiters are valid after the SQL statement but have
no effect. Semicolons that separate two statements within the SQL block cause
the compilation to fail with a syntax violation error message.

Optimizer Directives and Comment Indicators
Optimizer directives and comments within delimited SQL statement blocks
are passed to the database server, if you use the standard notation for these
features in Version 7.3 and later Informix database servers. For example:

SQL SELECT {+ USE_HASH (dept/BUILD)}
* FROM emp, dept, job WHERE loc = "Mumbai"
AND emp.dno = dept.dno AND emp.job = job.job

END SQL

Here {+ begins an optimizer directive (to use a hash join on the dept table)
that is terminated by the } symbol at the end of the first line.

Such directives can immediately follow the DELETE, SELECT, or UPDATE
keywords in SQL data manipulation statements. The + symbol must be the
first character following the comment indicator that begins an optimizer
directive. The # symbol is not a valid comment indicator in this context, but
{} or -- comment indicators are valid within an SQL block. For more infor-
mation, see the Informix Guide to SQL: Syntax.

SQL

INFORMIX-4GL Statements 4-353

References
PREPARE

START REPORT

4-354 HCL Informix 4GL Reference Guide

START REPORT
The START REPORT statement begins processing a 4GL report and can
specify the dimensions and destination of its output. (For more information,
see Chapter 7.)

Usage
The START REPORT statement begins processing a report with these actions:

■ Identifies a REPORT definition by which to format the input records.
■ Specifies a destination and page dimensions for output of the report.
■ Initializes any page headers in the FORMAT section of the report.

Only the name of the report definition is required, if you are satisfied with the
default destination and page dimensions. START REPORT specifications
supersede the OUTPUT section of the report definition, if these are different.

START REPORT report

WITH

 ,

1 PAGE LENGTH
1 TOP

size

=
1 BOTTOM MARGIN

1 RIGHT
1 LEFT =
1 TOP OF PAGE "string "

Page
Dimensions

Page
Dimensions

TO Clause
p. 4-355

is the identifier of a report, as declared in a REPORT statement.
is an integer expression that specifies the height (in lines) or width (in
characters) of a page of output from report, or of its margins.
is a quoted string that specifies the page-eject character sequence.

report
size

string

Element Description

START REPORT

INFORMIX-4GL Statements 4-355

Do not use the START REPORT statement to reference a report that is already
running. If you do, any output will be unpredictable.

START REPORT typically precedes a FOR, FOREACH, or WHILE loop in which
OUTPUT TO REPORT sends input records to the report. After the loop termi-
nates, FINISH REPORT completes the processing of output. (See “Report
Drivers” on page 4-362 for more details of this topic.)

The TO Clause
The TO clause can specify a destination for output from the report. Values in
this clause supersede any REPORT TO clause in the REPORT definition.

TO FILE

 PIPE

OUTPUT

SCREEN
PRINTER
filename

program

IN FORM
IN LINE

MODE

DESTINATION
Clause

"FILE variable

variable

"SCREEN"
"PRINTER"

"PIPE "
IN FORM MODE"
IN LINE

DESTINATION

program

filename

DESTINATION
Clause

TO Clause

filename is a quoted string (or a character variable), specifying a file to receive
output from report. This can also include a pathname.

program is a quoted string (or a character variable), specifying a program, a shell
script, or a command line to receive output from report.

variable is a character variable that specifies SCREEN, PRINTER, FILE, PIPE,
PIPE IN LINE MODE, or PIPE IN FORM MODE.

Element Description

START REPORT

4-356 HCL Informix 4GL Reference Guide

If you omit the TO clause, 4GL sends report output to the destination
specified in the REPORT definition, as described in “The REPORT TO Clause”
on page 7-17. If neither START REPORT nor the REPORT definition specifies
any destination, output is sent by default to the Report window (as described
in “Sending Report Output to the Screen” on page 7-19). This default is
equivalent to specifying the SCREEN keyword in the TO clause.

If the OUTPUT TO REPORT statement sends an empty set of data records to
the report, the report produces no output and the TO clause has no effect,
even if headers, footers, and other formatting control blocks are specified in
the FORMAT section of the report definition.

The TO clause can send the report output to any of the following destinations:

■ To the screen (using the SCREEN keyword)
■ To a printer (using PRINTER)
■ To a file (using FILE)
■ To another program, command line, or shell script (using PIPE)

The following sections describe each of these options.

Dynamic Output Configuration
The TO clause is not required if you are satisfied with the default destination
specifications (or default values) from the OUTPUT section of the REPORT
definition. You can use the TO clause, however, to specify the destination of
output from the report dynamically at runtime as follows:

■ If FILE or PIPE is known as the destination at compile time, the TO
FILE option can specify the filename (or the TO PIPE option can specify
the program) as a character variable that is defined at runtime.

■ If the destination is determined at runtime, the TO OUTPUT option
can specify SCREEN, PRINTER, FILE, or PIPE as the destination by
using a character variable that is defined at runtime. If this variable
specifies FILE or PIPE , you can also specify a filename or program in a
character variable that follows the DESTINATION keyword.

You can also specify the program or filename that follows the FILE or PIPE
options as a quoted string.

START REPORT

INFORMIX-4GL Statements 4-357

Except for DESTINATION, keywords following the OUTPUT keyword within
the TO clause must be delimited by quotation (") marks.

The DESTINATION keyword is not required (and is ignored, if specified)
when SCREEN or PRINTER is specified by the quoted string or variable that
follows the TO OUTPUT keywords.

The SCREEN Option

The TO SCREEN option sends the report output to the Report window.

The following statement specifies this option for the cust_list report:

START REPORT cust_list TO SCREEN

The following statement has the same effect but uses a DESTINATION clause:

START REPORT cust_list TO OUTPUT "SCREEN"

Tip: If you intend to read output from a report that uses SCREEN as its explicit or
default destination, you might want to set a PAGE LENGTH value no larger than the
number of lines that the screen of your terminal can display. (Also include PAUSE
statements in the FORMAT section of the report definition, so that the output remains
on the screen long enough for users to examine it.)

The PRINTER Option

The TO PRINTER option sends the report output to the device or program
specified by the DBPRINT environment variable. If you do not set DBPRINT,
4GL sends output to the default printer of the system. (For information about
setting DBPRINT, see Appendix D, “Environment Variables.”)

The following statement sends output from a report called cust_list to the
printer:

START REPORT cust_list TO PRINTER

The following statement has the same effect but uses a DESTINATION clause:

START REPORT cust_list TO OUTPUT "PRINTER"

START REPORT

4-358 HCL Informix 4GL Reference Guide

To send the output to a printer other than the default printer, you have the
following options:

■ Set DBPRINT to the desired value and use the TO PRINTER option.
■ Use the TO "filename" option (or equivalently, TO FILE "filename" or

TO OUTPUT "FILE" DESTINATION "filename") to send the report
output to a file, and then send the file to a printer.

■ Use the TO PIPE "program" option (or equivalently, TO OUTPUT
"PIPE" DESTINATION "program") to direct output to a command line
or to a shell script that sends output to a printer directly, or to send
the output to a text editor for further processing before it is printed.

The FILE Option

The TO FILE filename option, which can include a pathname, sends the report
output to a specified file. Except in a DESTINATION clause, the FILE keyword
is optional, but you can include it to make your code more readable. The
filename specification can be a quoted string or a character variable.

This example sends output from the cu_list report to the file outfile:

START REPORT cu_list TO "outfile"

The following statement has the same effect but uses a DESTINATION clause:

START REPORT cu_list TO OUTPUT "FILE" DESTINATION "outfile"

The FILE keyword is not required, but you can include it to make your code
more readable. (See also “OUTPUT Section” on page 7-12 for information
about how to set the default destination of output from a report within the
report definition.)

The following program creates a report with default formatting, describing
all the customers in the customer table, and saves it in the cust_lst file.

DATABASE stores7
MAIN

DEFINE p_customer RECORD LIKE customer.*
DECLARE q_curs CURSOR FOR SELECT * FROM customer
START REPORT cust_list TO "cust_lst"
FOREACH q_curs INTO p_customer.*

OUTPUT TO REPORT cust_list(p_customer.*)
END FOREACH
FINISH REPORT cu _list

START REPORT

INFORMIX-4GL Statements 4-359

END MAIN
REPORT cust_lst(r_customer)

DEFINE r_customer RECORD LIKE customer.*
OUTPUT REPORT TO PRINTER
FORMAT EVERY ROW

END REPORT

4GL ignores the OUTPUT REPORT TO PRINTER specification in the REPORT
definition because the TO "filename" clause of the START REPORT statement
overrides any default destination that REPORT specifies. But if the same
cust_list report were referenced in another START REPORT statement that had
no TO clause, its output would go to the default printer.

The PIPE Option

The TO PIPE option sends the output to a specified program, shell script, or
command line and can override the screen mode (either formatted mode or
line mode) that the OPTIONS statement (or the OUTPUT section of the report)
specifies for any resulting screen output. You can include command-line
arguments in the character string or variable specified for the TO PIPE option.
The following statement pipes output from the report to the more program:

START REPORT cust_list TO PIPE "/usr/ucb/more"

The following statement has the same effect but uses a DESTINATION clause:

START REPORT cust_list
TO OUTPUT "PIPE" DESTINATION "/usr/ucb/more"

Like the OUTPUT section of a REPORT definition, the TO clause can also
specify whether the program is in line mode or in formatted mode when
output from a report is sent to a pipe.

The following statement specifies PIPE output in formatted mode:

START REPORT cust_list TO PIPE "/usr/ucb/more" IN FORM MODE

The next example specifies line mode, using a DESTINATION clause:

START REPORT cust_list
TO OUTPUT "PIPE IN LINE MODE" DESTINATION "/usr/ucb/more"

If neither IN LINE MODE nor IN FORM MODE is included as the screen mode
specification, IN FORM MODE is the default unless a previous OPTIONS
statement has set IN LINE MODE as the default. See “Screen Display Modes”
on page 4-341 for more information about line mode and formatted mode in
4GL operations that produce screen output.

START REPORT

4-360 HCL Informix 4GL Reference Guide

The WITH Clause
This clause sets the dimensions of each page of report output and overrides
any conflicting OUTPUT section specifications of the report. Vertical dimen-
sions are in lines; horizontal dimensions are in character positions, for
monospace fonts. Values cannot be negative nor larger than 32,766.

You can use integer values in the WITH clause to set these values dynamically
at runtime.

The five clauses that are shown in Figure 4-1 specify the physical dimensions
of a page of output from the report. They can appear in any order, and each
size specification for the dimensions can be different:

■ The LEFT MARGIN clause specifies how many blank spaces to
include at the start of each new line of output. The default is 5.

■ The RIGHT MARGIN clause specifies the maximum number of
characters in each line of output, including the left margin. If you
omit this but specify FORMAT EVERY ROW, the default is 132.

■ The TOP MARGIN clause specifies how many blank lines appear
above the first line of text on each page of output. The default is 3.

■ The BOTTOM MARGIN clause specifies how many blank lines follow
the last line of output on each page. The default is 3.

■ The PAGE LENGTH clause specifies the total number of lines on each
page, including data, the margins, and any page headers or page
trailers from the FORMAT section. The default page length is 66 lines.

START REPORT

INFORMIX-4GL Statements 4-361

LEFT MARGIN size (default = 5 characters)

TOP MARGIN size
(default = 3 lines)

BOTTOM MARGIN size
(default = 3 lines)

RIGHT MARGIN size (default = 132 characters)
(for default reports or PRINT WORDWRAP only)

PAGE LENGTH size
(default = 66 lines)

Figure 4-1
Physical

Dimensions of a
Page of Report

Output

In addition to these five clauses, the TOP OF PAGE clause can specify a page-
eject sequence for a printer. On some systems, specifying this value can
reduce the time required for a large report to produce output, because SKIP
TO TOP OF PAGE can substitute this value for multiple linefeeds.

START REPORT

4-362 HCL Informix 4GL Reference Guide

END FOREACH

END WHILE

END FOR

OUTPUT
TO REPORT

p. 4-308

START REPORT
p. 4-354

Report Drivers
The START REPORT statement is logically part of a report driver, the portion of
a 4GL application that invokes a 4GL report, retrieves data, and sends the data
(as input records) to be formatted by the REPORT definition.

The following diagram shows the basic elements of a report driver. These
elements can appear in the same or different program blocks, typically
embedded within a FOR, WHILE, or FOREACH loop that uses a database
cursor to pass rows from a database to the OUTPUT TO REPORT statement for
formatting.

You must use START REPORT, rather than the CALL statement, to invoke a
4GL report.

If OUTPUT TO REPORT is not executed, no control blocks of the report are
executed even if your program includes the START REPORT statement.

The driver also must include the FINISH REPORT statement to instruct the
report when to stop processing. (You can optionally use TERMINATE REPORT
to do this, as described in the next section, usually after an exception
condition has been detected. Control logic within the report definition can
also terminate execution of the report by using the EXIT REPORT statement.)

A report cannot invoke itself. The report driver must be in a different
program block from the REPORT definition. See also “The Report Driver” on
page 7-5 for additional information about report drivers.

FOREACH
p. 4-131

WHILE
p. 4-382

 FOR
p. 4-128

FINISH REPORT
p. 4-125

TERMINATE REPORT

page 4-364

START REPORT

INFORMIX-4GL Statements 4-363

References
DEFINE, EXIT REPORT, FINISH REPORT, FOR, FOREACH, NEED, OUTPUT TO
REPORT, PAUSE, PRINT, REPORT, SKIP, TERMINATE REPORT, WHILE

TERMINATE REPORT

4-364 HCL Informix 4GL Reference Guide

TERMINATE REPORT
The TERMINATE REPORT statement stops processing a currently running 4GL
report, typically because some error has been detected. (Use FINISH REPORT
instead for the normal termination of report processing.)

Usage
The TERMINATE REPORT statement causes 4GL to terminate the currently
executing report driver without completing the normal processing of the
report. TERMINATE REPORT must be the last statement in the report driver,
and it must follow a START REPORT statement that specifies the name of the
same report. (For more information about 4GL report definitions and report
drivers, see Chapter 7, “INFORMIX-4GL Reports.”)

The TERMINATE REPORT statement has the following effects:

■ Terminates the processing of the report
■ Deletes any intermediate files or tables that were created in

processing a REPORT statement

Unlike the FINISH REPORT statement (page 4-125), TERMINATE REPORT does
not format any values from aggregate functions and does not execute any
statements in the ON LAST ROW section of the specified REPORT routine.

If the report includes an ORDER BY section that sorts the input records within
the report (rather than specifying the ORDER EXTERNAL BY option), the effect
of the TERMINATE REPORT statement is to produce an empty report.

TERMINATE REPORT report

is the name of a 4GL report, as declared in a REPORT statement. report

Element Description

TERMINATE REPORT

INFORMIX-4GL Statements 4-365

This statement is useful if you are not interested in output that is missing
some input records, but your code detects a condition that prevents some
report data from being processed. For example, an SQL statement in the
report driver returns an error, the designated printer fails, or something
disables a process to which the report sends output through a pipe.

In general, the TERMINATE REPORT statements should be conditional on
detection of an error, as in the following example. Otherwise, you would
normally execute FINISH REPORT rather than TERMINATE REPORT. The
following program specifies a report on data from the customer table:

DATABASE stores
DEFINE trouble INT

MAIN
DEFINE p_customer RECORD LIKE customer.*
DECLARE q_curs CURSOR FOR SELECT * FROM customer
LET trouble = 0
START REPORT cust_list TO "cust_listing"
FOREACH q_curs INTO p_customer.*

OUTPUT TO REPORT cust_list(p_customer.*)
IF status !=0 THEN LET trouble = trouble + 1

EXIT FOREACH
END IF

END FOREACH
IF trouble > 0 THEN TERMINATE REPORT cust_list

ELSE FINISH REPORT cust_list
END IF

END MAIN
REPORT cust_list(r_customer)

DEFINE r_customer RECORD LIKE customer.*
FORMAT

PAGE HEADER
PRINT "NUMBER", COLUMN 12, "NAME", COLUMN 35,
"LOCATION", COLUMN 57, "ZIP", COLUMN 65, "PHONE"
SKIP 1 LINE

ON EVERY ROW
PRINT r_customer.customer_num USING "####",
COLUMN 12, r_customer.fname CLIPPED, 1 SPACE,
r_customer.lname CLIPPED, COLUMN 35,
r_customer.city CLIPPED, ", " ,
r_customer.state, COLUMN 57,
r_customer.zipcode, COLUMN 65, r_customer.phone

ON LAST ROW
SKIP 1 LINE
PRINT COLUMN 12, "TOTAL NUMBER OF CUSTOMERS:",
COLUMN 57, COUNT(*) USING "##"

END REPORT

TERMINATE REPORT

4-366 HCL Informix 4GL Reference Guide

If the module variable trouble has a non-zero value when the FOREACH loop
terminates, the TERMINATE REPORT statement is executed rather than FINISH
REPORT. In this case, no statements in the ON LAST ROW control block are
executed, and the aggregate COUNT(*) function is not evaluated.

References
EXIT REPORT, FINISH REPORT, OUTPUT TO REPORT, REPORT, START REPORT

UNLOAD

INFORMIX-4GL Statements 4-367

UNLOAD
The UNLOAD statement copies data from the current database to a file.

Usage
The UNLOAD statement must include a SELECT statement (directly, or in a
variable) to specify what rows to copy into filename. UNLOAD does not delete
the copied data. The user must have SELECT privileges on every column
specified in the SELECT statement. (For details of database-level and table-
level privileges, see the GRANT statement in Informix Guide to SQL: Syntax.)

The DATABASE or CONNECT statement must first open the database that
SELECT accesses before UNLOAD can be executed.

You cannot use the PREPARE statement to preprocess an UNLOAD statement.

UNLOAD TO filename variable

DELIMITER delimiter

delimiter is a literal delimiter symbol, enclosed in quotation marks, or a CHAR or
VARCHAR variable that contains a single delimiter symbol to separate
adjacent columns in the character-string representation of each row
from the database in the output file.

filename is a quoted string (or CHAR or VARCHAR variable) that specifies the
name of an output file in which to store the rows retrieved by the
SELECT statement. This string can include a pathname.

variable is a CHAR or VARCHAR variable that contains a SELECT statement.
(See the Informix Guide to SQL: Syntax for the syntax of SELECT.)

Element Description

SELECT
Statement
see SQL:S

UNLOAD

4-368 HCL Informix 4GL Reference Guide

The Output File
The filename identifies an output file in which to store the rows retrieved from
the database by the SELECT statement. In the default (U.S. English) locale, this
file contains only ASCII characters. (In other locales, output from UNLOAD
can contain characters from the codeset of the locale.)

A set of values in output representing a row from the database is called an
output record. A newline character (ASCII 10) terminates each output record.

The UNLOAD statement represents each value in the output file as a string of
ASCII characters, according to the declared data type of the database column.

Data Type Output Format

CHARACTER,
TEXT,
VARCHAR

DECIMAL,
FLOAT,
INTEGER,
MONEY,
SMALL-
FLOAT,
SMALLINT

Trailing blanks are dropped from CHAR and TEXT (but not from
VARCHAR) values. A backslash (\) is inserted before any literal
backslash or delimiter character and before a newline character in
a VARCHAR value or as the last character in a TEXT value.

Values are written as literals with no leading blanks. (For more
information, see “Number Expressions” on page 3-66.) MONEY
values are represented with no leading currency symbol. Zero
values are represented as 0 for INTEGER or SMALLINT columns,
and as 0.00 for FLOAT, SMALLFLOAT, DECIMAL, and MONEY
columns. SERIAL values are represented as literal integers (as
described in “Integer Expressions” on page 3-63).

DATE Values are written in the format month/day/year (as described in
“Numeric Date” on page 3-75) unless some other format is
specified by the DBDATE environment variable.

DATETIME,
INTERVAL

INTERVAL values are formatted year-month, or else as
day hour:minute:second.fraction, or a contiguous subsets thereof;
DATETIME values must be in the format
year-month-day hour:minute:second.fraction, or a contiguous subset,
without DATETIME or INTERVAL keywords or qualifiers.
Time units outside the declared precision of the database column
are omitted.

BYTE Values are written in ASCII hexadecimal form, without any added
blank or newline characters. The logical record length of an
output file that contains BYTE values can be very long, and thus
might be very difficult to print or to edit.

UNLOAD

INFORMIX-4GL Statements 4-369

Null values of any data type are represented by consecutive delimiters in the
output file, without any characters between the delimiter symbols.

Quotation marks (") are required around a literal filename. The following
statement copies any rows where the value of customer.customer_num is
greater than or equal to 138, and stores them in a file called cust_file:

UNLOAD TO "cust_file" DELIMITER "!"
SELECT * FROM customer WHERE customer_num> = 138

This produces this output file, cust_file:

138!Jeffery!Padgett!Wheel Thrills!3450 El Camino!Suite 10!Palo
Alto!CA!94306!!
139!Linda!Lane!Palo Alto Bicycles!2344 University!!Palo
Alto!CA!94301!(415)323-5400

UNLOAD uses the environment variables DBFORMAT, DBMONEY, DBDATE,
GL_DATE, and GL_DATETIME to determine the format of the output file. The
precedence of these format specifications is consistent with that of 4GL forms
and reports. For additional information about environment variables that are
used in global language support, see Appendix E. ♦

The DELIMITER Clause
The DELIMITER clause specifies the delimiting character that separates the
data contained in each column in a row in the output file. Enclosing
quotation marks are required around a literal delimiter symbol.The UNLOAD
statement in the following program specifies semicolon (;) as the delimiter
symbol:

DATABASE stores
MAIN

DEFINE hostvar SMALLINT
LET hostvar = 103
UNLOAD TO "custfile" DELIMITER ";"

SELECT * FROM customer WHERE customer_num = hostvar
END MAIN

If you omit the DELIMITER clause, the default delimiter symbol is the value
of the DBDELIMITER environment variable, or else a pipe (|) symbol
(= ASCII 124) if DBDELIMITER is not set. For details, see Appendix D.

GLS

UNLOAD

4-370 HCL Informix 4GL Reference Guide

Do not specify any of the following characters as the delimiter symbol:

■ Hexadecimal numbers (0 through 9, a through f, or A through F)
■ Newline character or CONTROL-J

■ The backslash (\)

Host Variables
Do not attempt to substitute question marks (?) in place of host variables to
make the SELECT statement dynamic, because this usage has binding
problems. The following 4GL code is an example of this (unsupported)
syntax:

FUNCTION func_unload()

DEFINE query CHAR(250)
DEFINE file CHAR(20)
DEFINE del CHAR(1)
DEFINE i INTEGER, j INTEGER, k INTEGER

LET i = 100
LET j = 30
LET k = 400
LET del = ";"
LET file = "/dev/tty"

LET query = "select * from systables where tabid >= ?"
" and ncols >= ? and rowsize >= ?"

UNLOAD TO file DELIMITER del query

END FUNCTION

UNLOAD

INFORMIX-4GL Statements 4-371

A corrected version of the function func_unload() follows:

FUNCTION func_unload()

DEFINE file CHAR(20)
DEFINE del CHAR(1)
DEFINE i INTEGER, j INTEGER, k INTEGER

LET i = 100
LET j = 30
LET k = 400
LET del = ";"
LET file = "/dev/tty"

UNLOAD TO file DELIMITER del

SELECT * FROM Systables
WHERE tabid >= i AND ncols >= j AND rowsize >= k

END FUNCTION

The Backslash Escape Character
The backslash symbol (\) serves as an escape character in the output file to
indicate that the next character in a data value is a literal. The UNLOAD
statement automatically inserts a preceding backslash to prevent literal
characters from being interpreted as special characters in the following
contexts:

■ The backslash character appears anywhere in a value from a CHAR,
VARCHAR, or TEXT column.

■ The delimiter character appears anywhere in a value from a CHAR,
VARCHAR, or TEXT column.

■ The newline character appears anywhere in a value from a VARCHAR
column or as the last character in a TEXT column.

If LOAD (or tbload or onload) inserts output from UNLOAD into the database,
all backslash symbols that were used as escape characters are automatically
stripped from the values that are inserted into the database.

See also the description of UNLOAD in the Informix Guide to SQL: Syntax.

References
DATABASE, LOAD

VALIDATE

4-372 HCL Informix 4GL Reference Guide

VALIDATE
The VALIDATE statement tests whether the value of a variable is within the
range of values for a corresponding column in the syscolval table.

Element Description
array is a variable of the ARRAY data type.
column is the name of a column of table for which an INCLUDE value exists in

 the syscolval table of the default database.
first is the name of a member variable of record to be validated.
last is another member that was declared later than first in record.
record is the name of a program record to be validated.
table is the name or synonym of the table or view that contains column.
variable is the name of a variable (of a simple data type) to be validated.

 ,

VALIDATE Variable
List

LIKE table .column

.*

,

variable

 .

record

.*
. first THROUGH record . last

 , THRU

array [3 Integer
E n xpressio]

p. 3-63

Variable
List

Table
Qualifier
p. 3-89

VALIDATE

INFORMIX-4GL Statements 4-373

Usage
If your program inserts data from a screen form, 4GL automatically checks for
validation criteria that the form attributes specify.

If your program inserts data into the database from sources other than a
screen form, you can use the VALIDATE statement to apply validation criteria
from the syscolval table. (For more information, see “Default Attributes” on
page 6-80.)

This statement has no effect unless the upscol utility has assigned INCLUDE
values in the syscolval table for at least one of the database columns in the
column list of the VALIDATE statement. If the value of a variable does not
conform with the INCLUDE value in the syscolval table, 4GL sets the status
variable to -1321. If you specify a list of variables and receive a negative
status value, you must test the variables individually to detect the non-
conforming value.

Because INCLUDE can specify values only for columns of simple data types,
the list of variables cannot include BYTE or TEXT variables. You can, however,
include members of RECORD variables or elements of ARRAY variables if
these members or elements are of simple data types.

The LIKE Clause
The LIKE clause specifies the database columns with which to validate the
variables. The variables must match the specified columns in order and
number, and must be of the same or compatible data types (as described in
“Summary of Compatible 4GL Data Types” on page 3-46). You must prefix
the name of each column with that of the table. For example, the following
statement validates two variables against two columns in the stock table:

VALIDATE var1, var2 LIKE stock.stock_num, stock.manu_code

In an ANSI-compliant database, you must qualify each table name with that
of the owner of the table (owner.table). The only exception is that you can omit
the owner prefix for any tables that you own. For example, if you own tab1,
Krystl owns tab2, and Nick owns tab3, you could use this statement:

VALIDATE var1, var2, var3
LIKE tab1.var1, krystl.tab2.var2, nick.tab3.var3

VALIDATE

4-374 HCL Informix 4GL Reference Guide

You can also reference columns in tables outside the default database. See
“Table Qualifiers” on page 3-89 for more information. Even if you specify the
name of a database in the table qualifier, however, you must also include a
DATABASE statement before the first program block in the same module to
specify a default database at compile time. (For more information, see “The
Default Database at Compile Time” on page 4-73.)

The syscolval Table
The VALIDATE statement looks for validation criteria in the INCLUDE column
of the syscolval table. To enter values into this table, use the upscol utility, as
described in Appendix B. If a column does not have any INCLUDE value in
syscolval, 4GL takes no action. If the current database is not ANSI-compliant,
upscol creates a single syscolval table for all users.

In an ANSI-compliant database, each user of the upscol utility creates an
owner.syscolval table, which stores validation criteria only for the tables
owned by that user. If you omit the owner qualifier for a table that you own,
your syscolval table becomes the source for validation criteria when you
compile the program. If the owner.syscolval table does not exist, the
VALIDATE statement takes no action. (You can also include the owner name in
a database that is not ANSI-compliant. If the owner value is incorrect,
however, 4GL issues an error.) ♦

The compiler looks in the default database for syscolval. Any changes to
syscolval after compilation have no effect on the 4GL program, unless you
recompile the program.

This example assumes that the state field in the customer table has validation
criteria in syscolval that limit the valid states to those in the Western region:

INPUT BY NAME p_customer.*
...
AFTER FIELD zipcode

CALL check_zip(p_customer.zipcode)
RETURNING state_zip
WHENEVER ERROR CONTINUE
VALIDATE state_zip LIKE customer.state
WHENEVER ERROR STOP
IF (status < 0) THEN

ERROR "This zipcode is not in the Western region."
END IF

...
END INPUT

ANSI

VALIDATE

INFORMIX-4GL Statements 4-375

References
DATABASE, DEFINE, INITIALIZE, INPUT, INPUT ARRAY, WHENEVER

WHENEVER

4-376 HCL Informix 4GL Reference Guide

WHENEVER
The WHENEVER statement traps SQL and 4GL errors, warnings, and end-of-
data conditions that might occur during program execution.

Usage
WHENEVER can appear only within a MAIN, REPORT, or FUNCTION program
block. It can trap errors, warnings, and the NOT FOUND condition at runtime.

The WHENEVER statement must include two items of information:

■ Some type of exceptional condition
■ An action to take if the specified exceptional condition is detected

These specifications correspond respectively to the left-hand (conditions) and
right-hand (actions) portions of the preceding syntax diagram.

WHENEVER NOT FOUND CONTINUE

+

ANY

SQLERROR
 +

ERROR

GO TO : label

 + +

GOTO label

SQLWARNING STOP

WARNING CALL function

function is the identifier of a function (with no parentheses and no argument list)
to be invoked if the specified exceptional condition occurs.

label is a statement label (in the same program block) to which 4GL transfers
control when the specified exceptional condition occurs.

Element Description

WHENEVER

INFORMIX-4GL Statements 4-377

Using WHENEVER is equivalent to including code after every SQL statement,
and (optionally) after certain other 4GL statements, instructing 4GL to take the
specified action at runtime if the exceptional condition is detected. If you use
WHENEVER ERROR with any option but STOP or CONTINUE, 4GL tests for
errors by polling the global variable status.

The following topics are discussed in this section:

■ “The Scope of the WHENEVER Statement” on page 4-377

■ “The ERROR Condition” on page 4-378

■ “The ANY ERROR Condition” on page 4-378

■ “The NOT FOUND Condition” on page 4-379

■ “The WARNING Condition” on page 4-379

■ “The GOTO Option” on page 4-379

■ “The CALL Option” on page 4-380

■ “The CONTINUE Option” on page 4-381

■ “The STOP Option” on page 4-381

The Scope of the WHENEVER Statement
The scope of a WHENEVER statement is from its location in a program block
until the next WHENEVER statement with the same exceptional condition in
the same module (except that both ERROR and ANY ERROR reset both ERROR
and ANY ERROR). Otherwise, the WHENEVER statement remains in effect for
that exceptional condition until the end of the module.

For example, the following program has three WHENEVER statements, two of
which describe WHENEVER ERROR conditions. In line 4, CONTINUE is
specified as the action to take; line 8 specifies STOP as the action for the same
ERROR condition. Any errors that 4GL encounters after line 4 but before line 8
are ignored. After line 8, and for the rest of the program, any errors that are
encountered cause the program to terminate.

MAIN --1

DEFINE char_num INTEGER --2
DATABASE test --3
WHENEVER ERROR CONTINUE --4
PRINT "Program will now attempt first insert." --5
INSERT INTO test_color VALUES ("green") --6
WHENEVER NOT FOUND CONTINUE --7
WHENEVER ERROR STOP --8

WHENEVER

4-378 HCL Informix 4GL Reference Guide

PRINT "Program will now attempt second insert." --9
INSERT INTO test_color VALUES ("blue") --10
CLOSE DATABASE --11
PRINT "Program over." --12

END MAIN --13

The ERROR Condition
The ERROR keyword directs 4GL to take the specified action if sqlcode in the
SQLCA global record is negative after any SQL statement, or if a VALIDATE
statement or screen interaction statement (described in “OPTIONS” on
page 4-291) fails. For example, this statement causes SQL errors to be ignored:

WHENEVER ERROR CONTINUE

If you do not use any WHENEVER statements, the default action for
WHENEVER ERROR (or for any other condition) is CONTINUE.

Besides checking for errors after SQL statements, the WHENEVER ERROR
statement also checks for errors after screen interaction statements and after
VALIDATE statements. (In a WHENEVER statement, and only in this context,
SQLERROR is a synonym for ERROR. You cannot, for example, substitute
SQLERROR for ERROR in an OPTIONS or ERROR statement.)

The ANY ERROR Condition
Without ANY, WHENEVER ERROR resets status to the sqlcode value only if
the error occurs during an SQL, VALIDATE, or screen interaction statement.
The ANY keyword before ERROR, however, resets status after evaluating any
4GL expression. The -anyerr command-line option is described in Chapter 1.
This option can override WHENEVER statements in determining whether the
status variable is reset when 4GL expressions are evaluated.

WHENEVER

INFORMIX-4GL Statements 4-379

The NOT FOUND Condition
If you use the NOT FOUND keywords, SELECT and FETCH statements (and
implicit FETCH or SELECT statements in FOREACH or UNLOAD statements)
are treated differently from other SQL statements. The NOT FOUND keywords
check for the end-of-data condition in the following cases:

■ A FETCH statement attempts to retrieve a row beyond the first or last
row in the active set.

■ A SELECT statement returns no rows.

In both cases, the sqlcode variable is set to 100. The following statement calls
the no_rows() function whenever the NOT FOUND condition is detected:

WHENEVER NOT FOUND CALL no_rows

Although both NOT FOUND and NOTFOUND indicate the same condition,
you cannot use them interchangeably. Use NOTFOUND (one word) in testing
status, and use NOT FOUND (two words) in the WHENEVER statement.

The WARNING Condition
If you use the WARNING keyword (or its synonym SQLWARNING), any SQL
statement that generates a warning also produces the action indicated by the
WHENEVER WARNING statement. If a warning occurs, the first field of the
SQLAWARN record is set to W. For example, the following statement causes
a program to halt execution whenever a warning condition exists:

WHENEVER WARNING STOP

The GOTO Option
Use the GOTO clause to transfer control to the statement identified by the
specified statement label. The keywords GO TO are a synonym for GOTO.

WHENEVER

4-380 HCL Informix 4GL Reference Guide

The label that follows the GOTO keyword must be declared by a LABEL
statement in the same FUNCTION, REPORT, or MAIN program block as the
current WHENEVER statement. For example, the WHENEVER statement in
this program fragment transfers control to the statement labeled missing:
whenever the NOT FOUND condition occurs:

FUNCTION query_data()
...
FETCH FIRST a_curs INTO p_customer.*
WHENEVER NOT FOUND GO TO :missing
...
LABEL missing:

MESSAGE "No customers found."
SLEEP 3
MESSAGE ""

END FUNCTION

If your source module contains more than one program block, you might
need to redefine the error condition. For example, suppose that the module
contains three functions, and the first function includes a WHENEVER ...
GOTO statement and a corresponding LABEL statement. When compilation
moves from the first FUNCTION definition to the next, the WHENEVER speci-
fication still specifies a jump to the label, but that label is no longer defined in
the second FUNCTION block.

If the compiler processes an SQL statement within that block before you
redefine the action to take for the same condition (for example, to WHENEVER
ERROR CONTINUE), a compilation error results.To avoid this error, you can
reset the error condition by issuing another WHENEVER statement. Alterna-
tively, you can use the LABEL statement to define the same statement label in
each function, or you can use the CALL option of WHENEVER to invoke a
separate function.

The CALL Option
The CALL clause transfers program control to the specified function. Do not
include parentheses after the function name. You cannot pass variables to the
function. For example, the following statement executes a function called
error_recovery() if an error condition is detected:

WHENEVER ERROR CALL error_recovery

WHENEVER

INFORMIX-4GL Statements 4-381

If you use the BEGIN WORK statement in a function called by WHENEVER,
always specify WHENEVER ERROR CONTINUE and WHENEVER WARNING
CONTINUE before the ROLLBACK WORK statement. This prevents the
program from looping if ROLLBACK WORK encounters an error or warning.

You cannot specify the name of a stored procedure after the CALL keyword.
To invoke a stored procedure, use the CALL clause to execute a function that
contains an EXECUTE PROCEDURE statement for the desired procedure.

The CONTINUE Option
The CONTINUE keyword instructs program to take no action. This keyword
turns off a previously specified option and is the default for all conditions.

The STOP Option
The STOP keyword exits if the specified condition occurs. The following
statement terminates execution when the database server issues a warning:

WHENEVER WARNING STOP

References
CALL, DEFER, FOREACH, FUNCTION, GOTO, IF, LABEL, VALIDATE

WHILE

4-382 HCL Informix 4GL Reference Guide

WHILE
The WHILE statement executes a block of statements while a condition that
you specify by a Boolean expression is true.

Usage
If the Boolean expression is true, 4GL executes the statements that follow it,
down to the END WHILE keywords. 4GL again evaluates the Boolean
expression, and if it is still true, 4GL executes the same statement block. If the
expression is false, however, 4GL terminates the WHILE loop and resumes
execution after the END WHILE keywords. (If the expression is already false
on entry to the WHILE statement, program control passes directly to the
statement immediately following END WHILE.)

In the following example, if the user responds to the prompt by typing y, 4GL
calls the enter_order() function and displays a prompt, asking whether the
user wants to enter another order. 4GL continues entering orders and
prompting the user, as long as the user types y in response to the prompt:

LET answer = "y"
WHILE answer = "y"

CALL enter_order()
PROMPT "Do you want to enter another order (y/n) : "

FOR answer
END WHILE

The CONTINUE WHILE or EXIT WHILE keywords can interrupt the sequence
of statements in a WHILE loop as described in the following sections.

WHILE
Boolean

Expression
p. 3-60

statement END WHILE

EXIT WHILE

CONTINUE WHILE

statement is an SQL statement or other 4GL statement.

Description Element

WHILE

INFORMIX-4GL Statements 4-383

If your database has transaction logging, it is advisable that the entire WHILE
loop be within a transaction. (For more information about the SQL statements
that support transactions, see Informix Guide to SQL: Tutorial.)

The CONTINUE WHILE Statement
The CONTINUE WHILE statement interrupts a WHILE loop and causes 4GL
to evaluate the Boolean expression again. If the expression is still true,
4GL begins a new iteration of the statements in the loop. If the expression is
no longer true, control passes to the statement that follows END WHILE.

The EXIT WHILE Statement
Use the EXIT WHILE statement to terminate the WHILE loop. When the
EXIT WHILE keywords are encountered, 4GL takes the following actions:

■ Skips statements between EXIT WHILE and END WHILE

■ Resumes execution at the statement following END WHILE

The following example demonstrates using the EXIT WHILE statement
within a WHILE loop. If the status variable is not equal to zero, 4GL executes
the statements that follow the END IF keywords. Otherwise, 4GL exits from
the WHILE loop and executes the following DISPLAY statement:

WHILE TRUE
...
IF status = 0 THEN EXIT WHILE
END IF
...

END WHILE
DISPLAY p_customer.* TO customer.*

If, as in this example, statements in the WHILE loop cannot change the value
of the Boolean expression to FALSE, the WHILE loop cannot terminate unless
you specify EXIT WHILE, GOTO, or some other logical way out of the loop.

The END WHILE Keywords
The END WHILE keywords indicate the end of the WHILE loop and cause 4GL
to evaluate the Boolean expression again. If the expression is still true, 4GL re-
executes the statements in the loop. If the expression is no longer true, 4GL
passes control to the statement that follows END WHILE.

WHILE

4-384 HCL Informix 4GL Reference Guide

References
CONTINUE, END, EXIT, FOR, FOREACH

Built-In Functions and
Operators

In This Chapter ... 5-5

Functions in 4GL Programs ... 5-5
Built-In 4GL Functions .. 5-6
Built-In and External SQL Functions and Procedures 5-7
C Functions ... 5-7
ESQL/C Functions .. 5-7
Programmer-Defined 4GL Functions .. 5-8
Invoking Functions .. 5-9

Operators of 4GL .. 5-11

Syntax of Built-In Functions and Operators .. 5-13
Aggregate Report Functions ... 5-14

The GROUP Keyword .. 5-15
The WHERE Clause .. 5-15
The MIN() and MAX() Functions .. 5-16
The AVG() and SUM() Functions .. 5-16
The COUNT (*) and PERCENT (*) Functions 5-16
Differences Between the 4GL and SQL Aggregates 5-17

ARG_VAL() .. 5-18
Arithmetic Operators .. 5-20

Unary Arithmetic Operators .. 5-22
Binary Arithmetic Operators ... 5-23
Exponentiation (**) Operator ... 5-25
Modulus (MOD) Operator ... 5-25
Multiplication (*) and Division (/) Operators 5-25
Addition (+) and Subtraction (-) Operators 5-26

ARR_COUNT() ... 5-27
ARR_CURR() ... 5-29

Chapter

5

5-2 HCL Informix 4GL Reference Guide

ASCII ... 5-31
Boolean Operators ... 5-33

Logical Operators.. 5-33
Boolean Comparisons ... 5-34
Relational Operators ... 5-35
The NULL Test .. 5-37
The LIKE and MATCHES Operators .. 5-38
Set Membership and Range Tests ... 5-40

CLIPPED... 5-45
COLUMN ... 5-47
Concatenation (||) Operator ... 5-50
CURRENT .. 5-51
CURSOR_NAME() ... 5-53
DATE .. 5-56
DAY() .. 5-58
DOWNSHIFT() ... 5-59
ERR_GET() .. 5-61
ERR_PRINT() .. 5-63
ERR_QUIT() .. 5-64
ERRORLOG() .. 5-65
EXTEND() .. 5-67
FGL_DRAWBOX() .. 5-70
FGL_GETENV() .. 5-73
FGL_GETKEY() ... 5-75
FGL_KEYVAL() ... 5-76
FGL_LASTKEY() ... 5-78
FGL_SCR_SIZE() ... 5-81
FGL_SETCURRLINE () .. 5-83
FIELD_TOUCHED() ... 5-84
GET_FLDBUF() ... 5-87
INFIELD() .. 5-90
LENGTH() ... 5-92
LINENO ... 5-94
MDY() .. 5-95
Membership (.) Operator .. 5-97
MONTH() .. 5-98
NUM_ARGS() ... 5-99

Built-In Functions and Operators 5-3

ORD() ... 5-100
PAGENO ... 5-101
SCR_LINE() .. 5-102
SET_COUNT() ... 5-104
SHOWHELP() .. 5-106
SPACE ... 5-108
STARTLOG() 5-110
Substring ([]) Operator 5-113
TIME 5-116
TODAY 5-117
UNITS . 5-119
UPSHIFT() .. 5-121
USING ... 5-123
WEEKDAY() ... 5-133
WORDWRAP ... 5-135

Tabs, Line Breaks, and Page Breaks with WORDWRAP 5-136
Kinsoku Processing ... 5-137

YEAR() .. 5-138

5-4 HCL Informix 4GL Reference Guide

Built-In Functions and Operators 5-5

In This Chapter
This chapter describes the kinds of built-in functions you can use in
INFORMIX-4GL applications. It also describes 4GL operators. Information
about the syntax and usage of these built-in functions and operators appears
in the sections that follow, arranged in alphabetical order according to the
name of the function or operator. (Aggregate functions, arithmetic operators,
and most Boolean operators are described under those headings, rather than
under their individual names.)

Functions in 4GL Programs
In 4GL,a function is a named collection of statements that perform a task. (In
some programming languages, terms like method, subroutine, and procedure
correspond to a function in 4GL.) If you need to repeat the same series of
operations, you can call the same function several times, rather than specify
the same steps for each repetition. This construct supports the structured
programming design goal of segmenting source code modules into logical
units, each of which has only a single entry point and controlled exit points.

4GL programs can invoke the following types of functions:

■ Programmer-defined 4GL functions
■ 4GL built-in functions
■ SQL built-in functions
■ C functions
■ ESQL/C functions (if you have INFORMIX-ESQL/C)

Built-In 4GL Functions

5-6 HCL Informix 4GL Reference Guide

The FUNCTION statement defines a function. Variables that are declared
within a function are local to it, but functions that are defined in the same
module can reference any module-scope variables that are declared in that
module. See the descriptions in “Programmer-Defined 4GL Functions” on
page 5-8, and “FUNCTION” on page 4-140. The other types of functions that
you can call from a 4GL program are briefly discussed on the next two pages.

Built-In 4GL Functions
The built-in functions of 4GL are predefined functions that support features of
the INFORMIX-4GL language. Except for the fact that no FUNCTION definition
is required, built-in functions behave exactly like the 4GL functions that you
define with the FUNCTION statement.

Built-in 4GL functions include the following features:

■ You can invoke them with the CALL statement. (If they return a
single value, they can appear without CALL in 4GL expressions.)

■ They require parentheses, even if the argument list is empty.
■ You cannot invoke them from SQL statements.
■ You can invoke them from a C program.

If you use the FUNCTION statement to define a function with the same name
as a built-in function, your program cannot invoke the built-in function. Each
of the following 4GL built-in functions is described in this chapter.

ARG_VAL(int-expr) FGL_KEYVAL(char-expr)
ARR_COUNT() FGL_LASTKEY()
ARR_CURR(char-expr) FGL_SCR_SIZE()
CURSOR_NAME ("identifier") LENGTH(char-expr)
DOWNSHIFT(char-expr) NUM_ARGS()
ERR_GET(int-expr) ORD(char-expr)
ERR_PRINT(int-expr) SCR_LINE()
ERR_QUIT(int-expr) SET_COUNT(int-expr)
ERRORLOG(int-expr) SHOWHELP(int-expr)
FGL_DRAWBOX(nlines, ncols, begy, begx, color) STARTLOG("filename.filetype")
FGL_GETENV(char-expr) UPSHIFT(char-expr)

 FGL_GETKEY()

Built-In and External SQL Functions and Procedures

Built-In Functions and Operators 5-7

FGL_DRAWBOX() arguments are integer expressions, except for color, which
can also be a keyword. The aggregates AVG(), COUNT(*), MAX(), MIN(),
PERCENT(*), and SUM() are valid only in reports. For more information, see
“Aggregate Report Functions” on page 5-14.

Built-In and External SQL Functions and Procedures
Informix database servers support built-in SQL functions, some of which
have the same names as built-in 4GL functions or operators. Some Informix
database servers also support the syntax of the following statements.

CREATE FUNCTION CREATE ROUTINE FROM
CREATE FUNCTION FROM EXECUTE FUNCTION
CREATE PROCEDURE FROM EXECUTE PROCEDURE

These SQL statements register and execute external functions and stored
procedures, which resemble 4GL functions but are executed by the database
server.)

Calls to SQL, SPL, and external functions can appear in SQL statements but
not in other 4GL statements. (See the Informix Guide to SQL: Syntax.)

C Functions
You can use the CALL statement or an expression to invoke properly written
C language functions within a 4GL program. Such functions are often helpful
for specialized tasks that are not easily written in 4GL, such as processing
binary I/O. For information on the application program interface (API)
between 4GL and the C programming language, see Appendix C, “Using C
with INFORMIX-4GL.”

Unlike 4GL identifiers, names of C functions and their arguments are case-
sensitive. They must typically appear in lowercase letters in the function call.

ESQL/C Functions
If you have INFORMIX-ESQL/C, your 4GL program can also call compiled
ESQL/C functions that you write, as well as ESQL/C library functions. See
“Running Programs That Call C Functions” on page 1-90.

Programmer-Defined 4GL Functions

5-8 HCL Informix 4GL Reference Guide

Programmer-Defined 4GL Functions
The FUNCTION program block begins with the FUNCTION keyword and
ends with the END FUNCTION keywords. These keywords enclose a program
block of the 4GL statements that compose the function, and that are executed
when the function is invoked.

The left-hand portion of this diagram, including the identifier of the function
and the list of formal arguments, is sometimes called the function prototype
(described in detail in “The Prototype of the Function” on page 4-141). This
portion resembles the prototype of a report.

Names of functions must be unique among the names of functions, reports,
and global variables within the program and cannot be the same as any of the
formal arguments of the same function. See “FUNCTION” on page 4-140 for
details of how to define 4GL functions.

The right-hand portion of this diagram, including the declarations of formal
arguments and of local variables, and the statement block, is sometimes called
the FUNCTION program block. This portion can include any executable
statement of SQL or 4GL except the report execution statements (described in
“4GL Report Execution Statements” on page 4-14). The entire FUNCTION
program block must be defined within a single source module.

FUNCTION function () END FUNCTION

 ,

argument) DEFINE

Statement
p. 4-81

statement

argument is the name of a formal argument to the function.
function is the identifier that you declare here for the function.
statement is an SQL statement or other 4GL statement.

Description Element

RETURN
Statement
p. 4-337

Invoking Functions

Built-In Functions and Operators 5-9

No other FUNCTION, REPORT, or MAIN program block can be included in a
FUNCTION definition, but it can include statements that produce a report, call
a function, or execute a RUN statement that invokes another program.

Invoking Functions
Except for SQL functions and stored procedures, which are called in SQL
expressions, 4GL programs can use the CALL statement to invoke functions.
In some contexts, however, you can also call functions implicitly:

■ If a function returns a single value, you can invoke the function
simply by specifying its name (and any required arguments) within
an expression where a value of the returned data type is valid.

■ Exception-handling features of 4GL can automatically invoke the
function that you specify in the WHENEVER…CALL statement.

Passing Arguments and Returning Values
The program block containing the CALL statement or expression that invokes
a function is called the calling routine. Functions can receive information from
(and return values to) the calling routine. In the typical case where this is a
different program block, values from the calling routine and from other
program blocks are visible to the function only through global or module
variables, or through the argument list of the calling statement.

For most data types, the RETURN statement in the function and RETURNING
clause of the CALL statement specify any values that the function returns to
the calling routine. This mechanism for communication between the function
and its calling routine is called passing by value.

Arguments of the large data types (BYTE or TEXT) are processed in a different
way, called passing by reference. The BYTE or TEXT variables appear in the
argument list of the calling statement, but what is passed to the function is a
pointer to the variables. The RETURN statement and RETURNING clause
cannot include BYTE or TEXT variables. (The built-in 4GL functions that are
described in this chapter all pass their arguments by value, rather than by
reference.)

Invoking Functions

5-10 HCL Informix 4GL Reference Guide

Invoking SQL Functions
You can invoke predefined SQL functions and operators in 4GL programs, but
only within SQL statements. (For information about SQL functions, see the
description of function expressions in the Informix Guide to SQL: Syntax.) For
example, the USER operator of SQL can appear in a SELECT statement:

DEFINE usr_id CHAR(9)
...
SELECT USER INTO usr_id FROM systables WHERE tabid = 1

Important: Some built-in 4GL functions and operators have the same names as SQL
functions or operators. For example, CURRENT, DATE(), DAY(), EXTEND(),
LENGTH(), MDY(), MONTH(), WEEKDAY(), YEAR(), and the relational operators
are features of both 4GL and SQL. (For more information, see “Relational Operators”
on page 5-35.) You will generally encounter a compile-time or link-time error,
however, if a statement that is not an SQL statement references an SQL function or
operator that is not also a 4GL function or operator.

Built-in SQL functions and operators like USER cannot appear in other 4GL
statements, however, that are not SQL statements. If a program requires the
functionality of USER in a non-SQL statement like PROMPT, for example, you
must first use FUNCTION to define an equivalent 4GL function:

FUNCTION get_user()
DEFINE uid LIKE informix.sysusers.username
SELECT USER INTO uid FROM informix.systables

WHERE tabname = "systables"
-- row is sure to exist and to be singular

RETURN uid
END FUNCTION

To require no cursor, the SELECT statement in this example must be written
so that it returns only one row. Here the get_user() function selects the row
of systables that names itself because this row it is sure to exist and to be
unique. (The owner name informix is required to reference tables of the
system catalog only in an ANSI-compliant database, but it is valid in any SQL
database where it is an owner name.)

Operators of 4GL

Built-In Functions and Operators 5-11

Operators of 4GL
The operators of INFORMIX-4GL differ in several ways from 4GL functions:

■ Except for GET_FLDBUF(), the CALL statement cannot invoke
operators.

■ Some operators can take special non-alphanumeric symbols as
operands.

■ You cannot reference operators from a C program.

Despite these differences, 4GL operators are described in this chapter because
they resemble the built-in 4GL functions in their syntax and behavior.
Operators that return a single value can be operands in expressions.

The FUNCTION statement can define (and CALL can invoke) a 4GL function
that has the same name as an operator. In this case, only the operator, not the
function, is visible as an operand within a 4GL expression. For example:

let dt = mdy(1,2,3) --built-in MDY() operator
call mdy(1,2,3) --programmer-defined MDY() function

The following keyword-based operators of 4GL are described in this chapter.

AND LINENO
ASCII int-expr MATCHES expr
BETWEEN expr AND expr int-expr MOD int-expr
char-expr CLIPPED NOT
COLUMN int-expr OR
CURRENT qualifier PAGENO
DATE (date-expression) int-expr SPACE
DAY(date-expression) int-expr SPACES
EXTEND(value, qualifier) TIME
FIELD_TOUCHED(field-list) TODAY
GET_FLDBUF(field-list) int-expr UNITS time-keyword
INFIELD (field) expression USING format-string
IS NULL WEEKDAY (date-expression)
LENGTH(char-expression) char-expr WORDWRAP
LIKE YEAR (date-expression)

These operators (and additional arithmetic and relational operators) are
included in this chapter as a convenience, so that you can find syntax articles
without needing to classify a given feature as a function or as an operator.

5-12 HCL Informix 4GL Reference Guide

Operators that are represented by non-alphabetic symbols are grouped in
this chapter under the following headings:

■ “Arithmetic Operators” on page 5-20
■ “Relational Operators” on page 5-35
■ “Concatenation (||) Operator” on page 5-50
■ “Membership (.) Operator” on page 5-97
■ “Substring ([]) Operator” on page 5-113

The following table lists the arithmetic and relational operators of 4GL.

Symbol

Arithmetic Operators

Description

Page

Symbol

Relational Operators

Description

Page
+ Addition 5-26 < Less than 5-34
/ Division 5-25 <= Less than or equal to 5-35
** Exponentiation 5-25 = or == Equal to 5-34

MOD Modulus 5-25 != or <> Not equal to 5-34
* Multiplication 5-25 >= Greater than or equal to 5-35
- Subtraction 5-26 > Greater than 5-34
- Unary negative 5-22

+ Unary positive 5-22

For a general discussion of 4GL operators, see “Operators in 4GL Expres-
sions” on page 3-53.

Built-In Functions and Operators 5-13

Syntax of Built-In Functions and Operators

Syntax of Built-In Functions and Operators
Sections that follow describe the built-in functions and operators of 4GL.

 Built-in Functions Page Operators Page
 ARG_VAL() 5-18 AND 5-33
 ARR_COUNT() 5-27 ASCII 5-31
 ARR_CURR() 5-29 ‡ BETWEEN…AND 5-41

† AVG() 5-14 CLIPPED 5-45
† COUNT(*) 5-14 COLUMN 5-47

 CURSOR_NAME() 5-53 CURRENT 5-51
 DOWNSHIFT() 5-59 DATE 5-56
 ERR_GET() 5-61 DAY() 5-58
 ERR_PRINT() 5-63 EXTEND() 5-67
 ERR_QUIT() 5-64 FIELD_TOUCHED() 5-84
 ERRORLOG() 5-65 GET_FLDBUF() 5-87
 FGL_DRAWBOX() 5-70 ‡ IN () 5-40
 FGL_GETENV() 5-73 INFIELD() 5-90
 FGL_GETKEY() 5-75 IS NULL 5-37
 FGL_KEYVAL() 5-76 LIKE 5-38
 FGL_LASTKEY() 5-78 LINENO 5-93
 FGL_SCR_SIZE() 5-81 MATCHES 5-38
 FGL_SETCURRLINE () 5-83 † MDY() 5-95
 LENGTH() 5-92 MONTH() 5-98

† MAX() 5-14 NOT 5-33
† MIN() 5-14 OR 5-33

 NUM_ARGS() 5-99 † PAGENO 5-101
 ORD() 5-100 SPACE 5-108

† PERCENT(*) 5-14 TIME 5-116
 SCR_LINE() 5-102 TODAY 5-117
 SET_COUNT() 5-104 UNITS 5-119
 SHOWHELP() 5-106 USING 5-123
 STARTLOG() 5-110 WEEKDAY() 5-133

† SUM() 5-14 † WORDWRAP 5-135
 UPSHIFT() 5-121 YEAR() 5-138

† Valid only in the FORMAT section of a REPORT program block.
‡ Valid only in the COLOR attribute of a form specification, and in SQL statements.

Aggregate Report Functions

5-14 HCL Informix 4GL Reference Guide

)

Aggregate Report Functions
Each aggregate report function of 4GL returns a value summarizing data from
all the input records or from a specified group of input records. The 4GL
report aggregates are not valid outside of a REPORT program block.

GROUP

PERCENT

COUNT

AVG

SUM

MAX

MIN

(*)

(Number Expression
p. 3-66

INTERVAL
(Expression

p. 3-72

(4GL Expression

p. 3-49

)

)

WHERE

Boolean

Expression
p. 3-60

Usage
Aggregate report functions return statistical aggregates (or for MAX and MIN,
extrema) based on input records of a 4GL report. The GROUP keyword
restricts the data set to the current AFTER GROUP OF control block; the
WHERE keyword can apply a Boolean filter. Otherwise, returned values are
based on the entire data set.

The 4GL report aggregates resemble the SQL aggregates that can appear in
SELECT or DELETE statements, but their syntax is not identical. For details,
see “Differences Between the 4GL and SQL Aggregates” on page 5-17.
Aggregate report functions cannot appear as operands or as arguments in
4GL expressions, and cannot be nested. That is, no expression within a report
aggregate can include a report aggregate.

An error typically occurs if you attempt to use the name of an aggregate as an
identifier. Programmer-defined functions to calculate the same statistics can
be invoked from within or outside of REPORT definitions, but you must
declare other names for such functions.

Built-In Functions and Operators 5-15

Aggregate Report Functions

Variables of large or structured data types cannot be arguments to these
functions. You can, however, specify the name of a simple variable that is a
member of a record, or that is an element of an array. For more information,
see “Variables of Large Data Types” on page 4-86 and “Simple Data Types”
on page 3-9.

AVG(), SUM(), MIN(), and MAX() ignore records with null values for their
argument, but each returns NULL if all records have a null value.

If an aggregate value that depends on all records of the report appears
anywhere except in the ON LAST ROW control block, each variable in that
aggregate or WHERE clause must also appear in the list of formal arguments
of the report. (Examples of aggregates that depend on all records include
using GROUP COUNT(*) anywhere in a report, or using any aggregate
without the GROUP keyword anywhere outside the ON LAST ROW control
block.)

4GL stores intermediate results for aggregates in temporary tables. An error
results if no database is open (because the temporary table cannot be created),
or if you change or close the current database while evaluating an aggregate.

The GROUP Keyword
This optional keyword causes the aggregate function to include data only for
a group of records that have the same value on a variable that you specify in
an AFTER GROUP OF control block.

An aggregate can include the GROUP keyword only within an AFTER GROUP
OF control block. If you need the value of a GROUP report aggregate
elsewhere, you must use the LET statement within the AFTER GROUP OF
control block to store the value in a variable that has the appropriate scope of
reference.

The WHERE Clause
The optional WHERE keyword selects among the records passed to the report,
including only those for which a Boolean expression is TRUE. Conditional
aggregates are calculated on the first pass, when the records are read, and
printed on the second pass. You cannot use aggregates in a loop, such as FOR
or WHILE, where the Boolean expression changes dynamically.

5-16 HCL Informix 4GL Reference Guide

Aggregate Report Functions

The MIN() and MAX() Functions
These return the minimum value and maximum value (respectively) of their
argument among all records, or among records qualified by the WHERE
clause or by the GROUP keyword. For character data, greater than means after
in the ASCII collation sequence, where a> A> 1, and less than means before in
the ASCII sequence, where 1< A< a. For DATE or DATETIME data, greater than
means later and less than means earlier in time. See also Appendix A, “The
ASCII Character Set,” for a listing of the ASCII collation sequence.

In nondefault locales, 4GL sorts character operands of MIN() or MAX() in
code-set order, unless the locale files define a localized collation sequence in
its COLLATION category, and DBNLS is set to 1. This order also applies to
character variables whose values were retrieved from the database.

Unlike the database, 4GL makes no distinction between character strings
whose values were retrieved from CHAR or VARCHAR columns and values
from NCHAR or NVARCHAR columns of the database. To sort strings by the
rules of the database, rather than by these 4GL rules, write your code so that
the database performs the sorting. ♦

The AVG() and SUM() Functions
These functions evaluate as the average (that is, the arithmetic mean value)
and the total (respectively) of the expression among all records, or among
records qualified by the optional WHERE clause or GROUP keyword. The
operand of AVG() or SUM() must be a 4GL expression of a number or
INTERVAL data type.

The COUNT (*) and PERCENT (*) Functions
These functions are evaluated, respectively, as the total number of records
qualified by the optional WHERE clause, and as a percentage of the total
number of records in the report. You must include the (*) symbols. Like the
other report aggregates, PERCENT(*) and COUNT(*) cannot be used within
an expression.

GLS

Built-In Functions and Operators 5-17

Aggregate Report Functions

The following fragment of a REPORT routine uses the AFTER GROUP OF
control block and GROUP keyword to form sets of records according to how
many items are in each order. The last PRINT statement calculates the total
price of each order, adds a shipping charge, and prints the result.

AFTER GROUP OF number
SKIP 1 LINE
PRINT 4 SPACES, "Shipping charges for the order: ",
ship_charge USING "$$$$.&&"
PRINT 4 SPACES, "Count of small orders: ",
COUNT(*) WHERE total_price < 200.00 USING "##,###"
SKIP 1 LINE
PRINT 5 SPACES, "Total amount for the order: ",
ship_charge + GROUP SUM(total_price) USING "$$,$$$,$$$.&&"

With no WHERE clause, GROUP SUM here combines every item in the group.

Differences Between the 4GL and SQL Aggregates
The Informix Guide to SQL: Syntax describes the syntax of the SQL aggregate
functions. The major differences between the 4GL report aggregates and
aggregate functions that Informix database servers support follow:

■ Only 4GL report aggregates can use the PERCENT(*) and GROUP
keywords.

■ Only SQL aggregates can use ALL, DISTINCT, and UNIQUE as
keywords.

■ In 4GL reports, COUNT can only take an asterisk (*) as its argument,
but in SELECT or DELETE statements of SQL, the COUNT aggregate
can also use a column name or an SQL expression as its argument.

Only SQL aggregate functions can use database column names as arguments,
but this syntax difference is not of much practical importance. (Operands in
the expressions that you specify as arguments for 4GL report aggregates can
be program variables that contain values from database columns.)

References
LINENO, PAGENO, WORDWRAP

ARG_VAL()

5-18 HCL Informix 4GL Reference Guide

ARG_VAL()
The ARG_VAL() function returns a specified argument from the command
line that invoked the current 4GL application program. It can also return the
name of the current 4GL program.

Usage
This function provides a mechanism for passing values to the 4GL program
through the command line that invokes the program. You can design a 4GL
program to expect or allow arguments after the name of the program in the
command line.

Like all 4GL functions, ARG_VAL() can be invoked from any program block.
You can use it to pass values to MAIN, which cannot have formal arguments,
but you are not restricted to calling ARG_VAL() from the MAIN statement.

You can use the ARG_VAL() function to retrieve individual arguments during
program execution. (You can also use the NUM_ARGS() function to
determine how many arguments follow the program name on the command
line.)

If 1 ≤ ordinal = n, ARG_VAL(n) returns the nth command-line argument (as a
character string). The value of ordinal must be between 0 and the value
returned by NUM_ARGS (), the number of command-line arguments.

The expression ARG_VAL(0) returns the name of the 4GL application
program.

ARG_VAL (ordinal)

ordinal is an integer expression that evaluates to a non-negative whole number
no larger than the number of arguments of the program. (See the syntax
of “Integer Expressions” on page 3-63.)

Element Description

ARG_VAL()

Built-In Functions and Operators 5-19

Using ARG_VAL() with NUM_ARGS()
The built-in ARG_VAL() and NUM_ARGS() functions can pass data to a
compiled 4GL program from the command line that invoked the program.

For example, suppose that the 4GL program called myprog can accept one or
more login names as command-line arguments. Both of the following
command lines can include the same four arguments:

myprog.4gi joe bob sue les (C compiler version)
fglgo myprog joe bob sue les (RDS version)

In either case, statements in the following program fragment use the
ARG_VAL() function to store in an array of CHAR variables all the names that
the user who invoked myprog entered as command-line arguments:

DEFINE args ARRAY[8] OF CHAR(10),
i SMALLINT

. . .
F O R i = 1 TO NUM_ARGS()

LET args[i] = ARG_VAL(i)
END FOR

After myprog is invoked by these command-line arguments, the NUM_ARGS(
) function returns the value 4. Executing the LET statements in the FOR loop
assigns the following values to elements of the args array.

Variable Value

args[1] joe

args[2] bob

args[3] sue

args[4] les

Reference
NUM_ARGS()

Arithmetic Operators

5-20 HCL Informix 4GL Reference Guide

Arithmetic Operators
The 4GL arithmetic operators perform arithmetic operations on operands of
number data types (and in some cases, on operands of time data types).
Arithmetic expressions that return a number value have this syntax.

In the next three syntax diagrams, the DATETIME and INTERVAL expression
segments are only a subset of time expressions, as described in “Time Expres-
sions” on page 3-72. A DATETIME expression or an INTERVAL expression
used as an arithmetic operand can be any of the following items:

■ A program variable of the DATETIME or INTERVAL data type.
■ A DATETIME or INTERVAL value that a function or operator returns.
■ A DATETIME literal (page 3-78) or an INTERVAL literal (page 3-82).

A DATETIME or INTERVAL expression cannot be a quoted string, or numeric
DATETIME value (page 3-78), or numeric INTERVAL value (page 3-82), that
omits the DATETIME or INTERVAL keyword and the DATETIME qualifier or
INTERVAL qualifier.

Case I: Real numbers

+

-

Literal Number
p. 3-67

Function Call
p. 3-58

Variable
p. 3-57

Boolean
Expression

p. 3-60

Number
Expression

p. 3-67

+

-

*
/

MOD

**

()

Case II: Differences between DATE values

DATE Expression
p. 3-74 - DATE Expression

p. 3-74

Number
Expression

Arithmetic Operators

Built-In Functions and Operators 5-21

This is the syntax for arithmetic expressions that return an INTERVAL value.

This is the syntax for arithmetic expressions that return a DATE value.

This is the syntax for arithmetic expressions that return a DATETIME value.

Case I: Returning an INTERVAL value

+

-

INTERVAL
Expression

p. 3-72

-
+

*
/
-

INTERVAL Expression
p. 3-74

Number Expression

p. 3-66
DATETIME
Expression

p. 3-74
DATE Expression

p. 3-74

DATE Expression
p. 3-74

- DATETIME Expression
p. 3-74

Time
Expression

Case II: Returning a DATE value

DATE Expression

p. 3-74
Integer Expression

p. 3-63

Integer Expression
p. 3-63

-
+
-
+

DATE Expression
p. 3-74

Time
Expression

Case III: Returning a DATETIME value

DATETIME Expression
p. 3-74 -

+

INTERVAL Expression
p. 3-74

DATE Expression

p. 3-74

INTERVAL Expression + DATETIME Expression
p. 3-74 p. 3-74

DATE Expression
p. 3-74

Time
Expression

Arithmetic Operators

5-22 HCL Informix 4GL Reference Guide

Usage
The arithmetic operators of 4GL resemble the arithmetic functions of Informix
database servers, but they are evaluated by the client system.

Arithmetic operands can only be of simple data types. Structured (ARRAY or
RECORD) or large (BYTE or TEXT) data types are not valid as operands. An
operand, however, can be a simple variable that is a member of a record or
that is an element of an array.

The range of returned values is that of the returned data type.

In most contexts, CHAR or VARCHAR character-string representations of
number values are valid as arithmetic operands, but this imposes additional
overhead for data type conversion. The direct use of number data types tends
to support better performance in 4GL applications that make intensive use of
arithmetic operators.

If a Boolean expression is an arithmetic operand, 4GL evaluates it and
converts it to an integer by these rules: TRUE = 1 and FALSE = 0.

If any component of an expression that includes an arithmetic operator is a
null value, the entire expression returns NULL, unless the null component is
an operand of the IS NULL or IS NOT NULL operators.

Unary Arithmetic Operators
At the left of expressions that return a number or INTERVAL value, plus (+)
and minus (-) symbols can appear as unary operators to specify the sign. For
unsigned values, the default is positive (+). The number data types of 4GL
include DECIMAL, FLOAT, INTEGER, MONEY, SMALLFLOAT, and SMALLINT.

Unary plus (+) and minus (-) operators are recursive. Parentheses must
separate the subtraction operator from any immediately following unary
minus sign, as in "minuend -(-subtrahend)" unless you want 4GL to
interpret the -- symbols as a comment indicator.

Arithmetic Operators

Built-In Functions and Operators 5-23

Binary Arithmetic Operators
Six binary arithmetic operators can appear in number expressions. As the
syntax diagrams at the beginning of this article indicate, four of these
operators (*, /, +, and -) also can appear in time (DATE, DATETIME, and
INTERVAL) expressions. The MOD and exponentiation (**) operators accept
some DATE values as operands, but such expressions might return values
that are difficult to interpret.

Symbol Operator Name Name of Result Precedence

** Exponentiation Power 13

MOD Modulus Remainder 13

* Multiplication Product 12

/ Division Quotient 12

+ Addition Sum 11

- Subtraction Difference 11

4GL performs calculations with binary arithmetic operators of number data
types after automatically converting both operands to DECIMAL values.

Time operands in arithmetic expressions cannot be quoted strings repre-
senting numeric date and time values (page 3-78) nor numeric time intervals
(page 3-82). Use instead DATETIME literals or INTERVAL literals that include
an appropriate DATETIME qualifier or INTERVAL qualifier.

For example, the following LET statement that attempts to use an arithmetic
time expression as its right-hand term in fact assigns a null value to the
INTERVAL variable totalsec, rather than an interval of 9 years.

LET totalsec = "2002-01-01 00:00:00.000" - "1993-01-01 00:00:00.000"

The desired non-null result requires:

LET totalsec = DATETIME (2002-01-01 00:00:00.000) YEAR TO FRACTION
- DATETIME (1993-01-01 00:00:00.000) YEAR TO FRACTION

If the first operand of an arithmetic expression includes the UNITS operator
(“UNITS” on page 5-119), you must enclose that operand in parentheses.

Arithmetic Operators

5-24 HCL Informix 4GL Reference Guide

The following table shows the precedence (P) and data types of operands
and of returned values for both unary and binary arithmetic operators. Time
operands not listed here produce either errors or meaningless results.

P Expression Left (= x) Right (= y) Returned Value

13 + y Number or INTERVAL Same as y
- y Number or INTERVAL Same as y

12 x * * y Number INT or SMALLINT Same as y
x MOD y INT or SMALLINT INT or SMALLINT Same as y

11 x * y Number or INTERVAL Number Same as y
x / y

10 x + y

Number or INTERVAL
Number

Number
Number

Same as x
Number

x + y

x + y

x + y

x + y

x + y

x - y

x - y

x - y

x - y

x - y

x - y

x - y

x - y

INT or SMALLINT
DATE
DATE or DATETIME
INTERVAL
INTERVAL
Number
INT or SMALLINT
DATE
DATE or DATETIME
DATE or DATETIME
DATETIME
INTERVAL
DATE

DATE
INT or SMALLINT
INTERVAL
DATE or DATETIME
INTERVAL
Number
DATE
INT or SMALLINT
INTERVAL
DATETIME
DATE
INTERVAL
DATE

DATE
DATE
DATETIME
DATETIME
INTERVAL
Number
DATE
DATE
DATETIME
INTERVAL
INTERVAL
INTERVAL
INT

The precedence of all 4GL operators is listed in “Operators in 4GL Expres-
sions” on page 3-53; the operators that are not listed on that page have a
precedence of 1. These precedence (P) values are ordinal numbers to show
relative ranks.

Important: DATE and DATETIME values have no true zero point. Such values can
support addition, subtraction, and the relational operators, but division, multipli-
cation, and exponentiation are logically undefined for these data types.

Arithmetic Operators

Built-In Functions and Operators 5-25

Exponentiation (**) Operator
The exponentiation (**) operator returns a value calculated by raising the
left-hand operand to a power corresponding to the integer part of the right-
hand operand. This right-hand operand cannot have a negative value.

An expression specifying the right-hand MOD operand cannot include the
exponentiation operator. Before conversion to DECIMAL for evaluation, 4GL
converts the right-hand operand of the exponentiation operator to an
INTEGER value. Any fractional part is discarded.

Modulus (MOD) Operator
The modulus (MOD) operator returns the remainder from integer division
when the integer part of the left-hand operator is divided by the integer part
of the right-hand operator. For example, if y = 7.76 and z = 2.95, the
following expression assigns to x the value 1, the integer part of the
remainder of 7 divided by 2. The syntax is:

LET x = y MOD z

In 4GL programs, MOD is a reserved word. Do not use it as a 4GL identifier.

An expression specifying the right-hand MOD operand cannot include the
exponentiation or modulus operator, and it cannot be zero. Before conversion
to DECIMAL for evaluation, 4GL converts any operand of MOD that is not of
the INTEGER or SMALLINT data type to an INTEGER value by truncation. Any
fractional part is discarded.

Multiplication (*) and Division (/) Operators
The multiplication (*) operator returns the scalar product of its left-hand and
right-hand operands. The division (/) operator returns the quotient of its
left-hand operand divided by its right-hand operand. An error is returned if
the right-hand operand (the divisor) evaluates to zero.

If both operands of the division operator are of the INT or SMALLINT data
type, 4GL discards any fractional portion of the quotient.

For multiplication and division, if the left-hand operand has an INTERVAL
value, the result is an INTERVAL value of the same precision. (The right-hand
operand must be an expression that returns a number data type.)

Arithmetic Operators

5-26 HCL Informix 4GL Reference Guide

When the results of division are assigned to a fixed-point DECIMAL variable,
results are rounded, rather than truncated, if the fractional part contains more
decimal places than the declared scale of the receiving DECIMAL data type.

Addition (+) and Subtraction (-) Operators
The addition (+) and subtraction (-) operators return the algebraic sum and
difference, respectively, between their left- and right-hand operands.

You can use DATE operands in addition and subtraction, but not the sum of
two DATE values. All the other binary arithmetic operators also accept DATE
operands, equivalent to the count of days since December 31, 1899; but the
values returned (except from a DATE expression as the left-hand MOD
operand) are meaningless in most applications.

Do not write expressions that specify the sum of two DATE or DATETIME
values, or a difference whose second operand is a DATE or DATETIME value,
and whose first operand is an INTERVAL value.

The difference between two DATETIME values (or a DATETIME and a DATE
value, but not two DATE values) is an INTERVAL value. If the operands have
different qualifiers, the result has the qualifier of the first operand.

The difference between two DATE values is an INTEGER value, representing
the positive or negative number of days between the two calendar dates. You
must explicitly apply the UNITS DAY operator to a difference between DATE
values to store the result as an INTERVAL DAY TO DAY value.

An arithmetic expression cannot combine an INTERVAL value of precision in
the range YEAR to MONTH with another in the DAY to FRACTION range.
Neither can an expression combine an INTERVAL value with a DATETIME or
DATE value that has different qualifiers. You must explicitly use the EXTEND
operator (as described in “EXTEND()” on page 5-67) to change the DATE or
DATETIME precision to match that of the INTERVAL operand.

Arithmetic with DATE or DATETIME values sometimes produces errors. For
example, adding or subtracting a UNITS MONTH operand to a date near the
end of a month can return an invalid date (such as September 31).

References
Aggregate Report Functions, Boolean Operators, EXTEND, UNITS

ARR_COUNT()

Built-In Functions and Operators 5-27

ARR_COUNT()
The ARR_COUNT() function returns a positive whole number, typically
representing the number of records entered in a program array during or
after execution of the INPUT ARRAY statement.

Usage
You can use ARR_COUNT() to determine the number of program records that
are currently stored in a program array. In typical 4GL applications, these
records correspond to values from the active set of retrieved database rows
from the most recent query. By first calling the SET_COUNT() function, you
can set an upper limit on the value that ARR_COUNT() returns.

ARR_COUNT() returns a positive integer, corresponding to the index of the
furthest record within the program array that the screen cursor accessed. Not
all the rows counted by ARR_COUNT() necessarily contain data (for example,
if the user presses the DOWN ARROW key more times than there are rows of
data). If SET_COUNT() was explicitly called, ARR_COUNT() returns the
greater of these two values: the argument of SET_COUNT() or the highest
value attained by the array index.

The insert_items() function in the following example uses the value returned
by ARR_COUNT() to set the upper limit in a FOR statement:

FUNCTION insert_items()
DEFINE counter SMALLINT
FOR counter = 1 TO ARR_COUNT()

INSERT INTO items
VALUES (p_items[counter].item_num,

p_orders.order_num,
p_items[counter].stock_num,
p_items[counter].manu_code,
p_items[counter].quantity,
p_items[counter].total_price)

END FOR
END FUNCTION

ARR_COUNT()

ARR_COUNT()

5-28 HCL Informix 4GL Reference Guide

The following example makes use of ARR_COUNT() and the related built-in
functions ARR_ CURR() and SCR_LINE() to assign values to variables within
the BEFORE ROW clause of an INPUT ARRAY WITHOUT DEFAULTS statement.
By calling these functions in BEFORE ROW, the respective variables are
evaluated each time the cursor moves to a new line and are available within
other clauses of the INPUT ARRAY statement.

INPUT ARRAY ga_manuf WITHOUT DEFAULTS FROM sa_manuf.*
BEFORE ROW

LET curr_pa = ARR_CURR()
LET curr_sa SCR_LINE()
LET total_pa = ARR_COUNT()

You can have a statement, in a later statement within INPUT ARRAY, such as
the following example, which tests whether the cursor is at the last position
in the screen array:

IF curr_pa <> total_pa THEN ...

References
ARR_CURR(), FGL_SETCURRLINE(), SCR_LINE(), SET_COUNT()

ARR_CURR()

Built-In Functions and Operators 5-29

ARR_CURR()
During or immediately after the INPUT ARRAY or DISPLAY ARRAY
statement the ARR_CURR() function returns the number of the program
record within the program array that is displayed in the current line of a
screen array.

Usage
The current line of a screen array is the line that displays the screen cursor at
the beginning of a BEFORE ROW or AFTER ROW clause.

The ARR_CURR() function returns an integer value. The first row of the
program array and the first line (that is, top-most) of the screen array are both
numbered 1. The built-in functions ARR_CURR() and SCR_LINE() can return
different values if the program array is larger than the screen array.

You can pass ARR_CURR() as an argument when you call a function. In this
way the function receives as its argument the current record of whatever
array is referenced in the INPUT ARRAY or DISPLAY ARRAY statement.

The ARR_CURR() function can be used to force a FOR loop to begin beyond
the first line of an array by setting a variable to ARR_CURR() and using that
variable as the starting value for the FOR loop.

The following program segment tests the user input for duplication of what
should be a unique column. If the field duplicates an existing item, the
program instructs the user to try again.

INPUT ARRAY ga_manufact FROM sa_manufact.*
AFTER FIELD manu_code

IF pk_check(ARR_CURR()) THEN
ERROR "This code already exists. Re-enter",
" or press F2 to delete this entry."
NEXT FIELD manu_code

END IF
END INPUT

ARR_CURR()

ARR_CURR()

5-30 HCL Informix 4GL Reference Guide

In this example, the value returned by ARR_CURR() is then passed to function
pk_check(), where it is stored in the local variable el_pa, serving as an index
to the global array ga_manufact:

FUNCTION pk_check(el_pa) --verifies primary key
DEFINE el_pa, manu_count INT
SELECT COUNT(*) INTO manu_count

FROM manufact
WHERE manufact.manu_code = ga_manufact[el_pa].manucode

IF manu_count >= 1
THEN RETURN TRUE
ELSE RETURN FALSE

END IF
END FUNCTION

The ARR_CURR() function is frequently used with a DISPLAY ARRAY
statement in popup windows to return the user’s selection.

The following example allows users to choose supplier codes for shoes in an
order form. The user chooses among eight possibilities. The choice is
returned and displayed on a form. The variables pa_supplier and elem_pa
are locally defined. The variable gr_shoes is a global record associated with
an INPUT statement.

OPEN WINDOW w_supplier AT 3,50
WITH FORM "f_popscode"
ATTRIBUTE (BORDER, REVERSE)

DISPLAY "Press ESC to select." AT 1,1
DISPLAY "Use arrow keys to move." at 2,1
CALL SET_COUNT(8)
DISPLAY ARRAY pa_supplier TO sa_supplier.*

LET elem_pa = ARR_CURR()
LET gr_shoes.supply_code = pa_supplier[elem_pa].s_code

CLOSE WINDOW w_supplier
DISPLAY BY NAME gr_shoes.supply_code

References
ARR_COUNT(), FGL_SETCURRLINE(), SCR_LINE()

ASCII

Built-In Functions and Operators 5-31

ASCII
The ASCII operator converts an integer operand into its corresponding ASCII
character.

Usage
You can use the ASCII operator to evaluate an integer to a single character.
This operator is especially useful if you need to display CONTROL characters.

The following DISPLAY statement rings the terminal bell (ASCII value of 7):

DEFINE bell CHAR(1)
LET bell = ASCII 7
DISPLAY bell

The next REPORT program block fragments show how to implement special
printer or terminal functions. They assume that, when the printer receives the
sequence of ASCII characters 9, 11, and 1, it will start printing in red, and
when it receives 9, 11, and 0, it will revert to black printing. The values used
in the example are hypothetical; refer to the documentation for your printer
or terminal for information about which values to use.

FORMAT
FIRST PAGE HEADER

LET red_on = ASCII 9, ASCII 11, ASCII 1
LET red_off = ASCII 9, ASCII 11, ASCII 0

ON EVERY ROW
...
PRINT red_on,

"Your bill is overdue.", red_off

ASCII number

number is an integer expression (as described in “Integer Expressions” on
page 3-63) that returns a positive whole number within the range of
ASCII values.

Element Description

ASCII

5-32 HCL Informix 4GL Reference Guide

Warning: 4GL cannot distinguish between printable and nonprintable ASCII
characters. Be sure to account for nonprinting characters when using the COLUMN
operator to format the screen or a page of report output. Because devices differ in
outputting spaces with control characters, you might need to use trial and error to
align columns properly when you include control characters in output.

The ASCII Operator in PRINT Statements
To print a null character in a report, call the ASCII operator with 0 in a PRINT
statement. For example, the following statement prints the null character:

PRINT ASCII 0

ASCII 0 only displays the null character within the PRINT statement. If you
specify ASCII 0 in other contexts, it returns a blank space.

References
FGL_KEYVAL(), FGL_LASTKEY()

Boolean Operators

Built-In Functions and Operators 5-33

Boolean Operators
A 4GL Boolean operator returns TRUE (= 1), FALSE (= 0) or NULL. These 4GL
operators resemble the SQL Boolean operators, but some are not identical.

The Boolean operators include the logical operators AND, OR, and NOT, and
operators for Boolean comparisons, as described in the sections that follow.

Logical Operators
The logical operators AND, OR, and NOT combine Boolean values into a single
4GL Boolean expression. AND, OR, and NOT produce the following results
(where T means TRUE, F means FALSE, and ? means NULL).

AND T F ? OR T F ? NOT

T T F ? T T T T T F
F F F F F T F ? F T
? ? F ? ? T ? ? ? ?

Values of right-hand operands appear in boldface below each operator; the
top row also lists the possible values of left-hand operands of AND and OR.

AND

OR 4GL Expression
p. 3-49

NOT Boolean Comparison

TRUE
FALSE

String Comparison
p. 5-38

Relational Comparison
p. 5-35

NULL Test
p. 5-37

Membership and Range Tests
p. 5-40

Boolean
Comparison

Boolean
Expression

Boolean Operators

5-34 HCL Informix 4GL Reference Guide

Returned values appear in the cells where the row and column intersect. Any
nonzero operand that is not null is treated as TRUE by the logical operators.
For more information, see “Evaluating Boolean Expressions” on page 5-42.

When one or both arguments of a logical operator are null, the result can in
some cases also be null. For example, if var1 = 0 and var2 = NULL, the
following expression assigns a null value to variable x:

LET x = var1 OR var2

4GL attempts to evaluate both operands of AND and OR logical operators,
even if the value of the first operand has already determined the returned
value. The NOT operator is recursive.

Boolean Comparisons
Boolean comparisons can test any type of expression for equality or inequality,
null values, or set membership, using the following Boolean operators:

■ Relational operators to test for equality or inequality
■ IS NULL (and IS NOT NULL) to test for null values
■ LIKE or MATCHES to compare character strings
■ IN to test for set membership
■ BETWEEN…AND to test for range

The IN and BETWEEN…AND operators are valid only in SQL statements. They
cause a compilation error if you include them in other 4GL statements. They
are listed here, however, because they are valid in the WHERE clause of a
form specification file that includes the COLOR attribute. For more infor-
mation, see “Boolean Expressions in 4GL Form Specification Files” on
page 6-38.

Boolean expressions in the CASE, IF, or WHILE statements (or in the WHERE
clause of a COLOR attribute specification) return FALSE if any element of the
comparison is null, unless it is the operand of the IS NULL or IS NOT NULL
operator. Use a NULL test to detect and exclude null values in Boolean
comparisons. In this CASE statement fragment, the value of the comparison
is null if the value of salary or of last_raise is null:

WHEN salary * last_raise < 25000

Boolean Operators

Built-In Functions and Operators 5-35

You can use any value that is not false (= 0) or null as a Boolean expression
that returns TRUE. The constant TRUE, however, has the specific value of 1.

Thus, the value FALSE is returned by a comparison like:

(10 = TRUE)

Relational Operators
These operators perform relational comparisons in Boolean expressions.

Boolean expressions in 4GL statements can use these relational operators
(=, ==, <, >, <=, >=, <>, or !=, as defined in “Evaluating Boolean Expres-
sions” on page 5-42) to compare operands. For example, each of the
following comparisons returns TRUE or FALSE.

Expression Value

(2+5)* 3 = 18 FALSE
14 <= 16 TRUE
"James" = "Jones" FALSE

For character expressions, the result depends on the position of the initial
character of each operand within the collation sequence. The collation
sequence is the code-set order unless the locale files define a localized
collation sequence in the COLLATION category, and DBNLS is set to 1. If the
initial characters are identical in both strings, 4GL compares successive
characters, until a non-identical character is found, or until the end of a string
is encountered.

Expression
p. 3-49

=

==
<>
!=
<
>

<=
>=

Expression
p. 3-49

Relational Comparison

Boolean Operators

5-36 HCL Informix 4GL Reference Guide

For number expressions, the result of a relational comparison reflects the
relative positions of the calculated values of the two operands on the real line.
Relational comparisons of time expression operands follow these rules:

■ Comparison x < y is true when x is a briefer interval span than y, or
when x is an earlier DATE or DATETIME value than y.

■ Comparison x > y is true when x is a longer interval span than y, or
when x is a later DATE or DATETIME value than y.

■ You cannot compare an interval with a DATE or DATETIME value, but
you can compare DATE and DATETIME values with each other.

The value of the built-in constant TRUE is 1. A Boolean expression such as the
following example returns FALSE unless x is exactly equal to 1:

IF (x = TRUE) THEN ...

To determine whether some value is not zero or null, avoid using TRUE in
Boolean comparisons, and instead use expressions like:

IF (x) THEN ...
IF (x != FALSE) THEN ...

Your code might be easier to read and might produce better results if you
avoid using TRUE as an operand of the ==, =, !=, or <> operators.

Boolean Operators

Built-In Functions and Operators 5-37

The NULL Test
If any operand of a 4GL Boolean comparison is NULL, the value of the
comparison is FALSE (rather than NULL), unless the IS NULL keywords are
also included in the expression. Applying the NOT operator to a null value
does not change its FALSE evaluation.

To process expressions with NULL values in a different way from other
values, you can use the IS NULL keywords to test for a NULL value.

Without the NOT keyword, the comparison returns TRUE if the operand has a
null value. (If you include the NOT keyword, the comparison returns TRUE if
the value of the operand is not null.) Otherwise, it returns FALSE.

The NULL test (like the WORDWRAP string operator with TEXT variables) is
an exception to the general rule that variables of the BYTE or TEXT data type
cannot appear in 4GL expressions.

4GL Expression
p. 3-49

large

IS NULL

NOT

NULL Test

is the name of a program variable of the BYTE or TEXT data type. large

Element Description

Boolean Operators

5-38 HCL Informix 4GL Reference Guide

The LIKE and MATCHES Operators
The LIKE and MATCHES operators test whether a character value matches a
quoted string that can include wildcard characters. If an operand has a null
value, the entire string comparison returns NULL. Use a NULL test (as in the
previous section) to detect and exclude null values.

You can use the following syntax to compare character strings.

String Comparison

MATCHES criterion

LIKE ESCAPE "char "
'char '

Element Description
char is a single character, enclosed between a pair of single (') or

double (") quotation marks, to specify an escape symbol.
criterion is a character expression. The string that it returns can include literal

characters, wildcards, and other symbols.

MATCHES and LIKE support different wildcards. If you use MATCHES, you
can include the following wildcard characters in the right-hand operand.

Symbol Effect in MATCHES Expression

* An asterisk matches any string of zero or more characters.

? A question mark matches any single character.

[] Square brackets match any of the enclosed characters.

- A hyphen between characters in brackets means a range in the collation
sequence. For example, [a-z] matches any lowercase letter.

^ An initial caret in the brackets matches any character that is not listed. Fo
example, [^abc] matches any character except a, b, or c.

\ A backslash causes 4GL to treat the next character as a literal character,
even if it is one of the special symbols in this list. For example, you can
match * or ? by * or \? in the string.

 Character
Expression

p. 3-69

 NOT

Boolean Operators

Built-In Functions and Operators 5-39

It is not valid to use backslash (nor any non-default escape character) within
the brackets that specify a range for the MATCHES operator..

If an SQL statement uses the bracket notation of MATCHES to test for a range
of values, and if the locale specifies a localized collation order, the database
server sorts according to that localized order, rather than in code-set order.

This sort is true even for data values from CHAR and VARCHAR columns.
However, DBNLS must be set to 1 for 4GL to be able to manipulate data
values from NCHAR and NVARCHAR database columns (by using CHAR and
VARCHAR program variables), and for nondefault collation to be
supported. ♦

The following WHERE clause tests the contents of character field field007 for
the string ten. Here the * wildcards specify that the comparison is true if ten
is found alone or in a longer string, such as often or tennis shoe:

COLOR = RED WHERE field007 MATCHES "*ten*"

If you use the keyword LIKE to compare strings, the wildcard symbols of
MATCHES have no special significance, but you can use the following
wildcard characters of LIKE within the right-hand quoted string.

Symbol Effect in LIKE Expression

% A percent sign matches zero or more characters.

_ An underscore matches any single character.

\ A backslash causes 4GL to treat the next character as a literal (so you can
match % or _ by \% or _).

The next example tests for the string ten in the character variable string,
either alone or in a longer string:

IF string LIKE "%ten%"

The next example tests whether a substring of a character variable (or else an
element of a two-dimensional array) contains an underscore symbol. The
backslash is necessary because underscore is a wildcard symbol with LIKE.

IF horray[3,8] LIKE "%_%" WHERE >> out.a

GLS

Boolean Operators

5-40 HCL Informix 4GL Reference Guide

You can replace the backslash as the literal symbol. If you include an ESCAPE
char clause in a LIKE or MATCHES specification, 4GL interprets the next
character that follows char as a literal in the preceding character expression,
even if that character corresponds to a special symbol of the LIKE or
MATCHES keyword. The double quote (") symbol cannot be char.

For example, if you specify ESCAPE z, the characters z_ and z? in a string
stand for the literal character _ and ?, rather than wildcards. Similarly,
characters z% and z* stand for the characters % and *. Finally, the characters
zz in the string stand for the single character z. The following expression is
true if the variable company does not include the underscore character:

NOT company LIKE "%z_%" ESCAPE "z"

The evaluation of logical comparisons and MATCHES, LIKE, and BETWEEN
expressions containing character operands is based on the code-set order of
the client locale when 4GL performs the comparison, unless a localized
collation is specified. When the database server performs the comparison,
sorting is based on the code-set order of the database locale, or (for data
values from NVARCHAR or NCHAR columns only) on a localized collation
order, if one is specified in the COLLATION category of the locale files and if
the DBNLS environment variable is set to 1. ♦

Set Membership and Range Tests
The BETWEEN…AND and IN() operators that test for set membership or
range are supported for 4GL programs in three contexts:

■ In SQL statements
■ In the WHERE clause of the COLOR attribute in 4GL form

specifications
■ In the condition column of the syscolatt table

They are not valid in 4GL statements that are not also SQL statements.

GLS

Boolean Operators

Built-In Functions and Operators 5-41

The following diagram shows the syntax for using the IN() operator to test
for set membership.

If you omit the NOT keyword, this test returns TRUE if any expression in the
list (within parentheses) at the right matches the expression on the left.

If you include the NOT keyword, the test evaluates as FALSE if no expression
in the list matches the expression on the left.

The following diagram shows the syntax for the BETWEEN…AND operators
to test whether a value is included within a specified range (or an inclusive
interval on the real line).

.

4GL Expression
p. 3-49

IN (
 ,

4GL Expression
p. 3-49

)
NOT

Set Membership Test

Range Test

4GL Expression BETWEEN 4GL Expression AND 4GL Expression
p. 3-49 p. 3-49 p. 3-49

NOT

 Operands must return compatible data types. Values returned by the second
(O2) and third (O3) operands that define the range must follow these rules:

■ For number or INTERVAL values, O2 must be less than or equal to O3

■ For DATE and DATETIME values, O2 must be no later than O3.
■ For character strings, O2 must be earlier than O3 in the ASCII collation

sequence. (The ASCII character set is listed in Appendix A.)

In nondefault locales, the code-set order (or whatever order of sorting the
COLLATION category specifies in the locale files) replaces the ASCII collation
order. The DBNLS environment variable must also be set to 1 for 4GL to
support non-code-set sorting of string values. ♦

Boolean Operators

5-42 HCL Informix 4GL Reference Guide

If you omit the NOT keyword, this test evaluates as TRUE if the first operand
has a value not less than the second operand or greater than the third. If you
include the NOT keyword, the test evaluates as FALSE if the first operand has
a value outside the specified range.

Data Type Compatibility
You might get unexpected results if you use relational operators with expres-
sions of dissimilar data types. In general, you can compare numbers with
numbers, character strings with strings, and time values with time values.

If a time expression operand of a Boolean expression is of the INTERVAL data
type, any other time expression to which it is compared by a relational
operator must also be an INTERVAL value. You cannot compare a span of
time (an INTERVAL value) with a point in time (a DATE or DATETIME value).
For additional information about data type compatibility in expressions, see
“Summary of Compatible 4GL Data Types” on page 3-46.

Evaluating Boolean Expressions
In contexts where a Boolean expression is expected, 4GL applies the following
rules after it evaluates the expression:

■ The Boolean expression returns the value TRUE if the expression
returns a nonzero real number or any of the following values:
❑ A character string representing a nonzero number
❑ A nonzero INTERVAL value
❑ Any DATETIME or DATE value (except 31 December 1899)
❑ A true value returned by any Boolean function or operator
❑ The integer constant TRUE

■ The Boolean expression returns the value TRUE if the value is null and
the expression is the operand of the IS NULL operator.

Boolean Operators

Built-In Functions and Operators 5-43

■ The Boolean expression returns null if the value of the expression is
null and the expression appears in none of the following contexts:
❑ An operand of the IS NULL or IS NOT NULL operator
❑ An element in a Boolean comparison (as described in “Boolean

Comparisons” on page 5-34)
❑ An element in a conditional statement of 4GL (IF, CASE, WHILE)

■ Otherwise, the Boolean expression returns the value FALSE.

Operator Precedence in Boolean Expressions
If a Boolean expression has several operators, they are processed according
to their precedence. Operators that have the same precedence are processed
from left to right.

Important: The precedence of 4GL operators is listed in “Operators in 4GL Expres-
sions” on page 3-53. These relative precedence values are ordinal numbers.

The following table lists the precedence (P) of the Boolean operators of 4GL
and summarizes the data types of their operands.

P Description Expression Left (= x) Right (= y) Returns

9 String comparison x LIKE y Character Character Boolean
 String comparison x MATCHES y Character Character Boolean

8 Test for: less than x < y Any simple data type Same as x Boolean
 Less than or equal to x <= y Any simple data type Same as x Boolean
 Equal to x = y or x == y Any simple data type Same as x Boolean
 Greater than or equal to x >= y Any simple data type Same as x Boolean
 Greater than x > y Any simple data type Same as x Boolean
 Not equal to x != y or x <> y Any simple data type Same as x Boolean

7 Test for: set membership x IN (y) Any Any Boolean

6 Test for: range x BETWEEN y AND z Any Same as x Boolean

5 Test for: NULL
Test for: NULL

x IS NULL
x IS NOT NULL

Any
Any

 Boolean
Boolean

(1 of 2)

Boolean Operators

5-44 HCL Informix 4GL Reference Guide

P Description Expression Left (= x) Right (= y) Returns

4 Logical inverse NOT y Boolean Boolean

3 Logical intersection x AND y Boolean Boolean Boolean

2 Logical union x OR y Boolean Boolean Boolean

1 Test whether field edited
Test for current field

FIELD_TOUCHED(y)
INFIELD(y)

 Field name
Field name

Boolean
Boolean

(2 of 2)

Besides the Boolean operators listed in this table, the built-in 4GL operators
FIELD_TOUCHED() and INFIELD() also return Boolean values. Their prece-
dence is lower (P = 1) than that of the OR operator. They can use the name of
a field in the current form as their operand. Both the INFIELD() and
FIELD_TOUCHED() operators are described later in this chapter.

References
FIELD_TOUCHED(), INFIELD()

CLIPPED

Built-In Functions and Operators 5-45

CLIPPED
The CLIPPED operator takes a character operand and returns the same
character value, but without any trailing white space (such as ASCII 32).

Usage
Character expressions often have a data length less than their total size. The
following DISPLAY statement, for example, would produce output that
included 200 trailing blanks if CLIPPED were omitted but displays only 22
characters when CLIPPED is included:

DEFINE string CHAR(222)
LET string = "Two hundred characters"
DISPLAY string CLIPPED

The CLIPPED operator can be useful in the following kinds of situations:

■ After a variable in a DISPLAY, ERROR, LET, MESSAGE, or PROMPT
statement, or in a PRINT statement of a REPORT program block

■ When concatenating several character expression into a single string
■ When comparing two or more character expressions and one or more

of them is already clipped

The CLIPPED operator can affect the value of a character variable within an
expression. CLIPPED does not affect the value when it is stored in a variable
(unless you are concatenating CLIPPED values together). For example, if
CHAR variable b contains a string that is shorter than the declared length of
CHAR variable a, the following LET statement pads a with trailing blanks,
despite the CLIPPED operator:

L E T a = b CLIPPED

However, if CHAR variable b contains a string value no longer than the
declared maximum size of VARCHAR variable v, the following statement
discards any trailing blanks from what it stored in v:

L E T v = b

Character Expression
p. 3-69 CLIPPED

CLIPPED

5-46 HCL Informix 4GL Reference Guide

The following program fragment is from a REPORT that prints mailing labels:

FORMAT
ON EVERY ROW
IF (city IS NOT NULL)

AND (state IS NOT NULL) THEN
PRINT fname CLIPPED, 1 SPACE, lname
PRINT company
PRINT address1
IF (address2 IS NOT NULL) THEN PRINT address2

END IF
PRINT city CLIPPED, ", " , state,
2 SPACES, zipcode
SKIP TO TOP OF PAGE

END IF

The following program fragment is from a report driver. Here CLIPPED is
used to format the text of a MESSAGE statement that includes a filename
stored in a character variable:

DEFINE file_name CHAR(60)
PROMPT " Enter drive, pathname, ",

"and file name for Book Report:" FOR file_name
IF (file_name IS NULL) THEN

LET file_name = "book.out"
END IF
MESSAGE "Printing Book Report to ", file_name CLIPPED,

" --Please wait."

Relative to other 4GL operators, CLIPPED has a very low precedence. This can
lead to confusion in some contexts, such as specifying compound Boolean
conditions. For example, i4glc1 and fglpc both parse the condition:

IF LENGTH(f2) > 0 AND f2 CLIPPED != "customer" THEN

as if it were delimited with parentheses as:

IF (((LENGTH(f2) > 0) AND f2) CLIPPED) != "customer" THEN

To achieve the required result, you can write the expression as:

IF LENGTH(f2) > 0 AND (f2 CLIPPED) != "customer" THEN

In East Asian locales, CLIPPED can delete trailing multibyte white-space
characters without creating partial characters. ♦

Reference
USING

GLS

COLUMN

Built-In Functions and Operators 5-47

COLUMN
COLUMN specifies the position in the current line of a report where output
of the next value in a PRINT statement begins, or the position on the 4GL
screen for the next value in a DISPLAY statement.

Usage
Unless you use the keyword CLIPPED or USING, the PRINT statement and the
DISPLAY statement (when no form is open) display 4GL variables with widths
(including any sign) that depend on their declared data types.

Data Type Default Display Width (in Character Positions)
CHAR The length from the data type declaration
DATE 10
DATETIME From 2 to 25, as implied in the data type declaration
DECIMAL (2 + m), where m is the precision from the data type declaration
FLOAT 14
INTEGER 11
INTERVAL From 3 to 25, as implied in the data type declaration
MONEY (3 + m), where m is the precision from the data type declaration
SMALLFLOAT 14
SMALLINT 6
VARCHAR The maximum length from the data type declaration

COLUMN left-offset

is an integer expression (as described in “Integer Expressions” on
page 3-63) in a report, or else a literal integer (as described in “Literal
Integers” on page 3-65) in a DISPLAY statement, specifying where the
next character of output will appear, in character positions from the
left margin (of the screen, or page of report output).

left-offset

Description Element

COLUMN

5-48 HCL Informix 4GL Reference Guide

In a REPORT program block or in A DISPLAY statement that outputs data to
the 4GL screen, you can use the COLUMN operator to control precisely the
location of items within a line. The COLUMN operator is often a requirement
for the output of tabular information, and it is convenient for many other
uses.

The left-offset value specifies a character position offset from the left margin
of the 4GL screen or the currently executing 4GL report. In a report, this value
cannot be greater than the arithmetic difference (right margin - left margin) for
explicit or default values in the OUTPUT section of the REPORT definition (for
more information, see “OUTPUT Section” on page 7-12). For the syntax of
4GL expressions that return whole numbers, see “Integer Expressions” on
page 3-63.

If the printing position in the current line is already beyond the specified left-
offset, the COLUMN operator has no effect.

COLUMN in DISPLAY Statements
4GL calculates the left-offset from the first character position of the 4GL
screen. For example, in the following statements both the string NAME and the
4GL variable fname are displayed with their first (left-most) character in the
twelfth character position on the 4GL screen:

DISPLAY "NUMBER", COLUMN 12, "NAME", COLUMN 35,
"CITY", COLUMN 57, "ZIP", COLUMN 65, "PHONE"

DISPLAY ASCII 13, customer_num, COLUMN 12, fname CLIPPED,
ASCII 32, lname CLIPPED, COLUMN 35, city CLIPPED,
", ", state, COLUMN 57, zipcode, COLUMN 65, phone

Output from each DISPLAY statement begins on a new line.

Important: You cannot use COLUMN to send output to a screen form. Any DISPLAY
statement that includes the COLUMN operator cannot also include the AT, TO, BY
NAME, or ATTRIBUTE clause. When you include the COLUMN operator in a
DISPLAY statement, you must specify a literal integer as the left-offset, rather than
an integer expression.

COLUMN

Built-In Functions and Operators 5-49

COLUMN in PRINT Statements
When you use the PRINT statement in the FORMAT section of a report, by
default, items are printed one following the other, separated by blank spaces.
The COLUMN operator can override this default positioning. 4GL calculates
the left-offset from the left margin. If no left margin is specified in the
OUTPUT section or in START REPORT, the left-offset is counted from the left
margin of the page.

If the following PRINT statements (with COLUMN and SPACE specifications)
were part of a report that sent output to the 4GL screen, the output would
resemble that of the DISPLAY statements in the previous example:

PAGE HEADER
PRINT "NUMBER", COLUMN 12, "NAME", COLUMN 35,
"CITY", COLUMN 57, "ZIP", COLUMN 65, "PHONE"
SKIP 1 LINE

ON EVERY ROW
PRINT customer_num, COLUMN 12, fname CLIPPED,
1 SPACE, lname CLIPPED, COLUMN 35, city CLIPPED,
", ", state, COLUMN 57, zipcode, COLUMN 65, phone

References
ASCII, CLIPPED, SPACE, USING

Concatenation (||) Operator

5-50 HCL Informix 4GL Reference Guide

Concatenation (||) Operator
The double bar (||) concatenation operator joins two operands of any
simple data type, returning a single string.

Usage
The concatenation (||) operator joins two strings, with left-to-right associa-
tivity. For example, (a || b ||c) and ((a || b) ||c) are equivalent
expressions. The precedence of || is greater than LIKE or MATCHES, but less
than the arithmetic operators. Like arithmetic operators, || returns a null
value (as a zero-length string) if either operand has a null value.

The LET statement can use a comma (,) to concatenate strings, but with a
different rule for null values: if one string operand is NULL, the result is the
other string. For example, the comma separator in the right-hand expression
list of the LET statement (“LET” on page 4-226) has concatenation semantics,
ignoring any null values. (If all of the operands of a comma-separated list are
NULL, however, LET returns a null value but represents it as a single blank
space).

The following left-hand and right-hand expressions are equivalent:

a || b + c (a || (b + c))
"abcd " || NULL NULL
"abcd " CLIPPED || "ZZ" "abcdZZ"

Concatenation with || discards trailing white space from operands of
integer and fixed-point number data types, but not from character or floating-
point data types. The CLIPPED operator can remove trailing blanks from
values before concatenation in 4GL statements, but TRIM must replace
CLIPPED in preparable SQL statements (for Version 7.x and later Informix
databases).

References
CLIPPED, COLUMN, Substring ([]) operator

Expression
p. 3-49 || Expression

p. 3-49

CURRENT

Built-In Functions and Operators 5-51

CURRENT
The CURRENT operator returns the current date and time of day from the
system clock as a DATETIME value of a specified or default precision.

Usage
The CURRENT operator reads the date and time from the system clock.

You can optionally specify the precision of the returned value by including a
qualifier of the form first TO last, where first and last are keywords from this
list.

YEAR MONTH DAY
HOUR MINUTE SECOND FRACTION (n)

The first keyword must specify a time unit that is the same as or larger than
what the last keyword specifies. For example, the following qualifier is valid:

CURRENT YEAR TO DAY

But the next qualifier is not valid, because the last keyword specifies a time
unit greater than what the first specifies:

CURRENT MINUTE TO HOUR

If FRACTION is the last keyword, you can include a digit n in parentheses to
specify the scale (which can range from 1 to 5 digits) of the seconds value.

If no qualifier is specified, the default qualifier is YEAR TO FRACTION(3).

If CURRENT is executed more than once in a statement, identical values might
be returned at each call. Similarly, the order in which the CURRENT operator
is executed in a statement cannot be predicted. For this reason, do not attempt
to use this operator to mark the start or end of a 4GL statement or any specific
point in the execution of a statement.

CURRENT YEAR TO FRACTION (3)

DATETIME Qualifier
p. 3-76

CURRENT

5-52 HCL Informix 4GL Reference Guide

You can use the CURRENT operator both in SQL statements and in other 4GL
statements. The following example is from an SQL statement:

SELECT prog_title FROM tv_programs
WHERE air_date > CURRENT YEAR TO DAY

This example is from a form specification file:

ATTRIBUTES-- FORM4GL field
timestamp = FORMONLY.tmstmp TYPE DATETIME HOUR TO SECOND,

DEFAULT = CURRENT HOUR TO SECOND;

The next example is from a report:

PAGE HEADER-- Report control block
PRINT COLUMN 40, CURRENT MONTH TO MONTH,

COLUMN 42, "/",
COLUMN 43, CURRENT DAY TO DAY,
COLUMN 45, "/",
COLUMN 46, CURRENT YEAR TO YEAR

The last example would not produce the correct results if its execution
spanned midnight.

References
DATE, EXTEND(), TIME, TODAY

CURSOR_NAME()

Built-In Functions and Operators 5-53

CURSOR_NAME()
The CURSOR_NAME() function takes as its argument the SQL identifier
of an UPDATE or DELETE cursor, or the identifier of a prepared statement, and
returns the mangled name.

Usage
In versions of 4GL and ESQL/C earlier than 4.13 and 5.0, the scope of reference
of the names of cursors (and of prepared statements) was restricted to the
source module in which they were declared. Different .4gl source files could
reference different cursors that had the same identifier without conflict.
INFORMIX-ESQL/C 5.0 made the scope of cursor names global by default; the
cursor c_query in filea.ec is the same as the cursor c_query in fileb.ec.

To emulate this behavior of older 4GL applications, INFORMIX-4GL p-code
and C code preprocessors mangle (by default) all cursor identifiers and
prepared statement identifiers, using the following algorithm:

sprintf(mangled_name, "I%08X_%08X", inode_number,
hash_cursorname(cursor_name));

...
static unsigned long hash_cursorname(name)
char *name;
{

unsigned long uhash = 0x14C1BC85;
unsigned long g;
unsigned char *s;
unsigned char c;
for (s = (unsigned char *)name; (c = *s) != '\0'; s++)
{

uhash = (uhash << 4) + (c);
if ((g = uhash & 0xF0000000L) != 0)
{

uhash = uhash ̂ (g >> 24);
uhash = uhash ^ g;

}
}
return(uhash);

}

CURSOR_NAME (Character Expression
p. 3-69)

CURSOR_NAME()

5-54 HCL Informix 4GL Reference Guide

The mangled name is always 18 characters long. The first half is derived from
the inode number of the 4GL source file, and the second half, from the user-
supplied name. This strategy supports backward compatibility with release
version 4.12 (and earlier) 4GL applications. In most contexts, this solution is
useful with the 4GL preprocessor silently substituting the mangled name
wherever the identifier of the cursor or the prepared statement appears.

These mangled names can cause an error, however, when a prepared
UPDATE or DELETE statement references a mangled name as a literal string,
because the preprocessor does not perform name-mangling within a quoted
string. (Similarly, name-mangling is not performed within delimited SQL
statement blocks, nor within the text of prepared statements.)

The CURSOR_NAME() function is helpful in situations where name-mangling
of cursors causes failure of prepared UPDATE or DELETE statements that have
the WHERE CURRENT OF clause. The problem occurs in contexts like this:

DECLARE c_name CURSOR FOR SELECT ... FOR UPDATE
PREPARE p_update FROM

"UPDATE SomeTable SET SomeColumn = ? WHERE CURRENT OF c_name"

Here the cursor name, c_name, is mangled into I01234567_87654321 (or
something similar), but the name embedded in the UPDATE statement is not
mangled. This code example leads to a -507 error when the p_update
statement is executed. CURSOR_NAME() provides a solution to this problem
by mangling the name before it is embedded in the quoted string. For
example:

DECLARE c_name CURSOR FOR SELECT ... FOR UPDATE
LET s = "UPDATE SomeTable SET SomeColumn = ? WHERE CURRENT OF ",

CURSOR_NAME("c_name")
PREPARE p_update FROM s

The name-mangling code uses, and therefore needs to know, the inode
number of the source file at the time it is compiled. The fglpc and i4glc1
compilers arrange for the inode number to be pushed onto the 4GL stack
before the C function is called. This is invisible to the 4GL programmer.

CURSOR_NAME()

Built-In Functions and Operators 5-55

The -globcurs compilation option makes the scope of reference of cursors
global and disables name-mangling. The compilers require you to declare the
cursor before using it for any other purpose in the module, however, so this
option is seldom useful. It might help in debugging, however, because the
cursor names are not modified. You can also use -globcurs with fglpc.
Although the CURSOR_NAME() function is of no use to the C programmer, it
must be called with two arguments on the 4GL stack; in C programs, the two
arguments are the inode number and the identifier that is to be mangled.

DATE

5-56 HCL Informix 4GL Reference Guide

DATE
The DATE operator converts its CHAR, VARCHAR, DATETIME, or integer
operand to a DATE value. If you supply no operand, it returns a character
representation of the current date.

Usage
The DATE operator can convert values of other data types to DATE values and
can return the current date as a character string.

When used with no operand, the DATE operator reads the system clock-
calendar and returns the current date as a string in the following format:

weekday month day year

The following example uses the DATE operator to display the current date:

DEFINE p_date CHAR(15)
LET p_date = DATE
. . .
DISPLAY "Today is ", p_date AT 5,14

On Sunday, December 5, 1999, this example would display the string:

Today is Sun Dec 5 1999

DATE

(
DATETIME Expression

p. 3-72)

Integer Expression
p. 3-63

Character Expression
p. 3-69

weekday is a three-character abbreviation of the name of the day of the week.
month is a three-character abbreviation of the name of the month.
day is a two-digit representation of the day of the month.
year is a four-digit representation of the year.

Element Description

DATE

Built-In Functions and Operators 5-57

The effect of the DATE operator is sensitive to the time of execution and to the
accuracy of the system clock. An alternative way to format a DATE value as a
character string is to use the FORMAT field attribute in a screen form (as
described in “FORMAT” on page 6-50), or to use the USING operator (as
described in “Formatting DATE Values” on page 5-127).

4GL can display language-specific month-name and day-name abbreviations,
if the DBLANG environment variable references appropriate files in the
$INFORMIXDIR/msg file system. For information, see Appendix E, “Devel-
oping Applications with Global Language Support.” ♦

The DATE operator can also perform data type conversion of a character,
integer, or DATETIME operand to a DATE value, equivalent to a count of days
since the beginning of the last year of the 19th century:

■ Converting a properly formatted character string representation of a
numeric date to a DATE value. For details, see “Numeric Date” on
page 3-75. (The default format is mm/dd/yy, but the DBDATE or
GL_DATE environment variable can change this default.)

■ Converting a DATETIME value to a negative or positive integer. The
returned integer corresponds to the number of days between the
specified date and December 31, 1899.

■ Obtaining a DATE value from a negative or positive integer that
specifies the number of days between the specified date and
December 31, 1899.

The following program fragment illustrates uses of the DATE operator:

DEFINE d DATE
DEFINE dt DATETIME YEAR TO DAY

LET d = DATE (" 11/20/99 ") -- this requires the default DATE format
LET d = DATE (" 1999-11-02 ") -- this requires that DBDATE be set to Y4MD-
LET d = DATE (" 02:99:11 ") -- this requires that DBDATE be set to DY2M:

LET d = DATE(d) -- The operand can be a DATE variable, as here,
-- or the integer number of days since the last day of the year 1899
LET d = DATE (0) -- result: 12/31/1899
LET d = DATE (34000) -- result: 2/1/1993
-- Or the operand can be a DATETIME type
LET dt = CURRENT
LET d = DATE (dt) -- result is today's date
LET d = DATE(CURRENT) -- same result as previous

References
CURRENT, DATE, DAY, MDY(), MONTH, TIME, UNITS, WEEKDAY, YEAR

GLS

DAY()

5-58 HCL Informix 4GL Reference Guide

DAY()
The DAY() operator returns a positive integer, corresponding to the day
portion of the value of its DATE or DATETIME operand.

Usage
The DAY() operator can extract an integer value for the day of the month from
a DATETIME or DATE operand. This feature is helpful in some applications
because INTEGER values are easier than DATETIME or DATE values to manip-
ulate with arithmetic operators.

The following program fragment extracts the day of the month from a
DATETIME literal:

DEFINE d_var INTEGER,
date_var DATETIME YEAR TO SECOND

LET date_var = DATETIME (89-12-09 18:47:32) YEAR TO SECOND
LET d_var = DAY(date_var)
DISPLAY "The day of the month is: ", d_var USING "##"

References
CURRENT, DATE, MONTH(), TIME, TODAY, WEEKDAY(), YEAR()

DAY (DATETIME Expression
p. 3-72)

DATE Expression
p. 3-72

DOWNSHIFT()

Built-In Functions and Operators 5-59

DOWNSHIFT()
The DOWNSHIFT() function returns a string value in which all uppercase
characters in its argument are converted to lowercase.

Usage
The DOWNSHIFT() function is typically called to regularize character data.
You might use it, for example, to prevent the state abbreviation entered as TX,
Tx, or tx from resulting in different values, if these were logically equivalent
in the context of your application.

Non-alphabetic or lowercase characters are not altered by DOWNSHIFT().
The maximum data length of the argument (and of the returned character
string value) is 32,766 bytes.

You can use the DOWNSHIFT() function in an expression (where such usage
is allowed), or you can assign the value returned by the function to a variable.

In the following example, suppose that the CHAR value GEAR_4 is stored in
the program variable p_string. The following statement takes the value of the
expression DOWNSHIFT(p_string), namely gear_4, and assigns it to another
CHAR variable called d_str:

LET d_str = DOWNSHIFT(p_string)

For more information, see the DOWNSHIFT field attribute in Chapter 6,
“Screen Forms.”

The results of conversion between uppercase and lowercase letters are based
on the locale files, which identify the relationship between corresponding
pairs of uppercase and lowercase letters. If the locale files do not provide this
information, no case conversion occurs. DOWNSHIFT() has no effect on non-
English characters in most multibyte locales. ♦

DOWNSHIFT (Character Expression
p. 3-69)

GLS

DOWNSHIFT()

5-60 HCL Informix 4GL Reference Guide

Reference
UPSHIFT()

ERR_GET()

Built-In Functions and Operators 5-61

ERR_GET()
The ERR_GET() function returns a character string containing the text of the
4GL or SQL error message whose numeric code you specify as its argument.

Usage
This is a possible sequence of steps for logging system error messages:

1. Call STARTLOG() to open or create an error log file (as described in
“STARTLOG()” on page 5-110).

2. Test the value of the global status variable to see if it is less than zero.
3. If status is negative, call ERR_GET() to retrieve the error text.
4. Call ERRORLOG() to make an entry into the error log file (as

described in “ERRORLOG()” on page 5-65).

The STARTLOG() function (step 1) automatically records the error text in the
default error record, so the last three steps are not needed. ERR_GET() is most
useful when you are developing a program. The message that it returns is
probably not helpful to the user of your 4GL application. The argument of
ERR_GET() is typically the value of the status variable, which is affected by
both SQL and 4GL errors, or else a member of the global SQLCA.SQLCODE
record. See “Exception Handling” on page 2-40. The LET statement in the
following program fragment assigns the text of a 4GL error message to
errtext, a CHAR variable:

LET op_status = STATUS
IF op_status < 0 THEN LET errtext = ERR_GET(op_status)
END IF

Here the value of status is first assigned to a variable, op_status, rather than
testing ERR_GET(status) directly. Otherwise, the value of status normally
would be zero, reflecting the success of the ERR_GET(status) function call.

ERR_GET (Integer Expression)
p. 3-63

ERR_GET()

5-62 HCL Informix 4GL Reference Guide

References
ERR_PRINT(), ERR_QUIT(), ERRORLOG(), STARTLOG()

ERR_PRINT()

Built-In Functions and Operators 5-63

ERR_PRINT()
The ERR_PRINT() function displays on the Error line the text of an SQL or 4GL
error message, corresponding to a negative integer argument.

Usage
The argument of ERR_PRINT() specifies an error message number, which
must be less than zero. It is typically the value of the global status variable,
which is affected by both SQL and 4GL errors. For SQL errors only, you can
examine the global SQLCA.SQLCODE record. For information on both
SQLCA.SQLCODE and status, see “Error Handling with SQLCA” on
page 2-45.

ERR_PRINT() is most useful when you are developing a 4GL program. The
message that it returns is probably not helpful to the user of your application.

The following program segment sends any error message to the Error line:

LET op_status = STATUS
IF op_status < 0 THEN

CALL ERR_PRINT(op_status)
END IF

Here the value of status is first assigned to a variable, op_status, rather than
calling ERR_PRINT(status) directly. Otherwise, the value of status normally
would be zero, reflecting the success of the ERR_PRINT(status) function call.

If you specify the WHENEVER ANY ERROR CONTINUE compiler directive (or
the equivalent, the anyerr command-line flag), status is reset after certain
additional 4GL statements, as described in “The ANY ERROR Condition” on
page 4-378. For information about trapping errors, see “Exception Handling”
on page 2-40.

References
ERR_GET(), ERR_QUIT(), ERRORLOG(), STARTLOG()

CALL ERR_PRINT (Integer Expression)
p. 3-63

ERR_QUIT()

5-64 HCL Informix 4GL Reference Guide

ERR_QUIT()
The ERR_QUIT() function displays on the Error line the text of an SQL or 4GL
error message, corresponding to the error code specified by its negative
integer argument, and terminates the program.

Usage
The argument of ERR_QUIT() specifies an error message number, which must
be less than zero. It is typically the value of the global status variable, which
is reset by both SQL and 4GL errors. For SQL errors only, you can examine the
global SQLCA.SQLCODE record. Both SQLCA.SQLCODE and status are
described in “Error Handling with SQLCA” on page 2-45.

The ERR_QUIT() function is identical to the ERR_PRINT() function, except that
ERR_QUIT() terminates execution once the message is printed. ERR_QUIT() is
primarily useful when you are developing a 4GL program. The message that
it returns is probably not helpful to the user of your application.

If an error occurs, the following statements display the error message on the
Error line, and terminate program execution:

IF STATUS < 0 THEN
CALL ERR_QUIT(STATUS)

END IF

If you specify the WHENEVER ANY ERROR CONTINUE compiler directive (or
the equivalent, the anyerr command-line flag), status is reset after certain
additional 4GL statements, as described in “The ANY ERROR Condition” on
page 4-378. For information about trapping errors, see “Exception Handling”
on page 2-40.

References
ERR_GET(), ERR_PRINT(), ERRORLOG(), STARTLOG()

CALL ERR_QUIT (Integer Expression)
p. 3-63

ERRORLOG()

Built-In Functions and Operators 5-65

ERRORLOG()
The ERRORLOG() function copies its argument into the current error log file.

Usage
If you simply invoke the STARTLOG() function, error records that 4GL
appends to the error log after each subsequent error have this format:

Date: 07/06/99 Time: 12:20:20
Program error at "stock_one.4gl", line number 89.
SQL statement error number -239.
Could not insert new row - duplicate value in a UNIQUE INDEX
column.
SYSTEM error number -100
ISAM error: duplicate value for a record with unique key.

The actual record might be incomplete if after an error the operating system
fails to preserve the buffer that contains the module name or the line number.
You can use the ERRORLOG() function to supplement default error records
with additional information. Entries that ERRORLOG() makes in the error log
file automatically include the date and time when the error was recorded.

This is a typical sequence of steps for logging system error messages:

1. Call STARTLOG() to open or create an error log file (as described in
“STARTLOG()” on page 5-110).

2. Test the value of the global status variable to see if it is negative.
3. If status < 0, call ERR_GET() to retrieve the error text (as described in

“ERRORLOG()” on page 5-65).
4. Call ERRORLOG() to make an entry into the error log file.

Unless you specify some other action for error conditions, WHENEVER
ERROR CONTINUE is in effect by default. This default prevents the first SQL
error from terminating program execution.

CALL ERRORLOG (Character Expression
p. 3-69

)

ERRORLOG()

5-66 HCL Informix 4GL Reference Guide

You can use the ERRORLOG() function to identify errors in programs that you
are developing and to customize error handling. Even after implementation,
some errors, such as those relating to permissions and locking, are sometimes
unavoidable. These errors can be trapped and recorded by these logging
functions.

You can use error-logging functions with other 4GL features for instrumenting
a program, by tracking the way the program is used. This functionality is not
only valuable for improving the program but also for recording work habits
and detecting attempts to breach security. See INFORMIX-4GL by Example for
a detailed example of a program with this functionality.

The following program fragment calls STARTLOG() in the MAIN program
block. Here the ERRORLOG() function has a quoted string argument:

CALL STARTLOG("\\usr\\catherine\\error.log")
...
FUNCTION start_menu()
CALL ERRORLOG("Entering start_menu function")

The following example illustrates the use of ERR_GET() and ERRORLOG().
It assumes that an error log file has already been created or initialized by
calling the built-in STARTLOG() function:

FUNCTION add_cust()
DEFINE errvar CHAR(80)
WHENEVER ERROR CONTINUE
INPUT BY NAME gr_customer.*
INSERT INTO customer VALUES (gr_customer.*)
IF STATUS < 0 THEN

LET errvar = ERR_GET(STATUS)
CALL ERRORLOG(errvar CLIPPED)

END IF
END FUNCTION

If its argument is not of a character data type (for example, a DECIMAL
variable), invoking ERRORLOG() can itself produce an error.

Automatic error logging increases the size of the generated executable.

References
ERR_GET(), ERR_PRINT(), ERR_QUIT(), STARTLOG()

EXTEND()

Built-In Functions and Operators 5-67

EXTEND()
The EXTEND() operator converts its DATETIME or DATE operand to a
DATETIME value of a specified (or default) precision and scale.

Usage
The EXTEND() operator returns the value of its DATE or DATETIME operand,
but with an adjusted precision that you can specify by a DATETIME qualifier.
The operand can be a DATE or DATETIME expression of any valid precision.
If it is a character string, it must consist of valid and unambiguous time-unit
values and separators, but with these restrictions:

■ It cannot be a character string in DATE format, such as "12/12/99".
■ It cannot be an ambiguous numeric DATETIME value, such as

"05:06" or "05" whose time units are ambiguous.
■ It cannot be a time expression that returns an INTERVAL value.

DATETIME Qualifiers
A qualifier can specify the precision of the result (and the scale, if FRACTION
is the last keyword in the qualifier). The qualifier follows a comma and is of
the form first TO last, where first and last are keywords to specify (respec-
tively) the largest and smallest time unit in the result. Both can be the same.

If no qualifier is specified, the following defaults are in effect, based on the
explicit or default precision of the DATE or DATETIME operand:

■ The default qualifier that EXTEND() applies to a DATETIME operand
is YEAR TO FRACTION(3).

■ The default qualifier for a DATE operand is YEAR TO DAY.

EXTEND (DATETIME Expression
p. 3-74

DATE Expression
(subset of p. 3-74)

)

,

YEAR TO DAY

DATETIME Qualifier
p. 3-76

EXTEND()

5-68 HCL Informix 4GL Reference Guide

See also “DATETIME Qualifier” on page 3-76.

The following rules are in effect for DATETIME qualifiers that you specify as
EXTEND() operands:

■ If a first TO last qualifier is specified, the first keyword must specify
a time unit that is larger than (or the same as) the time unit that the
last keyword specifies.

■ If first specifies a time unit larger than any in the operand, omitted
time units are filled with values from the system clock-calendar. In
the following fragment, the first keyword specifies a time unit larger
than any in t_stamp, so the value of the current year would be used:

DEFINE t_stamp DATETIME MONTH TO DAY
DEFINE annual DATETIME YEAR TO MINUTE
...
LET t_stamp = "1993-12-04 17"
LET annual = EXTEND(t_stamp, YEAR TO MINUTE)

■ If last specifies a smaller time unit than any in the operand, the
missing time units are assigned values according to these rules:
❑ A missing MONTH or DAY is filled in with the value one (01).
❑ Any missing HOUR, MINUTE, SECOND, or FRACTION is filled in

with the value zero (00).
■ If the operand contains time units outside the precision specified by

the qualifier, the unspecified time units are discarded. For example,
if you specify first TO last as DAY TO HOUR, any information about
MONTH in the DATETIME operand is not used in the result.

Using EXTEND with Arithmetic Operators
If the precision of an INTERVAL value includes a time unit that is not present
in a DATETIME or DATE value, you cannot combine the two values directly
with the addition (+) or subtraction (-) binary arithmetic operators. You
must first use the EXTEND() operator to return an adjusted DATETIME value
on which to perform the arithmetic operation.

For example, you cannot directly subtract the 720-minute INTERVAL value in
the next example from the DATETIME value that has a precision from YEAR
to DAY. You can perform this calculation by using the EXTEND() operator:

EXTEND (DATETIME (1989-8-1) YEAR TO DAY, YEAR TO MINUTE)
- INTERVAL (720) MINUTE(3) TO MINUTE
--result: DATETIME (1989-07-31 12:00) YEAR TO MINUTE

EXTEND()

Built-In Functions and Operators 5-69

Here the EXTEND() operator returns a DATETIME value whose precision is
expanded from YEAR TO DAY to YEAR TO MINUTE. This adjustment allows
4GL to evaluate the arithmetic expression. The result of the subtraction has
the extended precision of YEAR TO MINUTE from the first operand.

In the next example, fragments of a report definition use DATE values as
operands in expressions that return DATETIME values. Output from these
PRINT statements would in fact be the numeric date and time (as described
in “DATETIME Literal” on page 3-78) without the DATETIME keywords and
qualifiers that are included here to show the precision of the values that the
arithmetic expressions return.

DEFINE calendar DATE
LET calendar = "05/18/1999"
PRINT (calendar - INTERVAL (5-5) YEAR TO MONTH)
--result: DATETIME (1993-12-18) YEAR TO DAY
PRINT (EXTEND(calendar, YEAR TO HOUR)

- INTERVAL (4 8) DAY TO HOUR)
--result: DATETIME (1999-05-13 16) YEAR TO HOUR

You cannot directly combine a DATE with an INTERVAL value whose last
qualifier is smaller than DAY. But as the previous example shows, you can use
the EXTEND() operator to convert the value in a DATE column or variable to
a DATETIME value that includes all the fields of the INTERVAL operand.

In the next example, the INTERVAL variable how_old includes fields that are
not present in the DATETIME variable t_stamp, so the EXTEND() operator is
required in the expression that calculates the sum of their values.

DEFINE t_stamp DATETIME YEAR TO HOUR
DEFINE age DATETIME DAY TO MINUTE
DEFINE how_old INTERVAL DAY TO MINUTE

LET t_stamp = "1989-12-04 17"
LET how_old = INTERVAL (28 9:25) DAY TO MINUTE
LET age = EXTEND(t_stamp, DAY TO MINUTE) + how_old

SQL statements can include a similar EXTEND() operator of SQL, whose first
argument can be the name of a DATETIME or DATE database column.

Reference
UNITS

FGL_DRAWBOX()

5-70 HCL Informix 4GL Reference Guide

FGL_DRAWBOX()
The FGL_DRAWBOX() function displays a rectangle of a specified size.

FGL_DRAWBOX (height , width , line , left-offset)
, color

color is an integer expression (as described in “Integer Expressions” on
page 3-63) that returns a positive whole number, specifying a
foreground color code.

height is an integer expression, specifying the number of screen lines occupied
by the rectangle.

left-offset is an integer expression, specifying the horizontal coordinate (in
characters) of the upper-left corner of the rectangle, where 1 is the first
(or left-most) character in a line of the current 4GL window.

line is an integer expression, specifying the vertical coordinate of the upper-
left corner, where 1 means the first (or top-most) line.

width is an integer expression, specifying the number of character positions
occupied by each line of the rectangle.

Element Description

FGL_DRAWBOX()

Built-In Functions and Operators 5-71

Usage
The FGL_DRAWBOX() function draws a rectangle with the upper-left corner
at (line, left-offset) and the specified height and width. These dimensions must
have positive integer values, in units of lines and character positions, where
(0,0) is the upper-left corner of the current 4GL window.

The optional color number must correspond to one of the following
foreground colors.

Color Number Foreground Color Color Number Foreground Color

0 WHITE 4 CYAN

1 YELLOW 5 GREEN

2 MAGENTA 6 BLUE

3 RED 7 BLACK

The upscol utility can specify these same color options in the syscolatt table.
The default color is used when the color number is omitted. The color
argument is optional.

As is the case with borders, the width of the line that draws the rectangle is
fixed. This fixed width cannot be specified or modified when you invoke
FGL_DRAWBOX(). Also as with borders, 4GL draws the box with the
characters defined in the termcap or terminfo files. You can specify alter-
native characters in these files. Otherwise, 4GL uses hyphens to create
horizontal lines, pipe symbols (|) for vertical lines, and plus signs at the
corners. To assign the box a color, you must use termcap because terminfo
does not support color. For complete information on termcap and terminfo,
see Appendix F, “Modifying termcap and terminfo.”

Rectangles drawn by FGL_DRAWBOX() are part of a displayed form. Each
time that you execute the corresponding DISPLAY FORM or OPEN WINDOW
... WITH FORM statement, you must also redraw the rectangle.

If you invoke FGL_DRAWBOX() several times to create a display in which
rectangles intersect, output from the most recent function call overlies any
previously drawn rectangles. Screen fields and reserved lines, however, have
a higher display priority than FGL_DRAWBOX() rectangles, regardless of the
order in which the fields, lines, and rectangles are drawn.

FGL_DRAWBOX()

5-72 HCL Informix 4GL Reference Guide

Important: In most applications, avoid drawing rectangles that intersect or overlap
any field or reserved line. Reserved lines might be redrawn frequently during user
interaction statements, partially erasing any rectangles at the intersections where
they overlap the reserved lines. To avoid this problem, position the rectangles so they
do not overlap any reserved lines or screen fields. For more information, see
“Reserved Lines” on page 4-114.

FGL_GETENV()

Built-In Functions and Operators 5-73

FGL_GETENV()
The FGL_GETENV() function returns a character string, corresponding to the
value of an environment variable whose name you specify as the argument.

Usage
The argument of FGL_GETENV() must be a character expression that returns
the name of an environment variable. To evaluate a call to FGL_GETENV(),
4GL takes the following actions at runtime:

1. Evaluates the character expression argument of FGL_GETENV()

2. Searches among environment variables for the returned value

If the requested value exists, the function returns it as a character string and
then returns control of execution to the calling context.

The identifier of an environment variable is not a 4GL expression, so you
typically specify the argument as a quoted string or character variable. For
example, this call evaluates the DBFORMAT environment variable:

fgl_getenv("DBFORMAT")

You can assign the name of the environment variable to a character variable
and use that variable as the function argument. If you declare a CHAR or
VARCHAR variable called env_var and assign to it the name of an
environment variable, a FGL_GETENV() function call could look like this:

fgl_getenv(env_var)

If the argument is a character variable, be sure to declare it with sufficient size
to store the character value returned by the FGL_GETENV() function.
Otherwise, 4GL truncates the returned value.

If the specified environment variable is not defined, FGL_GETENV() returns
a NULL value. If the environment variable is defined but does not have a
value assigned to it, FGL_GETENV() returns blank spaces.

FGL_GETENV (Character Expression
p. 3-69

)

FGL_GETENV()

5-74 HCL Informix 4GL Reference Guide

You can use the FGL_GETENV() function anywhere within a 4GL program to
examine the value of an environment variable. The following program
segment displays the value of the INFORMIXDIR environment variable. The
environment variable is identified in the FGL_GETENV() call by enclosing the
name INFORMIXDIR between quotation marks:

DEFINE path CHAR(64)
...
LET path = fgl_getenv("INFORMIXDIR")
DISPLAY "Informix installed in ", path CLIPPED

The next example also displays the value of the INFORMIXDIR environment
variable. In this case, the environment variable is identified by the env_var
character variable, and its contents are stored in a variable called path:

DEFINE env_var CHAR(25),
path CHAR(64)

...
LET env_var = "INFORMIXDIR"
LET path = fgl_getenv(env_var)
DISPLAY "Informix installed in ", path CLIPPED

The following example examines the environment to see if the
DBANSIWARN environment variable is currently set:

DEFINE dbansi_flag SMALLINT
...
IF (fgl_getenv("DBANSIWARN") IS NOT NULL) THEN

LET dbansi_flag = 1
END IF

In nondefault locales, FGL_GETENV() can return values that include non-
ASCII characters that the code set of the locale supports. In multibyte locales,
the returned value can include multibyte characters. ♦

References
For environment variables that control features of the database, see the
Informix Guide to SQL: Reference. For descriptions of environment variables
that can affect the visual displays of 4GL programs, see Appendix D,
“Environment Variables.”

GLS

FGL_GETKEY()

Built-In Functions and Operators 5-75

FGL_GETKEY()
The function FGL_GETKEY() waits for a key to be pressed and returns the
integer code of the physical key that the user pressed.

Usage
Unlike FGL_LASTKEY(), which can return a value indicating the logical effect
of whatever key the user pressed, FGL_GETKEY() returns an integer repre-
senting the raw value of the physical key that the user pressed.

The FGL_GETKEY() function recognizes the same codes for keys that the
FGL_KEYVAL() function returns. Unlike FGL_KEYVAL() , which can only
return keystrokes that are entered in 4GL forms, FGL_GETKEY() can be
invoked in any context where the user is providing keyboard entry.

Single-byte non-ASCII characters from the code set of the locale can also be
returned. ♦

Here is an example of a program fragment that calls both functions, so that
FGL_KEYVAL() evaluates what FGL_GETKEY() returns.

DEFINE key INT
PROMPT "Press the RETURN key to continue. " ||

"Press any other key to quit."
LET key = FGL_GETKEY()
IF key = FGL_KEYVAL("return") THEN

CALL continue()
ELSE

CALL quit()
END IF

Important: Here the term “key” refers to a physical element of the keyboard or to its
logical effect rather than to the SQL construct of the same name.

References
ASCII, FGL_KEYVAL(), FGL_LASTKEY(), ORD()

FGL_GETKEY ()

GLS

FGL_KEYVAL()

5-76 HCL Informix 4GL Reference Guide

FGL_KEYVAL()
Function FGL_KEYVAL() returns the integer code of a logical or physical key.

Usage
The FGL_KEYVAL() function returns NULL unless its argument specifies one
of the following physical or logical keys:

■ A single letter or a digit
■ Non-alphanumeric symbols (such as !, @, and #)
■ Any of the keywords in the following table (in uppercase or

lowercase letters)

ACCEPT HELP NEXT or RETURN
DELETE INSERT NEXTPAGE RIGHT
DOWN INTERRUPT PREVIOUS or TAB
ESC or ESCAPE
F1 through F64

LEFT PREVPAGE UP

CONTROL-character (except A, D, H, I, J, L, M, R, or X

Single-byte non-ASCII characters from the code set of the locale can also be
returned. ♦

Enclose the argument in quotation marks. If you specify a single letter,
FGL_KEYVAL() considers the case. In all other instances, FGL_KEYVAL()
ignores the case of its argument, which can be uppercase or lowercase letters.
If the argument is invalid, FGL_KEYVAL() returns NULL.

Important: Here the term “key” refers to a physical element of the keyboard or to its
logical effect rather than to the SQL construct of the same name.

FGL_KEYVAL (Character Expression
p. 3-69

)

GLS

FGL_KEYVAL()

Built-In Functions and Operators 5-77

Using FGL_KEYVAL() with FGL_GETKEY() or FGL_LASTKEY()
FGL_KEYVAL() can be used in form-related statements to examine a value
returned by the FGL_GETKEY() or FGL_LASTKEY() function. By
comparing the values returned by FGL_KEYVAL() with what FGL_GETKEY()
or FGL_LASTKEY() returns, you can determine whether the last key that the
user pressed was a specified logical or physical key. Typically, you use the
FGL_KEYVAL() function in conditional statements and Boolean comparisons:

DEFINE key_var INTEGER
...
INPUT BY NAME p_customer.fname THRU p_customer.phone

...
AFTER FIELD phone

IF FGL_LASTKEY() = FGL_KEYVAL("f1") THEN
...

END IF
END INPUT

This example displays a message and moves the cursor to the manu_code
field if the user presses the UP ARROW key to leave the stock_num field:

CONSTRUCT query_1 ON stock.* FROM s_stock.*
...
AFTER FIELD stock_num

IF FGL_LASTKEY() = FGL_KEYVAL("up") THEN
DISPLAY "You cannot move up from here."
NEXT FIELD manu_code

END IF
...

END CONSTRUCT

To determine whether the user performed some action, such as inserting a
row, specify the logical name of the action (such as INSERT) rather than the
name of the physical key (such as F1). For example, the logical name of the
default Accept key is ESCAPE. To test if the key most recently pressed by the
user was the Accept key, specify FGL_KEYVAL("ACCEPT") rather than
FGL_KEYVAL("escape") or FGL_KEYVAL("ESC"). Otherwise, if a key other than
ESCAPE is set as the Accept key and the user presses that key, FGL_LASTKEY()
does not return a code equal to FGL_KEYVAL("ESCAPE"). The value returned
by FGL_LASTKEY() is undefined in a MENU statement.

References
ASCII, FGL_GETKEY(), FGL_LASTKEY(), ORD()

FGL_LASTKEY()

5-78 HCL Informix 4GL Reference Guide

FGL_LASTKEY()
The FGL_LASTKEY() function returns an INTEGER code, corresponding to the
logical key that the user most recently typed in a field of a screen form.

Usage
The FGL_LASTKEY() function returns a numeric code for the user’s last
keystroke before FGL_LASTKEY() was called. For example, if the last key that
the user entered was the lowercase s, the FGL_LASTKEY() function returns
115. Appendix A lists the numeric codes for all the ASCII characters. The
value returned by FGL_LASTKEY() is undefined in a MENU statement.

Important: Here the term “key” refers to a physical element of the keyboard of a
terminal or to its logical effect rather than to the SQL construct of the same name.

Using FGL_LASTKEY() with FGL_KEYVAL()
You do not need to know the specific key codes to use FGL_LASTKEY(). The
built-in FGL_KEYVAL() function can return a code to compare with the value
returned by FGL_LASTKEY(). For more information, see “FGL_KEYVAL()”
on page 5-76. The FGL_KEYVAL() function lets you compare the last key that
the user pressed with a logical or physical key. For example, to check if the
user pressed the Accept key, compare FGL_LASTKEY() with the
FGL_KEYVAL("accept") value.

FGL_LASTKEY ()

FGL_LASTKEY()

Built-In Functions and Operators 5-79

The following CONSTRUCT statement checks the value of the last key that the
user entered in each field. If the user last pressed RETURN, the program
displays a message in the Error line:

CONSTRUCT query_1 ON stock.* FROM s_stock.*
BEFORE CONSTRUCT

DISPLAY "Use the TAB key to move ",
"between the fields." AT 1,1

AFTER FIELD stock_num, manu_code, description,
unit_price, unit, unit_descr

IF FGL_LASTKEY() = FGL_KEYVAL("return") THEN
ERROR "Use the TAB key to move the cursor ",

"between the fields."
END IF

END CONSTRUCT

Here (as in ON KEY clauses), RETURN is a synonym for ENTER.

The following example demonstrates using the FGL_LASTKEY() function
after a PROMPT statement that expects the user to respond to the prompt with
a single keystroke. The FGL_LASTKEY() function returns the code of the key
the user pressed to the program. The FGL_LASTKEY() function compares the
code with the code for the RETURN key. If an exact match occurs, 4GL calls the
continue() function. If a match does not occur because the user pressed a key
other than RETURN, 4GL calls the quit() function:

DEFINE value CHAR,
key INTEGER

PROMPT "Press the RETURN key to continue. ",

"Press any other key to quit." FOR CHAR value
LET key = FGL_LASTKEY()
IF key = FGL_LASTKEY("return") THEN

CALL continue()
ELSE

CALL quit()
END IF

AUTONEXT Fields
If FGL_LASTKEY() is invoked after the user enters a value in a field with the
AUTONEXT attribute, 4GL returns the code of the last key that the user
entered, regardless of any processing done in the AFTER FIELD or BEFORE
FIELD clause. For more information, see “AUTONEXT” on page 6-34.

FGL_LASTKEY()

5-80 HCL Informix 4GL Reference Guide

References
ASCII, FGL_GETKEY(), FGL_KEYVAL(), ORD()

FGL_SCR_SIZE()

Built-In Functions and Operators 5-81

FGL_SCR_SIZE()
The function FGL_SCR_SIZE() accepts as its argument the name of a screen
array in the currently opened form and returns an integer that corresponds
to the number of screen records in that screen array.

Usage
The built-in FGL_SCR_SIZE() function returns the declared size of a specified
screen array at runtime. In the following example, a form specification file
(called file.per) declares two screen arrays, called s_rec1 and s_rec2:

DATABASE FORMONLY

SCREEN
{

[f1] [f2]
[f1] [f2]
[f1] [f2]
[f3] [f4]
[f3] [f4]
[f5]

}

ATTRIBUTES
f1 = FORMONLY.a ;
f2 = FORMONLY.b ;
f3 = FORMONLY.c ;
f4 = FORMONLY.d ;
f5 = FORMONLY.e ;

FGL_SCR_SIZE ("array ")

variable

array is the identifier (between quotation marks) of a screen array from the
INSTRUCTIONS section of the specification of the current form.

variable is a CHAR or VARCHAR variable containing the array identifier.

Element Description

FGL_SCR_SIZE()

5-82 HCL Informix 4GL Reference Guide

INSTRUCTIONS
DELIMITERS ""
SCREEN RECORD s_rec1[3] (a,b)
SCREEN RECORD s_rec2 (c,d)

The following 4GL program invokes the FGL_SCR_SIZE() function:

MAIN
DEFINE n1,n2 INT

DEFINE ch CHAR(10)

OPEN WINDOW w1 AT 2,3 WITH FORM "file" ATTRIBUTE (BORDER)
CALL fgl_scr_size("s_rec1") RETURNING n1
LET n1 = fgl_scr_size("s_rec1")-- Can also be called

-- in a LET statement
DISPLAY "n1 = ", n1

LET ch = "s_rec2"
CALL fgl_scr_size(ch) RETURNING n2
LET n2 = fgl_scr_size(ch) -- Can also be called

-- in a LET statement
DISPLAY "n2 = ", n2

CLOSE WINDOW w1
END MAIN

This program produces the following output:

n1 = 3
n2 = 2

The proper value is returned even though the array dimension is not
specified in the form file.

An error is returned if no form is open or if the specified array is not in the
current open form.

References
ARR_CURR(), ARR_COUNT()

FGL_SETCURRLINE ()

Built-In Functions and Operators 5-83

FGL_SETCURRLINE ()
During the INPUT ARRAY or DISPLAY ARRAY statement the
FGL_SETCURRLINE() function positions the cursor at a specified program
record within the program array that is displayed in the current screen array,
and displays that record.

Usage
The current line of a screen array is the line that displays the screen cursor at
the beginning of a BEFORE ROW or AFTER ROW clause.

The integer argument of the FGL_SETCURRLINE() function specifies which
program record to display in the current screen array, and moves the cursor
to that line. . The first row of the program array is numbered 1.

Error -4669 is issued if you attempt to call the FGL_SETCURRLINE() function
outside a statement block of the DISPLAY ARRAY or INPUT ARRAY statement.

References
ARR_CURR(), SCR_LINE(), SET_COUNT()

FGL_SETCURRLINE(num)

is a literal integer, specifying the ordinal number of a program record
within the program array that was specified in the current INPUT
ARRAY or DISPLAY ARRAY statement.

num

Element Description

FIELD_TOUCHED()

5-84 HCL Informix 4GL Reference Guide

FIELD_TOUCHED()
The FIELD_TOUCHED() operator tests whether the user has entered or
edited a value in a specified field or list of fields of the current 4GL form. (This
operator can only appear within CONSTRUCT, INPUT, and INPUT ARRAY
statements.)

Usage
FIELD_TOUCHED() returns the Boolean value TRUE (meaning that the user
changed the contents of a field) after a DISPLAY statement displays data in
any of the specified fields or after the user presses any of the following keys:

■ Any printable character (including SPACEBAR)
■ CONTROL-X (character delete)
■ CONTROL-D (clear to end of field)

FIELD_TOUCHED (

 ,
Field Clause

(subset)
)

field
table

reference
screen
record .

screen
array

*

Field Clause
(subset)

field is the name of a screen field (from the ATTRIBUTES section).
screen array is the name of a screen array (from the INSTRUCTIONS section).
screen record is the name of a screen record (from the INSTRUCTIONS section of

the form specification).
table reference is a table name, alias, synonym, or FORMONLY keyword (from the

TABLES section of the form specification).

Description Element

FIELD_TOUCHED()

Built-In Functions and Operators 5-85

After any of these keystrokes, the FIELD_TOUCHED() operator returns TRUE,
regardless of whether the keystroke actually changed the value in the field.
(The locale files classify each character as printable or unprintable.)

Otherwise, the FIELD_TOUCHED() operator returns FALSE, indicating that
none of the specified fields have been edited. Moving through a field (by
pressing RETURN, TAB, or the arrow keys) does not mark a field as touched.

Important: FIELD_TOUCHED() is valid only in CONSTRUCT, INPUT, and INPUT
ARRAY statements. When you use it, 4GL assumes that you are referring to the
current screen record rather than to a different row of the screen array.

This operator does not register the effect of 4GL statements that appear in a
BEFORE CONSTRUCT or BEFORE INPUT clause. You can assign values to fields
in these clauses without marking the fields as touched.

In the following program fragment, an IF statement tests whether the user has
entered a value into any field. If no field has been touched, the program
prompts the user to indicate whether to retrieve all customer records. If the
user types N or n, the CONTINUE CONSTRUCT statement is executed, and the
screen cursor is positioned in the form, giving the user another opportunity
to enter selection criteria. If the user types any other key, the program termi-
nates the IF statement and reaches the END CONSTRUCT keywords.

CONSTRUCT BY NAME query1 ON customer.*
...

AFTER CONSTRUCT
IF NOT FIELD_TOUCHED(customer.*) THEN

PROMPT "Do you really want to see ",
"all customer rows? (y/n)"
FOR CHAR answer

IF answer MATCHES "[Nn]" THEN
CONTINUE CONSTRUCT

END IF
END IF

END CONSTRUCT

This strategy is not as dependable as testing whether query1 = " 1=1" after
the END CONSTRUCT keywords because the user might have left all the fields
blank after first entering and then deleting query criteria in some field. In that
case, the resulting Boolean expression (" 1=1") can retrieve all rows, but
FIELD_TOUCHED() returns TRUE, and the PROMPT statement is not executed.
For additional information, see “Searching for All Rows” on page 4-60.

FIELD_TOUCHED()

5-86 HCL Informix 4GL Reference Guide

References
Boolean Operators, FGL_GETKEY, FGL_KEYVAL(), FGL_LASTKEY(),
GET_FLDBUF(), INFIELD()

GET_FLDBUF()

Built-In Functions and Operators 5-87

GET_FLDBUF()
The GET_FLDBUF() operator returns the character values of the contents of
one or more fields in the currently active screen form. (This operator can only
appear within the CONSTRUCT, INPUT, and INPUT ARRAY statements of
4GL.)

Case I: (single field)

GET_FLDBUF (field)

table-reference

screen-record .
screen-array

Case II: (multiple fields) , ,

CALL GET_FLDBUF (Field Clause
(subset)
p. 5-84

) RETURNING variable

record . *
program

field is the name of a field in the current screen form.
program record is the name of a program record of CHAR or VARCHAR variables

in which to store values from the specified fields.
screen-array is the name of a screen array that was defined in the INSTRUC-

TIONS section of the form specification file.
screen-record is the name of a screen record that is explicitly or implicitly

defined in the form specification file.
table reference is the unqualified name, alias, or synonym of a database table or

view, or else the keyword FORMONLY.
variable is a name within a list of one or more character variables,

separated by commas. Variables must correspond in number and
position with the list of fields in the field clause.

Description Element

GET_FLDBUF()

5-88 HCL Informix 4GL Reference Guide

Usage
GET_FLDBUF() operates on a list of one or more fields. For example, this LET
statement assigns the value in the lname field to the lbuff variable:

LET lbuff = GET_FLDBUF(lname)

To specify a list of several field names as operands of GET_FLDBUF(), you
must use the CALL statement with the RETURNING clause. Insert commas to
separate successive field names and successive variables:

CALL GET_FLDBUF(c_num, company, lname)
RETURNING p_cnum, p_company, p_lname

The following statement returns a set of character values corresponding to
the contents of the s_customer screen record and assigns these values to the
p_customer program record:

CALL GET_FLDBUF(s_customer.*) RETURNING p_customer.*

(The first asterisk (*) specifies all the fields in the s_customer screen-record;
the second specifies all the members of the p_customer program record.)

You can use the GET_FLDBUF() operator to assist a user when entering a
value in a field. For example, if you have an input field for last names, you
can include an ON KEY clause that lets a user enter the first few characters of
the desired last name. If the user calls the ON KEY clause, 4GL displays a list
of last names that begin with the characters entered. The user can then choose
a last name from the list. The following program fragment demonstrates this
use of the GET_FLDBUF() operator:

DEFINE lname, myquery, partial_name CHAR(20),
tw ARRAY[10] OF CHAR(20),
a INTEGER

...
INPUT BY NAME lname

ON KEY (CONTROL-P)
LET partial_name = GET_FLDBUF(lname)
LET myquery = "SELECT lname FROM teltab ",

"WHERE lname MATCHES \"", partial_name CLIPPED, "*\""
OPEN WINDOW w1 AT 5,5 WITH FORM "tel_form"

ATTRIBUTE (BORDER)
DISPLAY partial_name AT 1,1
PREPARE mysubquery FROM myquery
DECLARE q1 CURSOR FOR mysubquery
L E T a = 0
FOREACH q1 INTO lname

L E T a = a + 1
...

END FOREACH
DISPLAY a TO ncount

GET_FLDBUF()

Built-In Functions and Operators 5-89

IF (a = 0) THEN

PROMPT "Nothing beginning with these letters"
FOR CHAR partial_name

ELSE
IF (a > 10) THEN L E T a = 10
END IF
CALL SET_COUNT(a)
DISPLAY ARRAY tw TO srec.*

END IF
...

END INPUT

If you assign the character string returned by the GET_FLDBUF() operator to
a variable that is not defined as a character data type, 4GL tries to convert the
string to the appropriate data type. Conversion is not possible in these cases:

■ The field contains special characters (for example, date or currency
characters) that 4GL cannot convert.

■ GET_FLDBUF() is called from a CONSTRUCT statement, and the field
contains comparison or range operators that 4GL cannot convert.

GET_FLDBUF() is valid only in CONSTRUCT, INPUT, and INPUT ARRAY state-
ments. When it encounters this operator in an INPUT ARRAY statement, 4GL
assumes that you are referring to the current row. You cannot use a subscript
within brackets to reference a different row of the screen array.

The following example uses the GET_FLDBUF() and FIELD_TOUCHED()
operators in an AFTER FIELD clause in a CONSTRUCT statement. The
FIELD_TOUCHED() operator checks whether the user has entered a value in
the zipcode field. If FIELD_TOUCHED() returns TRUE, GET_FLDBUF()
retrieves the value entered in the field and assigns it to the p_zip program
variable. If the first character in the p_zip variable is not a 9, the program
displays an error, clears the field, and returns the cursor to the field.

CONSTRUCT BY NAME query1 ON customer.*
...
AFTER FIELD city

IF FIELD_TOUCHED(zipcode) THEN LET p_zip = GET_FLDBUF(zipcode)
IF p_zip[1,1] <> "9" THEN

ERROR "You can only search in section 9."
CLEAR zipcode
NEXT FIELD zipcode

END IF
END IF

References
FIELD_TOUCHED(), INFIELD()

INFIELD()

5-90 HCL Informix 4GL Reference Guide

INFIELD()
The INFIELD() operator in CONSTRUCT, INPUT, and INPUT ARRAY state-
ments tests whether its operand is the identifier of the current screen field.

Usage
INFIELD() is a Boolean operator that returns the value TRUE if field is the name
of the current screen field. Otherwise, INFIELD() returns the value FALSE.
(For information on assigning a name to a display field of a screen form, see
“ATTRIBUTES Section” on page 6-25.)

Important: You must specify a field name rather than a field tag as the operand.

You can use INFIELD() during a CONSTRUCT, INPUT, or INPUT ARRAY
statement to take field-dependent actions.

INFIELD (field)

table-reference

screen-record .
screen-array

field is the name of a field in the current screen form.
screen-array is the name of a screen array that was defined in the

INSTRUCTIONS section of the form specification file.
screen-record is the name of a screen record that is explicitly or implicitly

defined in the form specification file.
table-reference is the unqualified name, alias, or synonym of a database table or

view, or else the keyword FORMONLY.

Description Element

INFIELD()

Built-In Functions and Operators 5-91

The INFIELD() operator is typically part of an ON KEY clause, often with the
built-in function SHOWHELP() to display help messages to the user. The next
code example is from a program that uses INFIELD() to determine whether to
call a function:

ON KEY (CONTROL-F, F5)
IF INFIELD(customer_num) THEN

CALL cust_popup()

When a user presses either of two keys during the INPUT, the cust_popup()
function is invoked if the screen cursor is in the customer_num field.

In the following fragment, call_flag and res_flag are the names of fields:

ON KEY (F2, CONTROL-E)
IF INFIELD(call_flag) OR INFIELD(res_flag) THEN

IF INFIELD (call_flag) THEN
LET fld_flag = "C"

ELSE --* user pressed F2 (CTRL-E) from res_flag
LET fld_flag = "R"

END IF
...
END IF

Subsequent code could use these field names to determine which column of
a row to edit.

In the following example, the INPUT statement uses the INFIELD() operator
with the SHOWHELP() function to display field-dependent help messages.

INPUT gr_equip.* FROM sr_equip.*
ON KEY(CONTROL-B)

CASE
WHEN INFIELD(part_num)

CALL SHOWHELP(301)
WHEN INFIELD(part_name)

CALL SHOWHELP(302)
WHEN INFIELD(supplier)

CALL SHOWHELP(303)
...

END CASE
END INPUT

References
SCR_LINE(), SHOWHELP(), FIELD_TOUCHED(), GET_FLDBUF()

LENGTH()

5-92 HCL Informix 4GL Reference Guide

LENGTH()
The LENGTH() function accepts a character string argument and returns an
integer, representing the number of bytes in its argument (but disregarding
any trailing blank spaces).

Usage
The LENGTH() function returns an integer value, based on the length (in
bytes) of its character-expression argument.

Statements in the next example center a report title on an 80-column page:

LET title = "Invoice for ", fname CLIPPED,
" ", lname CLIPPED

LET offset = (80 - length(title))/2
PRINT COLUMN offset, title

The following are among the possible uses for the LENGTH() function:

■ You can check whether a user has entered a database name and, if
not, set a default name.

■ Check whether the user has supplied the name of a file to receive the
output from a report and, if not, set a default output.

■ Use LENGTH(string) as the upper limit in a FOR loop, and check each
character in string for a specific character. For example, you can check
for a period (.) to determine whether a table name has a qualifier.

LENGTH() is also useful as a check on user input. In the following example,
an IF statement is used to determine whether the user has responded to a
displayed message:

IF LENGTH (ans1) = 0 THEN
PROMPT "Press RETURN to continue: " FOR input_val

ELSE ...

If its argument evaluates to a NULL string, LENGTH() returns zero.

LENGTH (Character Expression
p. 3-69

)

LENGTH()

Built-In Functions and Operators 5-93

Using LENGTH() in SQL Expressions
Unlike some other built-in functions of 4GL, you can use LENGTH() in SQL
statements as well as in other 4GL statements. LENGTH() can also be called
from a C function. (That is, Informix database servers support a function of
the same name and of similar functionality.)

In a SELECT or UPDATE statement, the argument of LENGTH() is the identifier
of a character column. In this context, LENGTH() returns the number of bytes
in the CLIPPED data value (for CHAR and VARCHAR columns) or the full
number of bytes (for TEXT and BYTE data types).

The LENGTH() function can also take the name of a database column as its
argument but only within an SQL statement.

LENGTH() in Multibyte Locales
LENGTH() avoids returning incorrect values when it encounters partial
characters while operating in a multibyte locale. If the LENGTH() function
encounters a partial (or otherwise invalid) character in its argument,
LENGTH() returns a value that disregards any of the following items:

■ The first invalid character (or partial character)
■ All subsequent characters
■ Any immediately preceding single-byte or multibyte white spaces

For example, suppose that w is an invalid character. The following expression
evaluates to 7 because ABCD EF corresponds to seven bytes:

LENGTH(ABCD EF wXYZ)

The invalid character, the blank spaces preceding it, and all subsequent
characters in the argument are ignored because w is an invalid character. ♦

References
CLIPPED, USING

GLS

LINENO

5-94 HCL Informix 4GL Reference Guide

LINENO
The LINENO operator returns the number of the line within the page that is
currently printing. (This operator can appear only in the FORMAT section of
a REPORT program block.)

Usage
This operator returns the value of the line number of the report line that is
currently printing. 4GL computes the line number by calculating the number
of lines from the top of the current page, including the TOP MARGIN.

For example, the following program fragment examines the value of LINENO.
If this value is less than 9, a PRINT statement formats and displays it,
beginning in the 10th character position after the left margin.

IF (LINENO > 9) THEN
PRINT COLUMN 10, LINENO USING "Line <<<"

END IF

You can specify LINENO in the PAGE HEADER, PAGE TRAILER, and other
report control blocks to find the print position on the current page of a report.

4GL cannot evaluate the LINENO operator outside the FORMAT section of a
REPORT program block. The value that LINENO returns must be assigned to
a variable that is not local to the report if you need to reference this value
within some other program block of your 4GL application.

Reference
PAGENO

LINENO

MDY()

Built-In Functions and Operators 5-95

MDY()
The MDY() operator returns a value of the DATE data type from three integer
operands that represent the month, the day of the month, and the year.

Usage
The MDY() operator converts to a single DATE format a list of exactly three
valid integer expressions. The three expressions correspond with the month,
day, and year elements of a calendar date:

■ The first expression must return an integer, representing the number
of the month (1 through 12).

■ The second must return an integer, representing the number of the
day of the month (1 through 28, 29, 30, or 31, depending on the
month).

■ The third must return a four-digit integer, representing the year.

An error results if you specify values outside the range of days and months
in the calendar or if the number of operands is not three.

You must enclose the three integer expression operands between paren-
theses, separated by commas, just as you would if MDY() were a function.

The third expression cannot be the abbreviation for the year. For example, 99
specifies a year in the first century, approximately 1,900 years ago.

The following program uses MDY() to return a DATE value, which is then
assigned to a variable and displayed on the screen:

MAIN
DEFINE a_date DATE
LET a_date = MDY(12/2,3+2,1988)
DISPLAY a_date
END MAIN

MDY (Integer Expression
p. 3-63

, Integer Expression
p. 3-63

, Integer Expression
p. 3-63)

MDY()

5-96 HCL Informix 4GL Reference Guide

Reference
DATE()

Membership (.) Operator

Built-In Functions and Operators 5-97

Membership (.) Operator
The membership operator, a period (.), specifies that its right-hand operand is
a member of the set whose name is its left-hand operand.

Usage
The structure value can specify a screen record, screen array, RECORD
variable, or database table, view, or synonym.

If member is the name of a database column, structure can be qualified by a
table qualifier. (For details, see “Table Qualifiers” on page 3-89.)

The structure value, member value, or both can be expressions that include the
membership operator. For example:

myRec.data --member of a program or screen record
alias.array[3].field5 --field within a screen array

The LET statement syntax diagram (shown in “Data Types and Expressions”
on page 3-5) illustrates the syntax of members that are RECORD variables. For
a description of the members of a RECORD variable, see also “THRU or
THROUGH Keywords and .* Notation” on page 3-92. In contexts where
more than one member is valid, you can substitute an asterisk (*) for member
to specify every member of structure.

structure . member

member is the name of a component of structure.
structure is the name of a RECORD variable, screen record, screen array of records,

or database table, view, or synonym that has member as a component.

Element Description

MONTH()

5-98 HCL Informix 4GL Reference Guide

MONTH()
The MONTH() operator returns a positive whole number between 1 and 12,
corresponding to the month portion of a DATE or DATETIME operand.

Usage
The MONTH() operator extracts an integer value for the month in a DATE or
DATETIME value. You cannot specify an INTERVAL operand.

The following program extracts the month time unit from a DATETIME literal
expression. It evaluates MONTH(date_var) as an operand of a Boolean
expression to test whether the month is earlier in the year than March.

MAIN

DEFINE date_var DATETIME YEAR TO SECOND
DEFINE current_month CHAR(10)
DEFINE month_var INT

LET current_month = CURRENT MONTH TO MONTH
LET date_var = DATETIME(89-01-12 18:47:32) YEAR TO SECOND
LET month_var = MONTH(date_var)
DISPLAY "The current month is: ", current_month
DISPLAY "The month of interest is month number : ",

month_var USING "##"
IF MONTH(date_var) < 3

THEN DISPLAY "Month of interest is Feb. or Jan.”
END IF

END MAIN

References
DATE(), DAY(), TIME(), WEEKDAY(), YEAR()

MONTH (DATETIME Expression
p. 3-74

)

DATE Expression
p. 3-74

NUM_ARGS()

Built-In Functions and Operators 5-99

NUM_ARGS()
The NUM_ARGS() function takes no arguments. It returns an integer that
corresponds to the number of command-line arguments that followed the
name of your 4GL program when the user invoked it.

Usage
You can use the ARG_VAL() built-in function to retrieve individual
arguments. By using NUM_ARGS() with the ARG_VAL() function, the
program can pass command-line arguments to the MAIN statement or to
whatever program block invokes the NUM_ARGS() and ARG_VAL()
functions.

In the following examples, both of the command lines include three
arguments:

myprog.4gi kim sue joe (executable compiled C version)
fglgo myprog kim sue joe (command for p-code runner in RDS)

After either of these command lines, NUM_ARGS() sets 3 as the upper limit of
variable i in the FOR loop of the program fragment that follows:

DEFINE pa_args ARRAY[8] OF CHAR(10),
i SMALLINT

F O R i = 1 TO NUM_ARGS()
LET pa_args[i] = ARG_VAL(i)

END FOR

Reference
ARG_VAL()

NUM_ARGS ()

ORD()

5-100 HCL Informix 4GL Reference Guide

ORD()
The ORD() function accepts as its argument a character expression and
returns the integer value of the first byte of that argument.

For the default (U.S. English) locale, the ORD() function is the logical inverse
of the ASCII operator. Only the first byte of the argument is evaluated.

The following line assigns the value 66 to the integer ord1:

LET ord1 = ORD ("Belladonna")

This built-in function is case sensitive; if the first character in its argument is
an uppercase letter, ORD() returns a value different from what it would
return if its argument had begun with a lowercase letter.

References
ASCII, FGL_KEYVAL()

ORD (Character Expression
p. 3-69

)

PAGENO

Built-In Functions and Operators 5-101

PAGENO
The PAGENO operator returns a positive whole number, corresponding to the
number of the page of report output that 4GL is currently printing. (PAGENO
is valid only in the FORMAT section of a REPORT program block.)

Usage
This operator returns a positive integer whose value is the number of the
page of output that includes the current print position in the currently
executing report.

For example, the following program fragment conditionally prints the value
returned by PAGENO, using the USING operator to format it, if this value is
less than 10,000:

IF (PAGENO < 10000) THEN
PRINT COLUMN 28, PAGENO USING "page <<<<"

END IF

You can include the PAGENO operator in PAGE HEADER and PAGE TRAILER
control blocks and in other control blocks of a report definition to identify the
page numbers of output from a report.

4GL cannot evaluate the PAGENO operator outside the FORMAT section of a
REPORT program block. If some other program block of your 4GL application
needs to reference the value that PAGENO returns, the report must assign that
value to a program variable whose scope of reference is not local to the
report.

Reference
LINENO

PAGENO

SCR_LINE()

5-102 HCL Informix 4GL Reference Guide

SCR_LINE()
The SCR_LINE() function returns a positive integer that corresponds to the
number of the current screen record in its screen array during a DISPLAY
ARRAY or INPUT ARRAY statement.

Usage
The current screen record is the line of a screen array that contains the screen
cursor at the beginning of a BEFORE ROW or AFTER ROW clause.

The first record of the program array and of the screen array are both
numbered 1. The built-in 4GL functions SCR_LINE() and ARR_CURR() can
return different values if the program array is larger than the screen array.

The following program fragment tests what the user enters and rejects it if the
state field value indicates that the customer is not from California:

DEFINE pa_clients ARRAY[90] OF RECORD
fname CHAR(15),
lname CHAR(15),
state CHAR(2)
END RECORD,
curr_pa, curr_sc SMALLINT

INPUT ARRAY pa_clients FROM sa_clients.*
AFTER FIELD state

LET curr_pa = ARR_CURR()
LET curr_sc = SCR_LINE()
IF UPSHIFT(pa_clients[curr_pa].state) != "CA" THEN

ERROR "Policy for California clients only"
INITIALIZE pa_clients[curr_pa].* TO NULL
CLEAR scr_array[curr_sc].*
NEXT FIELD fname

END IF
END INPUT

SCR_LINE ()

SCR_LINE()

Built-In Functions and Operators 5-103

The following example makes use of SCR_LINE() and of the related
ARR_CURR() built-in function to assign values to variables within the
BEFORE ROW clause of an INPUT ARRAY statement. Because these functions
are invoked in the BEFORE ROW control block, the respective curr_pa and
curr_sa variables are evaluated each time that the cursor moves to a new line
and are available within other clauses of the INPUT ARRAY statement.

INPUT ARRAY ga_items FROM sa_items.* HELP 62
BEFORE ROW

LET curr_pa = ARR_CURR()
LET curr_sa = SCR_LINE()

In a later statement within INPUT ARRAY, you can have a statement such as
the following example, which fills in the description and unit_price fields on
the screen:

DISPLAY
ga_items[curr_pa].description, ga_items[curr_pa].unit_price
TO
sa_items[curr_sa].description, sa_items[curr_sa].unit_price

References
ARR_COUNT(), ARR_CURR()

SET_COUNT()

5-104 HCL Informix 4GL Reference Guide

SET_COUNT()
The SET_COUNT() function specifies the number of records that contain
data in a program array.

Usage
Before you use an INPUT ARRAY WITHOUT DEFAULTS statement or a
DISPLAY ARRAY statement, you must call the SET_COUNT() function with an
integer argument to specify the total number of records in the program array.
In typical applications, these records contain the values in the retrieved rows
that a SELECT statement returned from a database and are associated with a
database cursor.

The SET_COUNT() built-in function sets an initial value from which the
ARR_COUNT() function determines the total number of members in an array.
If you do not explicitly call ARR_COUNT(), a default value of zero is assigned.

In the following program fragment, the variable n_rows is an array index
that received its value in an earlier FOREACH loop. The index was initialized
with a value of 1, so the expression (n_rows -1) represents the number of
rows that were fetched from a database table in the FOREACH loop. The
expression SET_COUNT (n_rows - 1) tells INPUT ARRAY WITHOUT
DEFAULTS how many program records containing row values from the
database are in the program array, so it can determine how to control the
screen array.

CALL SET_COUNT(n_rows - 1)
INPUT ARRAY pa_items WITHOUT DEFAULTS

FROM sa_items.*

If no INPUT ARRAY statement has been executed, and you do not call the
SET_COUNT () function, the DISPLAY ARRAY or INPUT ARRAY WITHOUT
DEFAULTS statement displays no records.

CALL SET_COUNT (Integer Expression)
p. 3-63

SET_COUNT()

Built-In Functions and Operators 5-105

References
ARR_COUNT(), ARR_CURR()

SHOWHELP()

5-106 HCL Informix 4GL Reference Guide

SHOWHELP()
The SHOWHELP() function displays a runtime help message, corre-
sponding to its specified SMALLINT argument, from the current help file.

Usage
The argument of SHOWHELP() identifies the number of a message in the
current help file that was specified in the most recently executed HELP FILE
clause of the OPTIONS statement. For details of how to specify the current
help file, see “The HELP FILE Option” on page 4-299.

The Help Menu
SHOWHELP() opens the Help window (as described in “The Help Window”
on page 2-30) and displays the first (or only) page of the help message text
below a ring menu of help options. This menu is called the Help menu.

If the help message is too long to fit on one page, the Screen option of the
Help menu can display the next page of the message. The Resume option
closes the Help window and returns focus to the 4GL screen.

The Help File That SHOWHELP() Displays
To create a help file, you must use a text editor to create an ASCII file of help
messages, each identified by a message number. The message number must
be an literal integer in the range from -2,147,483,647 to +2,147,483,647 and
must be prefixed by a period (.) as the first character on the line containing
the number. No sign is required, but message numbers must be unique
within the file. Just as in other literal integers, no decimal points, commas, or
other separators are allowed. The NEWLINE character (or a NEWLINE
RETURN pair) must terminate each message number.

In nondefault locales, the help file can also contain printable non-ASCII
characters from the code set of the locale. ♦

CALL SHOWHELP (Integer Expression)
p. 3-63

GLS

SHOWHELP()

Built-In Functions and Operators 5-107

The help message follows the message number on the next line. It can include
any printable ASCII characters, except that a line cannot begin with a period.
The text of the help message should contain information useful to the user in
the context where SHOWHELP() is called. The message is terminated by the
next message number or by the end of the file.

You must then use the mkmessage utility to create a runtime version of the
help file that users can view. See the description of the mkmessage utility in
Appendix B for details of how to compile help files. Here is a simple example
of an ASCII help file for use with SHOWHELP():

.100
You have pressed the Help key of the Megacrunch Application.
Unfortunately, all of our operators are busy at this time.
Perhaps your supervisor can tell you what to do next..200
Press CONTROL-ALT-DEL to exit from this program.

Help messages should be in the language of the intended user of the appli-
cation. For applications that will be run in different locales, this might require
translating the help messages into several languages. At runtime, the
compiled help message files must exist in an appropriate subdirectory of
$INFORMIXDIR/msg and be referenced by the DBLANG variable. (See also
Appendix E, “Developing Applications with Global Language Support.”) ♦

In interactive statements like CONSTRUCT, INPUT, INPUT ARRAY, PROMPT,
and the COMMAND clause of a MENU statement, the effect of SHOWHELP()
resembles that of the Help key. The Help key, however, displays only the
message specified in the current HELP clause. The following example uses
INFIELD() with SHOWHELP() to display field-dependent help messages:

INPUT ARRAY gr_equip.* FROM sa_equip.*
ON KEY(CONTROL-B)

CASE
WHEN INFIELD(part_num)

CALL SHOWHELP(301)
WHEN INFIELD(part_name)
CALL SHOWHELP(302)
WHEN INFIELD(supplier)

CALL SHOWHELP(303)
...

END CASE
END INPUT

Reference
INFIELD()

GLS

SPACE

5-108 HCL Informix 4GL Reference Guide

SPACE
The SPACE operator returns a string of a specified length, containing only
blank (ASCII 32) characters. The keyword SPACES is a synonym for SPACE.

Usage
This operator returns a blank string of a length corresponding to its positive
integer argument, specifying a relative offset. The returned value is identical
to a quoted string that contains the same number of blank spaces.

In a PRINT statement in the FORMAT section of a report definition, SPACE
advances the character position by the specified number of characters.

The following statements from a fragment of a report definition use the
SPACE operator to accomplish several tasks:

■ To separate variables within two PRINT statements
■ To concatenate six blank spaces to the string "=ZIP"
■ To print the resulting string after the value of the variable zipcode:

FORMAT
ON EVERY ROW

LET mystring = (6 SPACES), "=ZIP"
PRINT fname, 2 SPACES, lname
PRINT company
PRINT address1
PRINT city, ", " , state, 2 SPACES, zipcode, mystring

In a DISPLAY statement, the SPACE operator inserts the specified number of
blank characters into the output.

Outside PRINT statements, the SPACE (or SPACES) keyword and its operand
must appear within parentheses, as in the LET statement of the previous
example.

Integer Expression
p. 3-63 SPACE

SPACES

SPACE

Built-In Functions and Operators 5-109

References
LINENO, PAGENO

STARTLOG()

5-110 HCL Informix 4GL Reference Guide

STARTLOG()
The STARTLOG() function opens an error log file.

Usage
The following is a typical sequence to implement error logging:

1. Call STARTLOG() in the MAIN program block to open or create an
error log file.

2. Use a LET statement with ERR_GET(status) to retrieve the error text
and to assign this value to a program variable.

3. Use ERRORLOG() to make an entry into the error log file.

The last two steps are not needed if you are satisfied with the error records
that are automatically produced after STARTLOG() has been invoked. After
STARTLOG() has been invoked, a record of every subsequent error that occurs
during the execution of your program is written to the error log file.

CALL STARTLOG ("filename ")

variable

filename is a quoted string to specify a filename (and optional pathname and file
extension) of the error log file.

variable is a variable of type CHAR or VARCHAR that contains a filename (and
optional pathname and file extension) of the error log file.

Element Description

STARTLOG()

Built-In Functions and Operators 5-111

The default format of an error record consists of the date, time, source-
module name and line number, error number, and error message. If you
invoke the STARTLOG() function, the format of the error records that 4GL
appends to the error log file after each subsequent error are as follows:

Date: 03/06/99 Time: 12:20:20
Program error at "stock_one.4gl", line number 89.
SQL statement error number -239.
Could not insert new row - duplicate value in a UNIQUE INDEX
column.
SYSTEM error number -100
ISAM error: duplicate value for a record with unique key.

You can also write your own messages in the error log file by using the
ERRORLOG() function. For details, see “ERRORLOG()” on page 5-65.

With other 4GL features, the STARTLOG(), ERR_GET(), and ERRORLOG()
functions can be used for instrumenting a program, to track how the program
is used. This use is not only valuable for improving the program but also for
recording work habits and detecting attempts to breach security. Example 25
in INFORMIX-4GL by Example contains an example of this type of
functionality.

Unless you specify another option, WHENEVER ERROR CONTINUE is the
default error-handling action when a runtime error condition is detected. The
WHENEVER ERROR CONTINUE compiler directive can prevent the first SQL
error from terminating program execution.

Specifying the Error Log File
If the argument of STARTLOG() is not the name of an existing file,
STARTLOG() creates one. If the file already exists, STARTLOG() opens it and
positions the file pointer so that subsequent error messages can be appended
to this file. The following program fragment invokes STARTLOG(), specifying
the name of the error log file in a quoted string that includes a pathname and
a file extension. The function definition includes a call to the built-in
ERRORLOG() function, which adds a message to the error log file.

CALL STARTLOG("/usr/arik/error.log")
...
FUNCTION start_menu()
CALL ERRORLOG("Entering start_menu function")
...
END FUNCTION

STARTLOG()

5-112 HCL Informix 4GL Reference Guide

In this example, text written to the error log file merely shows that control of
program execution has passed to the start_menu() function rather than
indicating that any error has been issued.

For portable programs, the filename should be a variable rather than a literal
string. As in other filename specifications, any literal backslash (\) that is
required as a pathname separator must be entered as two backslashes.

References
ERRORLOG(), ERR_GET(), ERR_PRINT(), ERR_QUIT()

Substring ([]) Operator

Built-In Functions and Operators 5-113

Substring ([]) Operator
The substring operator ([]) specifies a substring of the value returned by a
character expression.

Usage
The brackets ([]) are required. If last is not specified, the single byte in the
first position is returned. If last is specified, a comma must separate it from
first, and a substring is returned whose first byte is first and whose last byte
is last, including any intervening bytes.

The integer expressions first and last must return values greater than zero but
in the range 1 ≤ first ≤ length, where length is the length of the string returned
by the character expression, and first ≤ last ≤ length. For example:

DEFINE diamond, spade CHAR[5], club ARRAY [3,4,5] OF CHAR[5]
LET spade = "heart"
LET club[2,2,2] = "heart"
LET diamond = spade[3,5]

Here the last statement assigns the value "art" to the variable diamond,
using a three-character substring of the string value in spade. If the substring
consists of a single character, the last term is not required. For example, if you
modified the previous program fragment to include the following statement,
the LET statement assigns the value a to variable diamond, from the third
character of the "heart" string value in spade:

LET diamond = spade[3]

Character
Expression

p. 3-69
[first]

, last

first and last are 1-based positions of the first and last bytes (respectively) of a
substring within the string returned by the left-hand operand.

Description Element

Substring ([]) Operator

5-114 HCL Informix 4GL Reference Guide

Expressions with character arrays as operands can specify substrings of an
individual array element:

LET diamond = club[2,2,2] [2,4]

In the context of the previous program fragments, this assigns to diamond
the substring "ear" from the value ("heart") of array element club[2,2,2].

Invalid Operands in Substring Expressions
Be careful to avoid specifying invalid operands for the substring ([])
operator, as in the following cases:

■ When first has a zero or negative value
■ When first is larger than last
■ When first or last cannot be converted to an integer value
■ When last has a value greater than the number of bytes returned by

the left-hand character expression
■ When the left-hand expression is a CHAR or VARCHAR variable (or

ARRAY element, or RECORD member) of a declared size less than last
■ When the left-hand character expression returns an empty string

Invalid operands can produce runtime error -1332. If you are using the RDS
version of 4GL, the resulting error message also reports the filename of the
.4gl source-code module in which the error was detected and the line number
within that module of the substring expression that caused the error.

If you have compiled your source code to C, however, rather than to p-code,
no module name or line number is provided in the error message. This
situation can make it more difficult for developers who do not have RDS to
locate an invalid substring specification.

The substring operator is byte based. In East Asian locales that support
multibyte characters, 4GL automatically replaces any partial characters that
this operator attempts to create with single-byte white-space characters so
that no partial character is returned. Informix database servers that support
GLS provide functions that are based on a count of logical characters rather
than on the number of bytes. ♦

GLS

Substring ([]) Operator

Built-In Functions and Operators 5-115

Reference
CLIPPED

TIME

5-116 HCL Informix 4GL Reference Guide

TIME
The TIME operator converts the time-of-day portion of its DATETIME operand
to a character string. If you supply no operand, TIME reads the system clock
and returns a character string value representing the current time of day.

Usage
TIME returns a character string that represents the time-of-day portion of its
DATETIME operand in the format hh:mi:ss, based on a 24-hour clock. (Here hh
represents the hour, mi the minute, and ss the second as 2-digit strings, with
colons as separators.) If you do not supply an operand, TIME returns a
character string that represents the current time in the format hh:mi:ss, based
on a 24-hour clock.

In the following program fragment, the value returned by TIME is assigned
to the p_time variable and displayed:

DEFINE p_time char(15)
LET p_time = TIME

DISPLAY "The time is ", p_time

If this code were executed half an hour before midnight, the previous
DISPLAY statement would produce output in the following format:

The time is 23:30:00

Like the values returned by the CURRENT, DATE, DAY, MONTH, TODAY,
WEEKDAY, and YEAR operators, the value that TIME returns is sensitive to the
time of execution and to the accuracy of the system clock-calendar.

References
CURRENT, DATE, DAY, MONTH, TODAY, WEEKDAY, YEAR

TIME

(DATETIME Expression
p. 3-74

)

TODAY

Built-In Functions and Operators 5-117

TODAY
The TODAY operator reads the system clock and returns a DATE value that
represents the current calendar date.

Usage
TODAY can return the current date in situations where the time of day (which
CURRENT or TIME supplies) is not necessary. Like the CURRENT, DATE, DAY,
MONTH, TIME, WEEKDAY, and YEAR operators, TODAY is sensitive to the
time of execution and to the accuracy of the system clock-calendar. The
following example uses TODAY in a REPORT definition:

SKIP 1 LINE
PRINT COLUMN 15, "FROM: ", begin_date USING "mm/dd/yy",

COLUMN 35, "TO: ", end_date USING "mm/dd/yy"
PRINT COLUMN 15, "Report run date: ",

TODAY USING "mmm dd, yyyy"
SKIP 2 LINES
PRINT COLUMN 2, "ORDER DATE", COLUMN 15, "COMPANY",

COLUMN 35, "NAME", COLUMN 57, "NUMBER",
COLUMN 65, "AMOUNT"

TODAY is useful in setting defaults and initial values in form fields. The next
code fragment initializes a field with the current date if the field is empty.
This initialization takes place before the user enters data into the field:

INPUT gr_payord.paid_date FROM a_date
BEFORE FIELD a_date

IF gr_payord.paid_date IS NULL THEN
LET gr_payord.paid_date = TODAY

END IF

4GL can display language-specific month-name and day-name abbreviations
if appropriate files exist in a subdirectory of $INFORMIXDIR/msg and they
are referenced by the DBLANG variable. For example, the weekday portion
of a date in a Spanish locale can translate Saturday to the abbreviation Sab,
which stands for Sabado (the Spanish word for Saturday). ♦

TODAY

GLS

TODAY

5-118 HCL Informix 4GL Reference Guide

References
CURRENT, DATE, DAY, MONTH, TIME, WEEKDAY, YEAR

UNITS

Built-In Functions and Operators 5-119

UNITS
The UNITS operator converts an integer expression to an INTERVAL value,
expressed in a single unit of time that you specify after the UNITS keyword.

Usage
The UNITS operator returns an INTERVAL value for a single unit of time, such
as DAY TO DAY, YEAR TO YEAR, or HOUR TO HOUR. If you substitute a
number expression for the integer operand, any fractional part of the
returned value is discarded before the UNITS operator is applied.

UNITS has a higher precedence than any arithmetic or Boolean operator of
4GL. Any left-hand arithmetic operand that includes the UNITS operator must
be enclosed within parentheses. The next example specifies a starting time for
a meeting (DATETIME value) and a value for the duration of the meeting,
which the program has already converted to a whole number of minutes
(SMALLINT). The program calculates when the meeting will end (DATETIME
value). UNITS in this case allows you to add the SMALLINT value to the
DATETIME value and get a new DATETIME value.

LET end_time = (meeting_length UNITS MINUTE) + start_time

Because the difference between two DATE values is an integer count of days
rather than an INTERVAL data type, you might want to use the UNITS
operator to convert such differences explicitly to INTERVAL values:

LET lateness = (date_due - TODAY) UNITS DAYS

Integer
Expression UNITS

p. 2-3
YEAR

MONTH DAY MINUTE

HOUR SECOND

FRACTION (scale)

is a literal integer, greater than zero but less than 6. scale

Element Description

UNITS

5-120 HCL Informix 4GL Reference Guide

Arithmetic operations with UNITS can return an invalid date. For example,
the expression (1 UNITS MONTH) + DATETIME (2001-1 31) YEAR TO DAY
returns February 31, 2001, and also a runtime error:

-1267: The result of a datetime computation is out of
range.

UPSHIFT()

Built-In Functions and Operators 5-121

UPSHIFT()
The UPSHIFT() function takes a character-string argument and returns a
string in which any lowercase letters are converted to uppercase letters.

Usage
The UPSHIFT() function is most often used to regularize data; for example, to
prevent the state abbreviation VA, Va, or va from resulting in different values
if these abbreviations were logically equivalent in the context of your
application.

You can use the UPSHIFT() function in an expression where a character string
is valid, in DISPLAY and PRINT statements, and in assignment statements.
(See also “UPSHIFT” on page 6-64.)

Non-alphabetic and uppercase characters are not altered by UPSHIFT(). The
maximum data length of the argument (and of the returned character string
value) is 32,766 bytes.

The following example demonstrates a function that was written to merge
two privilege strings. Its output preserves letters in preference to hyphens
(privileges over lack of privilege) and uppercase letters in preference to
lowercase (privileges WITH GRANT OPTION over those without).

FUNCTION merge_auth(oldauth, newauth)
DEFINE oldauth, newauth LIKE systabauth.tabauth, k SMALLINT
F O R k = 1 TO LENGTH(oldauth)

IF (oldauth[k] = "-") -- no privilege in this position
OR (UPSHIFT(oldauth[k]) = newauth[k])

-- new is "with grant option"
THEN LET oldauth[k] = newauth[k])
END IF

END FOR
RETURN oldauth

END FUNCTION

UPSHIFT (Character Expression
p. 3-69

)

UPSHIFT()

5-122 HCL Informix 4GL Reference Guide

In the next example, the CHAR variables u_str and str are equivalent, except
that u_str substitutes uppercase letters for any lowercase letters in str:

LET u_str = UPSHIFT(str)

The results of conversion between uppercase and lowercase letters are based
on the locale files, which specify the relationship between corresponding
pairs of uppercase and lowercase letters. If the locale files do not provide this
information, no case conversion occurs.

UPSHIFT() has no effect on non-English characters in most multibyte locales.

In multibyte locales, UPSHIFT() and DOWNSHIFT() treat the first partial (or
otherwise invalid) character in the argument as if it terminated the string. For
example, suppose that b is an invalid character. The following expression
would return the character string "ABCD EF " with any single-byte or
multibyte white-space characters that immediately precede the first invalid
character being included in the returned value, rather than being discarded:

UPSHIFT(ABCD ef bXYZ)
♦

See also the UPSHIFT field attribute in Chapter 6, “Screen Forms.”

Reference
DOWNSHIFT()

GLS

USING

Built-In Functions and Operators 5-123

USING
The USING operator specifies a character-string format for a number,
MONEY, or DATE operand and returns the formatted value.

Usage
With a number or MONEY operand, you can use the USING operator to align
decimal points or currency symbols, to right- or left-align numbers, to put
negative numbers in parentheses, and to perform other formatting tasks.
USING can also convert a DATE operand to a variety of formats.

USING is typically used in DISPLAY and PRINT statements, but you can also
use it with LET to assign the formatted value to a character variable. If a value
is too large for the field, 4GL fills it with asterisks (*) to indicate an overflow.

For information on symbols that the USING operator recognizes in format-
string, see “The USING Formatting Symbols for Number Values” on
page 5-124 (for number values) and “Formatting DATE Values” on
page 5-127 (for DATE values).

Number Expression
p. 3-72

USING "format-string"

Time Expression
p. 3-72

format-string is a quoted string that specifies how to format the returned
character string from the number or time expression.

Description Element

USING

5-124 HCL Informix 4GL Reference Guide

Formatting Number Expressions
The USING operator takes precedence over the DBMONEY or DBFORMAT
environment variables and is required to display the thousands separator of
DBFORMAT. When 4GL displays a number value, it follows these rules:

■ 4GL displays the leading currency symbol (as set by DBFORMAT or
DBMONEY) for MONEY values. (But if the FORMAT attribute also
specifies a leading currency symbol, 4GL displays that symbol for
other data types.)

■ 4GL omits the thousands separators, unless they are specified by a
FORMAT attribute or by the USING operator.

■ 4GL displays the decimal separator, except for INT or SMALLINT
values.

■ 4GL displays the trailing currency symbol (as set by DBFORMAT or
DBMONEY) for MONEY values unless you specify a FORMAT
attribute or the USING operator. In this case, the user cannot enter a
trailing currency symbol, and 4GL does not display it.

The USING Formatting Symbols for Number Values

The format-string value can include the following characters.

Character Description

* This character fills with asterisks any positions in the display field that
would otherwise be blank.

& This fills with zeros any positions that would otherwise be blank.

This does not change any blank positions in the display field. You can
use it to specify a maximum width for a field.

< This causes numbers in the field to be left aligned.

, This character is a literal. USING displays it as a comma (but displays no
comma unless there is a number to the left of it).

. This character is a literal. USING displays it as a period. You can only
have one decimal point (or period) in a number format string.

(1 of 2)

USING

Built-In Functions and Operators 5-125

Character Description

- This character is a literal. USING displays it as a minus sign when the
expression is less than zero and otherwise as a blank. When you group
several minus signs in a row, a single minus sign floats immediately to
the left of the number being printed.

+ This character is a literal. USING displays it as a plus sign when the
expression is greater than or equal to zero and as a minus sign when it is
less than zero. When you group several plus signs in a row, a single plus
sign floats immediately to the left of the displayed number.

$ The dollar ($) sign is a placeholder for the front specification of
DBMONEY or DBFORMAT. (The back specification of DBMONEY or
DBFORMAT has no effect if USING is applied to the data value.) When
you group several consecutive dollar signs, a single front currency
symbol floats immediately to the left of the number being printed.

(This literal character is displayed as a left parenthesis before a negative
number. It is the accounting parenthesis that is used in place of a minus
sign to indicate a negative number. Consecutive left parentheses display
a single left parenthesis to the left of the number being printed.

) For the accounting parenthesis that is used in place of a minus sign to
indicate a negative number, one of these characters generally closes a
format string that begins with a left parenthesis.

(2 of 2)

The minus sign (-), plus sign (+), parentheses, and dollar sign ($) float,
meaning that when you specify multiple leading occurrences of one of these
characters, 4GL displays only a single character immediately to the left of the
number that is being displayed. Any other character in format-string is inter-
preted as a literal.

Important: These characters are not identical to the formatting characters that you
can specify in the format-strings of the FORMAT or PICTURE field attributes,
described in Chapter 6, “Screen Forms.”

For examples of using format strings for number expressions, see “Examples
of the USING Operator” on page 5-129. Because format strings interact with
data to produce visual effects, you might find that the examples are easier to
follow than the descriptions on the previous page of USING format string
characters.

USING

5-126 HCL Informix 4GL Reference Guide

The following example prints a MONEY value using a format string that
allows values up to $9,999,999.99 to be formatted correctly:

DEFINE mon_val MONEY(8,2)
LET mon_val = 23485.23
DISPLAY "The current balance is ", mon_val

USING "$#,###,##&.&&"

Executing this DISPLAY statement (with the value of mon_val set to
23485.23) produces the following output:

The current balance is $ 23,485.23

The format string in this example specifies the currency symbol.

The previous example also uses the # and & fill characters. The # character
provides blank fill for unused character positions, while the & character
provides zero filling. This format ensures that even if the number is zero, any
positions marked with & appear as zero, not blank.

Dollar signs can be used instead of # characters, as in the following statement:

DISPLAY "The current balance is ",mon_val
USING "$$,$$$,$$&.&&"

In this example, the currency symbol floats with the size of the number so
that it appears immediately to the left of the most significant digit in the
display. This example would produce the following formatted output, if the
value of the mon_val variable were 23485.23:

The current balance is $23,485.23

By default, 4GL displays numbers right aligned. You can use the < symbol in
a USING format string to override this default. For example, specifying

DISPLAY "The current balance is ",mon_val
USING "$<<,<<<,<<&.&&"

produces the following output when the value of mon_val is 23485.23:

The current balance is $23,485.23

USING

Built-In Functions and Operators 5-127

Formatting DATE Values
When you use it to format a DATE value, USING takes precedence over any
DBDATE or GL_DATE environment variable settings. The format-string value
for a date can be a combination of the characters m, d, and y.

Symbols Resulting Time Unit in Formatted DATE Display

dd Day of the month as a 2-digit number (01 through 31 or less)

ddd Day of the week as a 3-letter abbreviation (Sun through Sat)

mm Month as a 2-digit number (01 through 12)

mmm Month as a 3-letter abbreviation (Jan through Dec)

yy Year as a 2-digit number (the trailing digits, 00 through 99)

yyyy Year as a 4-digit number (0001 through 9999)

Here lowercase is required; uppercase D, M, or Y cannot be substituted.

Any other characters within a USING formatting mask for DATE values are
interpreted as literals.

The following examples show valid format-string masks for December 25,
1999, and the resulting display for the default U.S. English locale.

Format String Formatted Result

"mmddyy" 122599

"ddmmyy" 251299

"yymmdd" 991225

"yy/mm/dd" 99/12/25

"yy mm dd" 99 12 25

"yy-mm-dd" 99-12-25

"mmm. dd, yyyy" Dec. 25, 1999

"mmm dd yyyy" Dec 25 1999

(1 of 2)

USING

5-128 HCL Informix 4GL Reference Guide

Format String Formatted Result

"yyyy dd mm" 1999 25 12

"mmm dd yyyy" Dec 25 1999

"ddd, mmm. dd, yyyy" Sat, Dec. 25, 1999

"(ddd) mmm. dd, yyyy" (Sat) Dec. 25, 1999

The following example is from a REPORT program block:

ON LAST ROW
SKIP 2 LINES
PRINT "Number of customers in ", state, " are ",

COUNT(*) USING "<<<<<" PAGE TRAILER
PRINT COLUMN 35, "page ", PAGENO USING "<<<<"

The following REPORT fragment illustrates several different formats:

(2 of 2)

SKIP 1 LINE
PRINT COLUMN 15, "FROM: ", begin_date USING "mm/dd/yy",

COLUMN 35, "TO: ", end_date USING "mm/dd/yy"
PRINT COLUMN 15, "Report run date: ", TODAY USING "mmm dd, yyyy"

SKIP 2 LINES
PRINT COLUMN 2, "ORDER DATE", COLUMN 15, "COMPANY",

COLUMN 35, "NAME", COLUMN 57, "NUMBER", COLUMN 65, "AMOUNT"
BEFORE GROUP OF days

SKIP 2 LINES
AFTER GROUP OF number

PRINT COLUMN 2, order_date, COLUMN 15, company CLIPPED,
COLUMN 35, fname CLIPPED, 1 SPACE, lname CLIPPED,
COLUMN 55, number USING "####",
COLUMN 60, GROUP SUM(total_price)

USING "$$,$$$,$$$.&&"
AFTER GROUP OF days

SKIP 1 LINE
PRINT COLUMN 21, "Total amount ordered for the day: ",

GROUP SUM(total_price) USING "$$$$,$$$,$$$.&&"
SKIP 1 LINE
PRINT COLUMN 15,

"==="
ON LAST ROW

SKIP 1 LINE
PRINT COLUMN 15,

"==="
SKIP 2 LINES
PRINT "Total Amount of orders: ", SUM(total_price)

USING "$$$$,$$$,$$$.&&"
PAGE TRAILER

PRINT COLUMN 28, PAGENO USING "page <<<<"

USING

Built-In Functions and Operators 5-129

In nondefault locales, the NUMERIC and MONETARY categories in the locale
files affect how the format string of the USING operator is interpreted for
formatting number and currency data values.

In format string, the period (.) is not a literal character but a placeholder for
the decimal separator specified by environment variables. Likewise, the
comma is a placeholder for the thousands separator specified by
environment variables. The dollar sign ($) is a placeholder for the leading
currency symbol. The @ symbol is a placeholder for the trailing currency
symbol. Thus, the format string $#,###.## formats the value 1234.56
as £1,234.56 in a U.K. English locale, but as f1.234,56 in a French locale.
Setting either DBFORMAT or DBMONEY overrides these locale setting.

The mmm and ddd specifiers in a format string can display language-specific
month-name and day-name abbreviations. This operation requires the instal-
lation of appropriate files in a subdirectory of $INFORMIXDIR/msg and
reference to that subdirectory in the setting of the environment variable
DBLANG. For example, in a Spanish locale, the ddd specifier translates the
day Saturday into the day-name abbreviation Sab, which stands for Sabado
(the Spanish word for Saturday). For more information on GLS, see
Appendix E, “Developing Applications with Global Language Support.” ♦

Examples of the USING Operator
Tables that follow illustrate some of the capabilities of the USING operator
with number or currency operands (for the default U.S. English locale). Each
table has the following format:

■ The first column shows a format string (the left-hand operand).
■ The second column shows a data value (the right-hand operand).
■ The third column shows the resulting formatted display.
■ The fourth column provides a comment (for some rows).

GLS

USING

5-130 HCL Informix 4GL Reference Guide

Here the character b in the Formatted Result column represents a blank
space.

Format String Data Value Formatted Result Comment on Result
"#####" 0 bbbbb No zero symbol
"&&&&&" 0 00000

"$$$$$" 0 bbbb$ No zero symbol
"*****" 0 ***** No zero symbol
"<<<<<" 0 (NULL string)
"<<<,<<<" 12345 12,345

"<<<,<<<" 1234 1,234
"<<<,<<<" 123 123
"<<<,<<<" 12 12
"##,###" 12345 12,345

"##,###" 1234 b1,234
"##,###" 123 bbb123
"##,###" 12 bbbb12
"##,###" 1 bbbbb1
"##,###" -1 bbbbb1 No negative sign
"##,###" 0 bbbbbb No zero symbol
"&&,&&&" 12345 12,345

"&&,&&&" 1234 01,234
"&&,&&&" 123 000123

"&&,&&&" 12 000012
"&&,&&&" 1 000001
"&&,&&&" -1 000001 No negative sign
"&&,&&&" 0 000000

"&&,&&&.&&" 12345.67 12,345.67
"&&,&&&.&&" 1234.56 01,234.56
"&&,&&&.&&" 123.45 000123.45

"&&,&&&.&&" 0.01 000000.01
"$$,$$$" 12345 ****** (Overflow)
"$$,$$$" 1234 $1,234

"$$,$$$" 123 bb$123
"$$,$$$" 12 bbb$12
"$$,$$$" 1 bbbb$1
"$$,$$$" 0 bbbbb$ No zero symbol
"**,***" 12345 12,345

"**,***" 1234 *1,234

"**,***" 123 ***123
"**,***" 12 ****12
"**,***" 1 *****1
"**,***" 0 ****** No zero symbol

USING

Built-In Functions and Operators 5-131

Here the character b in the Formatted Result column represents a blank
space.

Format String Data Value Formatted Result Comment on Result
"##,###.##" 12345.67 12,345.67
"##,###.##" 1234.56 b1,234.56

"##,###.##" 123.45 bbb123.45

"##,###.##" 12.34 bbbb12.34
"##,###.##" 1.23 bbbbb1.23

"##,###.##" 0.12 bbbbb0.12
"##,###.##" 0.01 bbbbbb.01 No leading zero
"##,###.##" -0.01 bbbbbb.01 No negative sign
"##,###.##" -1 bbbbb1.00 No negative sign
"$$,$$$.$$" 12345.67 ********* (overflow)
"$$,$$$.$$" 1234.56 $1,234.56

"$$,$$$.##" 0.00 $.00 No leading zero
"$$,$$$.##" 1234.00 $1,234.00

"$$,$$$.&&" 0.00 $.00 No leading zero
"$$,$$$.&&" 1234.00 $1,234.00

"-$$$,$$$.&&" -12345.67 -$12,345.67
"-$$$,$$$.&&" -1234.56 -b$1,234.56
"-$$$,$$$.&&" -123.45 -bbb$123.45
"--$$,$$$.&&" -12345.67 -$12,345.67
"--$$,$$$.&&" -1234.56 -$1,234.56
"--$$,$$$.&&" -123.45 -bb$123.45
"--$$,$$$.&&" -12.34 -bbb$12.34
"--$$,$$$.&&" -1.23 -bbbb$1.23

"-##,###.##" -12345.67 -12,345.67
"-##,###.##" -123.45 -bbb123.45
"-##,###.##" -12.34 -bbbb12.34
"--#,###.##" -12.34 -bbb12.34
"---,###.##" -12.34 -bb12.34

"---,-##.##" -12.34 -12.34
"---,--#.##" -1.00 -1.00
"-##,###.##" 12345.67 12,345.67
"-##,###.##" 1234.56 1,234.56
"-##,###.##" 123.45 123.45
"-##,###.##" 12.34 12.34

"--#,###.##" 12.34 12.34
"---,###.##" 12.34 12.34
"---,-##.##" 12.34 12.34
"---,---.##" 1.00 1.00
"---, ----- " -.01 -.01

"---,---.&&" -.01 -.01

USING

5-132 HCL Informix 4GL Reference Guide

Here the character b in the Formatted Result column represents a blank
space.

Format String Data Value Formatted Result Comment on Result
" --- ,--$.&&" -12345.67 -$12,345.67

" --- ,--$.&&" -1234.56 -$1,234.56

" --- ,--$.&&" -123.45 -$123.45

" --- ,--$.&&" -12.34 -$12.34

" --- ,--$.&&" -1.23 -$1.23
" --- ,--$.&&" -.12 -$.12
"$***,***.&&" 12345.67 $*12,345.67
"$***,***.&&" 1234.56 $**1,234.56
"$***,***.&&" 123.45 $****123.45
"$***,***.&&" 12.34 $*****12.34

"$***,***.&&" 1.23 $******1.23
"$***,***.&&" .12 $*******.12
"($$$,$$$.&&)" -12345.67 ($12,345.67) Accounting parentheses
"($$$,$$$.&&)" -1234.56 (b$1,234.56)

"($$$,$$$.&&)" -123.45 (bbb$123.45)
"(($$,$$$.&&)" -12345.67 ($12,345.67)
"(($$,$$$.&&)" -1234.56 ($1,234.56)
"(($$,$$$.&&)" -123.45 (bb$123.45)
"(($$,$$$.&&)" -12.34 (bbb$12.34)
"(($$,$$$.&&)" -1.23 (bbbb$1.23)

"((((,(($.&&)" -12345.67 ($12,345.67)

"((((,(($.&&)" -1234.56 ($1,234.56)
"((((,(($.&&)" -123.45 ($123.45)
"((((,(($.&&)" -12.34 ($12.34)
"((((,(($.&&)" -1.23 ($1.23)
"((((,(($.&&)" -.12 ($.12)
"($$$,$$$.&&)" 12345.67 $12,345.67
"($$$,$$$.&&)" 1234.56 $1,234.56
"($$$,$$$.&&)" 123.45 $123.45
"(($$,$$$.&&)" 12345.67 $12,345.67
"(($$,$$$.&&)" 1234.56 $1,234.56
"(($$,$$$.&&)" 123.45 $123.45

"(($$,$$$.&&)" 12.34 $12.34
"(($$,$$$.&&)" 1.23 $1.23
"((((,(($.&&)" 12345.67 $12,345.67
"((((,(($.&&)" 1234.56 $1,234.56

"((((,(($.&&)" 123.45 $123.45

"((((,(($.&&)" 12.34 $12.34
"((((,(($.&&)" 1.23 $1.23
"((((,(($.&&)" .12 $.12

WEEKDAY()

Built-In Functions and Operators 5-133

WEEKDAY()
The WEEKDAY() operator returns a positive integer, corresponding to the
day of the week implied by its DATE or DATETIME operand.

Usage
This operator takes a DATETIME or DATE operand, and returns an integer in
the range 0 through 6. Here 0 represents Sunday, 1 represents Monday, and
so on. The following example calls a function that uses WEEKDAY with a
CASE statement to assign a three-letter day-of-the-week abbreviation to each
date in an array, omitting days that fall on weekends:

FOR i = 1 TO 10
CALL seize_theday(next_day)

RETURNING day_name, next_day
LET pa_days[i].dayo_week = day_name
LET pa_days[i].rdate = next_day
LET next_day = next_day + 1

END FOR
...
FUNCTION seize_theday(next_day)

DEFINE
week_day SMALLINT
day_name CHAR(3)
next_day DATE

LET week_day = WEEKDAY(next_day)
CASE week_day

WHEN 1 LET day_name = "Mon"
WHEN 2 LET day_name = "Tues"
WHEN 3 LET day_name = "Wed"
WHEN 4 LET day_name = "Thu"
WHEN 5 LET day_name = "Fri"
WHEN 6 LET day_name = "Mon"

LET next_day = next_day + 2
WHEN 7 LET day_name = "Mon"

LET next_day = next_day + 1
END CASE

RETURN day_name, next_day
END FUNCTION -- seize_theday

WEEKDAY (DATETIME Expression
p. 3-74

DATE Expression
p. 3-74

)

WEEKDAY()

5-134 HCL Informix 4GL Reference Guide

This operator is useful for determining the day of the week from dates in
recent and future centuries. It should be used with caution, however, for
more remote dates, because of disagreements between the old and new
calendar systems in some European countries between the invention of the
Gregorian calendar in 1582 and the eventual acceptance of that calendar.

For dates thousands of years in the past (for example, the death of Socrates,
or the establishment of the Middle Kingdom in ancient Egypt), it is difficult
to verify that the sequential count of the seven days of the week has been
accurately maintained from antiquity up to the present. Computers that use
defective algorithms for calculating leap years might also have difficulties
with the weekdays in modern dates after February 28 of the year 2000.

The WEEKDAY() operator is among a group of 4GL operators that extract
a single time unit value from a DATETIME or DATE value. The following
extraction operators of 4GL accept a DATETIME or DATE operand.

Operator Meaning of the Returned Integer

DAY() The day of the month

MONTH() The month

YEAR() The year

WEEKDAY() The day of the week

In addition, the DATE() operator can extract the date portion of a DATETIME
value that has YEAR TO DAY or greater precision, and the TIME operator can
extract the time-of-day from a DATETIME expression that has HOUR TO
FRACTION precision (or a subset thereof).

The USING operator can also return day-of-the-week information from a
DATE operand (as described in “Formatting DATE Values” on page 5-127).

For more information, see the GL_DATE environment variable in
Appendix D, “Environment Variables.”

References
CURRENT, DATE, DAY, MONTH, TIME, TODAY, YEAR

WORDWRAP

Built-In Functions and Operators 5-135

WORDWRAP
The WORDWRAP operator divides a long text string into segments that
appear in successive lines of a 4GL report. (This operator can appear only in
the PRINT statement in the FORMAT section of a REPORT program block.)

Usage
The WORDWRAP operator automatically wraps successive segments of long
character strings onto successive lines of output from a 4GL report. The string
value of any expression or TEXT variable that is too long to fit between the
current character position and the specified or default right margin is divided
into segments and displayed between temporary margins:

■ The current character position becomes the temporary left margin.
■ Unless you specify RIGHT MARGIN temporary, the right margin

defaults to 132 or to the size from the RIGHT MARGIN clause of the
OUTPUT section of the report definition.

These temporary values override the specified or default left and right
margins from the OUTPUT section.

After the PRINT statement has executed, any explicit or default margins from
the OUTPUT section are restored. For more information, see “PRINT” on
page 7-55.

string WORDWRAP

TEXT variable RIGHT MARGIN temporary

string is a character expression (as described in “Character Expressions”
on page 3-69) to be printed in the output from the report.

temporary is an integer expression (as described in “Integer Expressions” on
page 3-63) whose returned value specifies the absolute position (in
characters), counting from the left edge of the page, of a temporary
right margin.

TEXT variable is the name of a 4GL variable of the TEXT data type to be printed in
the output from the report.

Description Element

WORDWRAP

5-136 HCL Informix 4GL Reference Guide

The following PRINT statement specifies a temporary left margin in column
10 and a temporary right margin in column 70 to display the character string
that is stored in the 4GL variable called mynovel:

print column 10, mynovel WORDWRAP RIGHT MARGIN 70

Tabs, Line Breaks, and Page Breaks with WORDWRAP
The data string can include printable ASCII characters. It can also include the
TAB (ASCII 9), newline character (ASCII 10), and RETURN (ASCII 13) characters
that partition the string into words, consisting of substrings of other printable
characters. Other non-printable characters might cause runtime errors. If the
data string cannot fit between the margins of the current line, 4GL breaks the
line at a word division, padding the line with blanks at the right.

From left to right, 4GL expands any TAB character to enough blank spaces to
reach the next tab stop. By default, tab stops are in every eighth column,
beginning at the left-hand edge of the page. If the next tab stop or a string of
blank characters extends beyond the right margin, 4GL takes these actions:

■ Prints blank characters only to the right margin
■ Discards any remaining blank characters from the blank string or tab
■ Starts a new line at the temporary left margin
■ Processes the next word

4GL starts a new line when a word plus the next blank space cannot fit on the
current line. If all words are separated by a single space, an even left margin
results. 4GL applies the following rules (in descending order of precedence)
to the portion of the data string within the right margin:

■ Break at any newline character, RETURN, or newline character and
RETURN pair.

■ Break at the last blank (ASCII 32) or TAB character before the right
margin.

■ Break at the right margin if no character farther to the left is a blank,
RETURN, TAB, or newline character.

4GL maintains page discipline with the WORDWRAP operator. If the character
string or TEXT value operand is too long for the current page of report output,
4GL executes the statements in any PAGE TRAILER and PAGE HEADER control
blocks before continuing output onto a new page.

WORDWRAP

Built-In Functions and Operators 5-137

Tip: The WORDWRAP keyword can also specify a field attribute that supports data
display and data entry in a multiple-segment field of a 4GL form. For more infor-
mation, see “WORDWRAP” on page 6-67.

Kinsoku Processing
In Japanese locales, a suitable break can also be made between the Japanese
characters. However, certain characters must not begin a new line, and some
characters must not end a line. This convention creates the need for kinsoku
processing, whose purpose is to format the line properly, without any
prohibited character at the beginning or ending of a line.

4GL reports use the wrap-down method for WORDWRAP and kinsoku
processing. The wrap-down method reads the last character in the line and
forces that character down to the next line if that character is prohibited from
ending a line. A character that precedes another that is prohibited from
beginning a line can also wrap down to the next line.

Characters that are prohibited from beginning or ending a line must be listed
in the locale files. 4GL tests for prohibited characters at the beginning and
ending of a line, testing the first and last visible characters.

The kinsoku processing only happens once for each line. That is, no further
kinsoku processing occurs even if prohibited characters are still on the same
line after the first kinsoku processing takes place. ♦

References
CLIPPED, SPACES, USING

GLS

YEAR()

5-138 HCL Informix 4GL Reference Guide

YEAR()
The YEAR() operator returns an integer corresponding to the year portion of
its DATE or DATETIME operand.

Usage
The YEAR() operator returns all the digits of the year value (1999, not 99).
(The second example that follows illustrates how to obtain a two-digit value
like 99 from a four-digit year like 1999.)

The following example extracts the current year and stores the value in an
integer variable:

LET y_var = YEAR(TODAY)

You can produce a two-digit year abbreviation by using the MOD (modulus)
operator:

LET birth_yr = (YEAR(birth_date)) MOD 100

In the right-hand expression, the MOD operator yields the year modulo 100,
the remainder when the value representing the actual year is divided by 100.

For example, if the value of the DATE variable birth_date is 09-16-1953, the
YEAR() operator extracts the value 1953, and the following expression
returns 53:

1953 MOD 100

That value is then assigned to the INT variable birth_yr.

References
CURRENT, DATE, DAY, MONTH, TIME, TODAY, WEEKDAY

YEAR (DATETIME Expression
p. 3-74

DATE Expression
p. 3-74

)

Screen Forms

In This Chapter ... 6-5

4GL Forms ... 6-5
Form Drivers .. 6-5
Form Fields ... 6-7

Appearance of Fields .. 6-7
Navigation Among Form Fields .. 6-8
Disabled Form Fields .. 6-8

Structure of a Form Specification File ... 6-9

DATABASE Section .. 6-12
Database References in the DATABASE Section .. 6-13
The FORMONLY Option ... 6-14
The WITHOUT NULL INPUT Option .. 6-14

SCREEN Section ... 6-15
The SIZE Option .. 6-16
The Screen Layout ... 6-17
Display Fields ... 6-17

Field Delimiters ... 6-17
Field Length ... 6-18
Field Tags ... 6-18

Literal Characters in Forms .. 6-19
Graphics Characters in Forms ... 6-21
Rectangles Within Forms .. 6-22

TABLES Section .. 6-23
Table Aliases ... 6-24

Chapter

6

6-2 HCL Informix 4GL Reference Guide

ATTRIBUTES Section ... 6-25

FORMONLY Fields ... 6-29
The Data Type Specification .. 6-29
The NOT NULL Keywords ... 6-30

Multiple-Segment Fields ... 6-31
WORDWRAP Fields ... 6-31
Subscripted Fields ... 6-32

Field Attributes .. 6-32
Field Attribute Syntax ... 6-33
AUTONEXT ... 6-34
CENTURY .. 6-35
COLOR ... 6-37
COMMENTS .. 6-43
DEFAULT ... 6-45
DISPLAY LIKE ... 6-48
DOWNSHIFT ... 6-49
FORMAT .. 6-50
INCLUDE ... 6-53
INVISIBLE .. 6-56
NOENTRY.. 6-57
PICTURE .. 6-58
PROGRAM ... 6-60
REQUIRED ... 6-62
REVERSE .. 6-63
UPSHIFT... 6-64
VALIDATE LIKE .. 6-65
VERIFY ... 6-66
WORDWRAP .. 6-67

INSTRUCTIONS Section ... 6-74
Screen Records ... 6-74

Nondefault Screen Records.. 6-75
The List of Member Fields ... 6-76

Screen Arrays ... 6-77
Field Delimiters ... 6-79

Default Attributes .. 6-80
Precedence of Field Attribute Specifications .. 6-83
Default Attributes in an ANSI-Compliant Database 6-84

Screen Forms 6-3

Creating and Compiling a Form .. 6-85

Compiling a Form Through the Programmer’s Environment 6-85
Compiling a Form at the Command Line .. 6-87
Default Forms ... 6-89

Using PERFORM Forms in 4GL .. 6-91

6-4 HCL Informix 4GL Reference Guide

Screen Forms 6-5

In This Chapter
A screen form is a visual display that can support input and output tasks in an
INFORMIX-4GL application. Before your 4GL program can use a screen form,
you must first create a form specification file. This source file describes the
logical format of the screen form and how to display data values in the form
at runtime. It must be compiled separately from the rest of your source code.
The same compiled form can be used by different 4GL programs.

The first part of this chapter describes the structure of a form specification file
and the effect and syntax of its components. “Default Attributes” on
page 6-80 describes the syscolval and syscolatt tables that can specify
formats, validation rules, and default data values for fields. (For information
on using the upscol utility to specify values in these tables, see Appendix B,
“INFORMIX-4GL Utility Programs.”) Additional sections in this chapter
describe how to compile 4GL forms and how to use forms designed for
PERFORM, the screen transaction processor of INFORMIX-SQL.

4GL Forms
This section describes form drivers, which control the display of a form, and
form fields, including their behavior and how to navigate among them.

Form Drivers
To work with a compiled screen form, the application requires a form driver,
a logical set of 4GL statements that control the display of the form, bind form
fields to 4GL variables, and respond to actions by the user in fields.

Form Drivers

6-6 HCL Informix 4GL Reference Guide

The form driver can include 4GL screen interaction and data manipulation
statements to enter, retrieve, modify, or delete data in the database. The
emphasis of this chapter, however, is on how to create the form specification
file, rather than on how to design and implement the form driver.

Regardless of how you define them, there is no implicit relationship between
the values of program variables, form fields, and database columns. Even, for
example, if you declare a 4GL variable lname LIKE customer.lname, the
changes that you make to the variable do not imply any change in the column
value. Functional relationships among these entities must be specified in the
logic of your form driver, typically through screen interaction statements of
4GL, and through data manipulation statements of SQL. After the user
presses the Accept key to terminate an INPUT ARRAY statement, for example,
the form driver can use the INSERT statement to modify the database.

Similarly, a 4GL form is only a template. FORM4GL reads the system catalog
at compile time to obtain the names and data types of any columns that are
referenced in the form specification file. After compilation, however, the form
loses its connection to the database. It can no longer distinguish the name of
a table or view from the name of a screen record.

It is up to you, the programmer, to determine what data a form displays and
what to do with data values that the user enters into the fields of a form. You
must indicate the binding explicitly in any 4GL statement that connects 4GL
variables to screen forms or to database columns. The following statements,
for example, take input from a 4GL form and insert the entered value from the
form into the database. (Here the @ sign in the INSERT statement tells 4GL that
the first lname is the SQL identifier of a database column.)

INPUT lname FROM customer.lname
INSERT INTO customer (@lname) VALUES (lname)

You can use interactive 4GL statements such as OPEN FORM, OPEN WINDOW,
INPUT, DISPLAY FORM, CLEAR FORM, and CONSTRUCT in the form driver to
support data entry or data display through the 4GL form. Some statements
support temporary binding when a program variable and a screen field have
identical names. (See the individual 4GL statement descriptions in Chapter 4,
“INFORMIX-4GL Statements,” for the appropriate syntax.) For example, the
following statement could replace the previous INPUT statement:

INPUT BY NAME lname

For more information about form drivers, refer to INFORMIX-4GL Concepts
and Use.

Form Fields

Screen Forms 6-7

-

CUSTOMER FORM

]

-

Form Fields
In a form, a field (sometimes called a screen field or form field) is an area where
the user of the application can view, enter, and edit data, depending on its
description in the form specification and the statements in the form driver.
This section discusses the appearance and behavior of form fields in 4GL.

Appearance of Fields
The screen form contains display fields bounded by delimiters, such as the
square brackets shown in Figure 6-1.

Figure 6-1
The customer Form

Number: []

First Name: [] Last Name: [

Company: []

Address: []
 []

City: []

State: [] Zipcode: []

Telephone: []

The currently active form field contains a visual cursor. This current field
displays what the user types. For details about how to size and position fields
in a form, see “Display Fields” on page 6-17. For information on assigning
display and validation attributes to fields, see “Field Attribute Syntax” on
page 6-33.

For nondefault locales, screen forms can include non-ASCII characters that
the client locale supports. ♦

GLS

Form Fields

6-8 HCL Informix 4GL Reference Guide

Navigation Among Form Fields
The order in which the cursor moves from field to field on a screen form is
determined by the order in which you list fields in the INPUT statement. At
any time before pressing RETURN in the last field, the user can use the arrow
keys to move back through the fields and make corrections, or TAB to move
to the next field. In CONSTRUCT, INPUT, and INPUT ARRAY statements, the
NEXT FIELD clause can override the default order of field traversal.

The AUTONEXT field attribute can move the cursor automatically to the next
field when the user has typed enough characters to fill a field. The user can
indicate that data entry is complete by pressing the Accept key (typically
ESCAPE) in any field. Data can also be entered by pressing RETURN in the last
field, if INPUT WRAP was not specified in the OPTIONS statement. If INPUT
WRAP was specified, RETURN moves the cursor back to the first field. Specify
OPTIONS CURSOR NO WRAP to restore the default behavior.

The FIELD ORDER setting in the OPTIONS statement determines where the
arrow keys move the cursor. If FIELD ORDER CONSTRAINED is specified,
pressing UP ARROW moves the cursor to the previous field, and pressing DOWN
ARROW moves the cursor to the next field. If FIELD ORDER UNCONSTRAINED
is specified, pressing UP ARROW moves the cursor to the field above the
current cursor position and pressing DOWN ARROW moves the cursor to the
field below the current cursor position.

Disabled Form Fields
When a form field is not included in a screen interaction statement like INPUT
or CONSTRUCT, or is specified as a NOENTRY field in a form file, it is disabled
during execution of that statement. The user cannot move the cursor to the
field. If the user attempts to enter the NOENTRY field by using the TAB or
arrow keys, the cursor moves to the next field in traversal order, and any
appropriate BEFORE and AFTER clauses are executed.

Structure of a Form Specification File

Screen Forms 6-9

Structure of a Form Specification File
A 4GL form specification file is a source file (with file extension .per) that you
can create with a text editor or from within the 4GL Programmer’s
Environment. This file consists of three required sections (DATABASE,
SCREEN, and ATTRIBUTES), and it can also include two optional sections
(TABLES and INSTRUCTIONS). If present, these five sections must appear in
the following order:

■ DATABASE section. Each form specification file must begin with a
DATABASE section identifying the database (if any) on which the
form is based. This can be any database that the current database
server can access, including a remote database.

■ SCREEN section. The SCREEN section must appear next, showing the
dimensions and the exact layout of the logical elements of the form.
You must specify the position of one or more screen fields for data
entry or display as well as any additional text or ornamental
characters.

■ TABLES section. If it is present, the TABLES section must follow the
SCREEN section. This section lists every table or view that is refer-
enced in the ATTRIBUTES section. If a table requires as a qualifier the
name of an owner or of a database, the TABLES section must also
declare an alias for the table.

■ ATTRIBUTES section. The ATTRIBUTES section describes each field
on the form and assigns names to fields. Field descriptions can
optionally include field attributes to specify, for example, the
appearance, acceptable input values, on-screen comments, and
default values for each field.

■ INSTRUCTIONS section. The INSTRUCTIONS section is optional. It
can specify screen arrays and nondefault screen records and field
delimiters.

Each section must begin with the keyword for which it is named. After you
create a form specification file, you must compile it. The form driver of your
4GL application can then use 4GL variables to transfer information between
the database and the fields of the screen form.

Structure of a Form Specification File

6-10 HCL Informix 4GL Reference Guide

This is the syntax of a 4GL form specification.

DATABASE FORMONLY

WITHOUT NULL INPUT

SCREEN { }

SIZE lines BY characters END

TABLES table

alias = END

ATTRIBUTES field tag = ;

END

INSTRUCTIONS SCREEN RECORD record

array [size]
()

END

DELIMITERS " opening closing "

DATABASE Section
Database Reference

p. 6-13

ATTRIBUTES
Section
p. 6-25

SCREEN
Section
p. 6-15

DATABASE
Section
p. 6-12

Field List
p. 6-75

INSTRUCTIONS Section

Field Description
p. 6-33

ATTRIBUTES Section

Table Qualifier
p. 3-89

TABLES Section

Screen Layout
p. 6-17

SCREEN Section

DATABASE Section

INSTRUCTIONS
Section
p. 6-74

TABLES
Section
p. 6-23

Structure of a Form Specification File

Screen Forms 6-11

The next five sections of this chapter identify the keywords and terms that are
listed in this diagram and describe their syntax in detail.

The following example illustrates the overall structure of a typical form
specification:

}

TABLES
customer orders items manufact

ATTRIBUTES
c1 = customer.customer_num

= orders.customer_num;
c10 = customer.phone, PICTURE = "###-###-####x#####";

...
o20 = orders.po_num;
o21 = orders.ship_date;
o22 = orders.paid_date;

INSTRUCTIONS
SCREEN RECORD sc_order[5] (orders.order_date THRU orders.paid_date)

In this example, the screen form has been designed to display columns from
several tables in the stores7 demonstration database and includes all five of
the required and optional sections that are described in the pages that follow.

This example is incomplete because it omits portions of the SCREEN and
ATTRIBUTES sections that describe some of the screen fields. The ellipsis
notation (…) in those sections is a typographic device to simplify this
illustration rather than a valid specification for the form.

DATABASE stores7

SCREEN
{

CUSTOMER INFORMATION:
Customer Number: [c1

...

]

Telephone: [c10

]

SHIPPING INFORMATION:
Customer P.O.: [o20]

Ship Date: [o21] Date Paid: [o22]

DATABASE Section

6-12 HCL Informix 4GL Reference Guide

database

DATABASE Section
The DATABASE section identifies the database, if any, that contains tables or
views whose columns are referenced in the form specification file.

Usage
The DATABASE section is required, even if the screen form does not reference
any database columns or tables. You can specify only one database.

When compiling forms, 4GL uses the schema of tables from the specified
database to define the data types of fields in the form and obtains default
values and attributes from the syscolval and syscolatt tables in the default
database.

DATABASE FORMONLY

DATABASE Section
Database Reference

WITHOUT NULL INPUT

database

database @server

IDS

SE

"/ server / database "
"/ pathname / database@server "
"// server / pathname / database "

DATABASE Section
Database Reference

DATABASE Section

database is the SQL identifier of a database.
pathname is the path to the parent directory of the .dbs directory (for

INFORMIX-SE databases only).
server is the name of the host system where database resides.

Description Element

Database References in the DATABASE Section

Screen Forms 6-13

Database References in the DATABASE Section
If the form specification includes any table or column names from a database,
the DATABASE section must specify exactly one database reference. For
Informix Dynamic Server, the following are valid database reference formats:

database
database @ server
"//server/database"

The last format requires quotation marks.

The next examples specify that columns or tables referenced in the TABLES,
ATTRIBUTES, or INSTRUCTIONS section are in the stores7 database; the last
two DATABASE section examples specify mammoth as the database server:

DATABASE stores7
DATABASE stores7@mammoth
DATABASE "//mammoth/stores7"

For databases supported by the INFORMIX-SE database server, the following
are all valid database reference formats:

database
"/pathname/database@server"
"//server/pathname/database"

Quotation marks around the last two formats are mandatory. Here pathname
is a pathname to the directory that contains database, and server is the name of
the host system where database resides.

For INFORMIX-SE, the following DATABASE sections illustrate these formats:

DATABASE newdb
DATABASE "/usr/projects/newdb@mammoth"
DATABASE "//mammoth/usr/projects/newdb"

The FORMONLY Option

6-14 HCL Informix 4GL Reference Guide

The FORMONLY Option
You can create a form that is not related to any database. To do so, specify
FORMONLY after the DATABASE keyword and omit the TABLES section. Also
specify FORMONLY as the only table name in the ATTRIBUTES section when
you declare the name of each field (as described in “ATTRIBUTES Section”
on page 6-25).

The following example of a DATABASE section specifies that the screen form
is not associated with any database:

DATABASE FORMONLY

Compilation errors can result if FORMONLY appears in the DATABASE section
of a form that also specifies features that depend on information from the
system catalog or from the syscolval and syscolatt tables of a database. You
can declare fields as FORMONLY in the ATTRIBUTES section, however, even if
the DATABASE section specifies a database.

The following features of 4GL forms depend on a database:

■ The TABLES section
■ Any field associated with a database column in the ATTRIBUTES

section
■ Any FORMONLY field declared LIKE a column in the ATTRIBUTES

section
■ DISPLAY LIKE or VALIDATE LIKE attributes in the ATTRIBUTES

section

The WITHOUT NULL INPUT Option
The WITHOUT NULL INPUT keywords indicate that database-name does not
support null values. Use this option only if you have elected to create and
work with a database that does not support null values.

For fields that have no other defaults, the WITHOUT NULL INPUT option
causes the form to display zeros as default values for number and INTERVAL
fields and blanks for character fields. DATE values default to 12/31/1899.
The default value for DATETIME fields is 1899-12-31 23:59:59.99999.

SCREEN Section

Screen Forms 6-15

The use of WITHOUT NULL INPUT is discouraged. This specification was
useful in 1981 for Informix 1.00 databases, which did not yet support the
construct of null values. Current Informix databases can prevent null input
by specifying a not-null constraint on individual columns through the
CREATE TABLE or ALTER TABLE statements. If your application requires non-
null values in a field corresponding to a database column, you can specify in
the ATTRIBUTES section that the field is FORMONLY and NOT NULL, as
described in “Field Attribute Syntax” on page 6-33.

SCREEN Section
The SCREEN section of the form specification file specifies the vertical and
horizontal dimensions of the physical screen and the position of one or more
display fields and other information that will appear on the screen form. This
section is required.

Usage
The SCREEN keyword is required. As in other sections of a form specification,
the keyword END is optional.

A single pair of braces ({ }), immediately preceded and immediately
followed by NEWLINE characters, must enclose the screen layout. You cannot
use comment indicators in the SCREEN section.

SCREEN { }
SIZE lines BY characters END

Screen Layout
p. 6-17

lines is a literal integer that specifies how many lines of characters (measured
vertically) the form can display. The default is 24.

characters is a literal integer that specifies how many characters (measured
horizontally) a line can display. The default is the maximum number of
characters in any line of the screen layout.

Element Description

The SIZE Option

6-16 HCL Informix 4GL Reference Guide

The SIZE Option
If you omit the SIZE keyword, lines defaults to 24, and characters defaults to
the maximum number of characters in any line of your screen layout. If you
create a default form from the Programmer’s Environment (as described in
“Default Forms” on page 6-89), the file shows the SIZE default values.

Specify lines as the total height of the form. Four lines are reserved for the
system, so by default, no more than (lines - 4) lines of the form can display
data. (But the OPEN WINDOW…ATTRIBUTE (FORM LINE FIRST, COMMENT
LINE = OFF) statement can reduce this overhead.)

If the value of (lines - 4) is less than the number of lines in the screen
layout, FORM4GL splits your form into a new page after every (lines - 4)
lines. 4GL does not support multiple-page forms, so any lines beyond the first
page will overlay the last line of the first page if your screen layout is too large
for your screen. (To avoid this superimposition, create several form specifi-
cation files if you need to display more lines than can fit on one form.)

You can override either or both of the lines and characters dimensions of the
SCREEN section by specifying the following form4gl command, where lines
is the height of the screen, characters is the width of the screen, and form-name
is the filename (without the .per extension) of a form specification file.:

form4gl -l lines -c characters form-name

For complete information on the form4gl command, see “Compiling a Form
at the Command Line” on page 6-87.

The portion of the SCREEN section between the braces is called the screen
layout. This portion shows the geometric arrangement of the logical screen.
If the SIZE clause or command line specifies dimensions that are too small for
the screen layout, FORM4GL issues a compile-time warning, but it produces
the compiled form that your form specification file described.

The Screen Layout

Screen Forms 6-17

The Screen Layout
The screen layout of the SCREEN section must be enclosed between a pair of
braces, each in the first character position of an otherwise empty line. The
screen layout consists of display fields and (optionally) text characters.

Display Fields
Every 4GL form must include at least one field where data can appear. Use
brackets ([]) to delimit fields in the screen layout. Between delimiters, each
field must have an identifying field tag. For more information, see “Field
Tags” on page 6-18.

Field Delimiters
Each field must be indicated by left and right delimiters to show the length
of the field and its position within the screen layout. Both delimiters must
appear on the same line. Usually you use left and right brackets to delimit
fields. However, to make two fields appear directly next to each other, you
can use the pipe symbol (|) to indicate the end of the first field and the
beginning of the second field. For complete information on using a pipe
symbol to delimit fields, see “Field Delimiters” on page 6-79.

[field-tag]

[field-tag | field-tag]

character

Screen Layout

field-tag is a 4GL identifier of no more than 128 bytes within each field.
The length of a field tag cannot exceed the field width.

character is a printable character of text that will appear in the form.

Element Description

Display Fields

6-18 HCL Informix 4GL Reference Guide

Field Length
If you create a nondefault form, you normally should set the width of each
display field in the SCREEN section to be equal to the width of the program
variable or the database column to which it corresponds.

A field to display numeric values should be large enough to contain the
largest anticipated value. When a numeric field is too small to display a data
value, 4GL fills the field with asterisk (*) symbols to indicate the overflow.

Fields to display character data can be shorter than the data length. 4GL fills
the field from the left and truncates from the right any string that is longer
than its display field. By using multiple-segment fields, you can display
portions of a long character value in successive lines of the form. For more
information, see “Multiple-Segment Fields” on page 6-31.

In a default form specification file, the widths of all fields are determined by
the data type of the corresponding columns in the database tables. (For more
information, see “Creating and Compiling a Form” on page 6-85.) The
section “Default Forms” on page 6-89 lists default field widths for each data
type.

If you edit and modify the default form specification file or create a new file,
you can verify that the field widths match the data length requirements of the
corresponding character columns when you compile the form. See also
“Compiling a Form at the Command Line” on page 6-87.

Field Tags
Field tags must follow the rules for 4GL identifiers (as described in “4GL
Identifiers” on page 2-14). The first character of a field tag must be a letter or
underscore (_). Other characters can be any combination of letters, digits,
and underscores. Because FORM4GL is not case sensitive, both a1 and Al
represent the same field tag. Field tags cannot be referenced in 4GL state-
ments. The ATTRIBUTES section declares a field name for each field tag.

Each field has only one tag, but fields with the same tag can appear at more
than one position in the SCREEN section in two special cases:

■ As part of a screen array
See “Screen Arrays” on page 6-77.

Literal Characters in Forms

Screen Forms 6-19

■ As part of a multiple-segment WORDWRAP field

See “WORDWRAP” on page 6-67.

Otherwise, each field tag must be unique within a form.

Because a field tag must fit within the brackets that delimit its field, you can
give single-character fields the tags a through z. This designation implies that
a form can include no more than 27 single-character fields in the default
locale.

Locales for natural languages other than English might have different limits
on the number of single-character fields within a single 4GL form. ♦

Literal Characters in Forms
A screen layout can specify character strings that always appear in the form.
These strings can label the form and its fields or format the display. (See also
“Graphics Characters in Forms” on page 6-21.)

In U.S. English locales, literal characters in the screen layout are restricted
to ASCII characters, but in other locales you can include any other printable
characters that the code set of the client locale supports. ♦

Text cannot overlap display fields, but the PICTURE attribute (described in
“Field Attribute Syntax” on page 6-33) can specify literal characters within
CHAR or VARCHAR fields.

Data Entry of Commas in Integer Fields
All locales ignore comma (,) symbols that the user enters in INTEGER and
SMALLINT fields of a 4GL screen form. Thus, the entered value “12,345” is
interpreted as “12345.” Similarly, an anomalously formatted value such as
“1,2,,3,,,4,,,,5,,,” which uses commas in a way that no locale
supports, is interpreted as “12345.” No error checking on the use of commas
is performed during data entry into INTEGER or SMALLINT fields.

GLS

GLS

Literal Characters in Forms

6-20 HCL Informix 4GL Reference Guide

City:[f006
Telephone:[f008

] State:[a0] Zip Code:[f007]
]

Order No:[f009] Order Date:[f010
Shipping Instructions:[f012

] Purchase Order No:[f011]
]

Item No. Stock No. Code Description Quantity Price Total

The SCREEN section shown in Figure 6-2 appears in the orderform.per form
specification file in the stores7 demonstration application. This example uses
default screen dimensions (24 by 80) and textual information for field labels,
a screen title, and ornamental lines. (“INSTRUCTIONS Section” on page 6-74
describes how repeated field tags are used in forms that define screen arrays.)

Figure 6-2
Example of a Screen Section

SCREEN
{

 ORDER FORM

Customer Number:[f000
Company Name:[f003

Address:[f004

] Contact Name:[f001
]
][f005

][f002]

]

[f013] [f014] [a1] [f015] [f016] [f017] [f018]
[f013] [f014] [a1] [f015] [f016] [f017] [f018]
[f013] [f014] [a1] [f015] [f016] [f017] [f018]
[f013] [f014] [a1] [f015] [f016] [f017] [f018]

Running Total including Tax and Shipping Charges:[f019
===
}
END

]

Important: The backslash (\) is not valid as a text character; FORM4GL attempts
to interpret it as the beginning of an escape sequence and does not print it. In
addition, your form might not compile correctly if you attempt to use either braces
({ and }) or the field delimiter ([,], and |) symbols as text characters in the screen
layout. FORM4GL interprets any pound sign (#) or double-hyphens (--) in the
screen layout as literals, not as comment indicators.

Literal Characters in Forms

Screen Forms 6-21

Graphics Characters in Forms
You can include graphics characters in the SCREEN section to place boxes and
other rectangular shapes in a screen form. Use the following characters to
indicate the borders of one or more boxes on the form.

Symbol Purpose

p Use p to mark the upper-left corner.

q Use q to mark the upper-right corner.

b Use b to mark the lower-left corner.

d Use d to mark the lower-right corner.

- Use hyphens to indicate horizontal line segments.

| Use pipe symbols to indicate vertical line segments.

The meanings of these six special characters are derived from the gb and acsc
specifications in the termcap and terminfo files, respectively. 4GL substitutes
the corresponding graphics characters when you display the compiled form.

Once the form has the desired configuration, use \g to indicate when to begin
graphics mode and when to end graphics mode.

Insert \g before the first p, q, d, b, hyphen, or pipe symbol that represents a
graphics character. To leave graphics mode, insert \g after the p, q, d, b,
hyphen, or pipe symbol. FORM4GL exits from graphics mode automatically
at the end of each screen line, regardless of whether the \g string terminates
the line. This means that every line that requires graphics mode must start
with the \g string, but does not necessarily need to end with it.

Do not insert \g into original white space of a screen layout. The backslash
should displace the first graphics character in the line and push the
remaining characters to the right. The process of indicating graphics distorts
the appearance of a screen layout in the SCREEN section, compared to the
corresponding display of the screen form.

You can include other graphics characters in a form specification file, but the
meaning of a character other than the p, q, d, b, hyphen, and pipe symbol is
terminal dependent.

Literal Characters in Forms

6-22 HCL Informix 4GL Reference Guide

To use graphics characters, the system termcap or terminfo file must include
entries for specific variables.

The following table shows what variables need to be set in the termcap file.

termcap Variable Description

gs The escape sequence for entering graphics mode

ge The escape sequence for leaving graphics mode

gb The concatenated, ordered list of ASCII equivalents for the six
graphics characters used to draw the border

The following table shows what variables need to be set in the terminfo file.

terminfo Variable Description

smacs The escape sequence for entering graphics mode

rmacs The escape sequence for leaving graphics mode

acsc The concatenated, ordered list of ASCII equivalents for the six
graphics characters used to draw the border

See Appendix F, “Modifying termcap and terminfo,” and the Guide that
comes with your terminal for information about making changes to your
termcap or terminfo file to support these graphics characters.

Rectangles Within Forms
You can use the built-in FGL_DRAWBOX() function (described in Chapter 5,
“Built-In Functions and Operators”) to enclose parts of the screen layout
within rectangles. Rectangles that you draw with FGL_DRAWBOX() are part
of a displayed form. Each time that you execute the corresponding DISPLAY
FORM or OPEN WINDOW…WITH FORM statement, you must also redraw the
rectangle. Avoid having the rectangle intersect any field or any 4GL reserved
line because the rectangle will be broken at the intersection when anything is
displayed in the field or in the reserved line.

TABLES Section

Screen Forms 6-23

TABLES Section
The TABLES section lists the database tables that are referenced elsewhere in
the form specification file. You must list in this section any table, view, or
synonym that includes a column whose name is referenced in the form.

Usage
If the DATABASE section specifies FORMONLY, no TABLES section is needed
unless you give a field the VALIDATE LIKE or DISPLAY LIKE attribute in the
ATTRIBUTES section or specify a FORMONLY field LIKE a database column.

Every database column referenced in the ATTRIBUTES section must be part of
some table specified in the TABLES section. The table identifier is the name
listed in the tabname column of the systables catalog or else a synonym.

4GL allows you to specify up to 20 tables, but the actual limit on the number
of tables, views, and synonyms that you can reference in a form depends on
how your system is configured. The form specification file orderform.per in
the demonstration application lists four tables:

TABLES customer orders items stock

The table identifier cannot be a temporary table. If the form supports entry or
update of data in a view, your 4GL application should test at runtime whether
the view is updatable, especially if it is based on other views.

The END keyword is optional.

TABLES table

alias = Table Qualifier
p. 3-89

END

TABLES Section

is the alias that replaces table in the form specification file.
is the identifier or synonym of a table or view in its database.

alias
table

Element Description

Table Aliases

6-24 HCL Informix 4GL Reference Guide

Table Aliases
The TABLES section must declare an alias value for the identifier of any table,
view, or synonym that requires a table qualifier (as described in “Table Quali-
fiers” on page 3-89). Table qualifiers can specify the owner of a table or a
database (or database@server value) that is different from the database in the
DATABASE section. In an ANSI-compliant database, for example, you must
qualify any table name with the owner prefix if the form will be used by
anyone other than owner.

You do not need to specify alias, unless the form will be used in an ANSI-
compliant database by a user who did not create table, or if the form refer-
ences a table, view, or synonym whose name is the same as another in the
same database, so that the owner prefix is required for an unambiguous
reference.

The alias can be the same identifier as table. For example, stock can be the
alias for stores7@naval:tom.stock. Except to assign an alias in the TABLES
section, a form specification file cannot qualify the name of a table. If a
qualifier is needed, you must use an alias from the TABLES section to
reference the table in other sections of the form specification file.

Table aliases cannot exceed the 128-byte limit for 4GL identifiers.

The same alias must also appear in screen interaction statements of 4GL that
reference screen fields linked to columns of a table that has an alias. State-
ments in 4GL programs or in other sections of the form specification file can
reference screen fields as column, as alias. column, or as table. column, but they
cannot specify owner. table. column. You cannot specify table. column as a field
name if you define a different alias for table.

The following TABLES section specifies aliases for two tables:

TABLES tab1 = libdpt.booktab
tab2 = athdpt.balltab

ATTRIBUTES Section

Screen Forms 6-25

;

ATTRIBUTES Section
The ATTRIBUTES section specifies a field description that associates an
identifier and a data type with every field in the SCREEN section. You can also
control the behavior and appearance of each field by using field attributes to
describe how 4GL should display the field, supply a default value, limit the
values that can be entered, or set other parameters. For information on field
attributes, see “Field Attribute Syntax” on page 6-33.

The ATTRIBUTES section has the following syntax.

ATTRIBUTES field-tag = Field

Description
Field Description END

Case I: (Fields linked to a database column)

 table . column
,

, attribute
Case II: (FORMONLY fields) ,
 FORMONLY. field , attribute

name
data NOT NULL
type

TYPE LIKE table . column

Element Description
attribute specifies one of the field attribute listed on page 6-32.
column is the unqualified SQL identifier of a database column.
data type is any 4GL data type specification except ARRAY or RECORD.
field name is an identifier that you assign to a FORMONLY field (a field that is not

associated here with any database column).
field-tag is the field tag, as declared in the SCREEN section.
table is the name or alias of a table, synonym, or view, as declared in the

TABLES section.

ATTRIBUTES Section

6-26 HCL Informix 4GL Reference Guide

Usage
The ATTRIBUTES section must describe every field-tag value from the SCREEN
section. The order in which you list the field tags determines the order of
fields in the default screen records that 4GL creates for each table.
(“INSTRUCTIONS Section” on page 6-74 describes screen records.)

The tables specification is not required unless several columns in different
tables have the same name or the table is an external table.

The END keyword is optional. It is supported to provide compatibility with
form specification files for earlier versions of Informix products.

You can specify two kinds of field descriptions: those that associate a field tag
with the data type and with the default attributes of a database column and
those that link field tags to FORMONLY fields.

Fields Linked to Database Columns
Unless a display field is FORMONLY, its field description must specify the SQL
identifier of some database column as the name of the display field. Fields are
associated with database columns only during the compilation of the form
specification file. During the compilation process, FORM4GL examines two
optional tables, syscolval and syscolatt, for default values of the attributes
that you have associated with any columns of the database. (For a description
of these tables, see “Default Attributes” on page 6-80.)

After FORM4GL extracts any default attributes and identifies data types from
the system catalog, the association between fields and database columns is
broken, and the form cannot distinguish the name or synonym of a table or
view from the name of a screen record. The form driver in your 4GL program
must mediate between screen fields and database columns by using 4GL
program variables.

If the database server whose table, view, or synonym is referenced in the
ATTRIBUTES section has the IFX_LONGID environment variable set to 1, then
a table identifier or column identifier can require up to 128 bytes of storage.

Important: If a form links a view to a screen field that permits data entry or data
editing, it is the responsibility of the programmer to test at runtime whether the view
is updatable, especially if the view is based on another view.

ATTRIBUTES Section

Screen Forms 6-27

This is the syntax for specifying the attributes of a screen field that is linked
to a column of a database.

Usage
Although you must include an ATTRIBUTES section that assigns at least one
name to every field-tag value from the SCREEN section, you are not required
to specify any field attributes.

You are not required to specify table unless the name column is not unique
within the form specification, or if table is external to the database that the
DATABASE section specifies. However, Informix recommends that you
always specify table.column rather than the unqualified column name.

If there is ambiguity, FORM4GL issues an error during compilation.

Because you can refer to field names collectively through a screen record built
upon all the fields linked to the same table, your forms might be easier to
work with if you specify table for each field. For more information about
declaring screen records, see “INSTRUCTIONS Section” on page 6-74.

A screen field can display a portion of a character string if you use subscripts
in the column specification. Subscripts are a pair of comma-separated integers
in brackets ([]) that indicate starting and ending character positions within
a string value. But if you specify in the ATTRIBUTES section that two fields
are linked to the same character column in the database, you cannot associate
each field with a different substring of the same column.

field-tag = column

table .
 ,

, attribute

;

attribute is a string of keywords, identifiers, and symbols that specify a field
attribute, as listed in “Field Attributes” on page 6-32.

column is the unqualified SQL identifier of a database column. This variable can
also appear in 4GL statements that reference the field.

field-tag is the field tag, as declared in the SCREEN section.
table is the name or alias of a database table, synonym, or view, as declared in

the TABLES section. Qualifiers are not allowed.

Element Description

ATTRIBUTES Section

6-28 HCL Informix 4GL Reference Guide

The ATTRIBUTES section in the following file lists fields linked to columns in
the customer table. The UPSHIFT and PICTURE attributes that are assigned
here are described later in this chapter.

DATABASE stores7

SCREEN
{

Customer Name:[f000
Address:[f002

][f001]
][f003]

City:[f004] State:[a0] Zip Code:[f005]
Telephone:[f006]

}

TABLES customer

ATTRIBUTES
f000 = customer.fname;
f001 = customer.lname;
f002 = customer.address1;
f003 = customer.address2;
f004 = customer.city;
a0 = customer.state, UPSHIFT;
f005 = customer.zipcode;
f006 = customer.phone, PICTURE = "###-###-#### XXXXX";

Values from a column of data type BYTE are never displayed in a form; the
words <BYTE value> are shown in the corresponding display field to
indicate that the user cannot see the BYTE data. The following excerpt from a
form specification file shows a TEXT field resume and a BYTE field photo. In
this example, the BYTE field is short because only the words <BYTE value>
are displayed. Similarly, you do not need to include more than one line in a
form for a TEXT field. (The PROGRAM attribute that can display TEXT or BYTE
values is described in “PROGRAM” on page 6-60.)

resume [f003]
photo [f004]

. . .
attributes
f003 = employee.resume;
f004 = employee.photo;

FORMONLY Fields

Screen Forms 6-29

FORMONLY Fields
FORMONLY fields are not associated with columns of any database table or
view. They can be used to enter or display the values of program variables. If
the DATABASE section specifies FORMONLY, this is the only kind of field
description that you can specify in the ATTRIBUTES section.

Usage
Like other 4GL identifiers, field name cannot begin with a number. It can have
up to 128 bytes, including letters, numbers, and underscore (_) symbols.

If you specify one or more FORMONLY fields, 4GL behaves as if they formed
a database table named formonly, with the field names as column names.
The following fields are examples of FORMONLY fields:

f021 = FORMONLY.manu_name;
f022 = FORMONLY.unit_price TYPE MONEY, COLOR = GREEN;
f023 = FORMONLY.unit_descr TYPE LIKE orders.unit_descr;
f024 = FORMONLY.order_placed

TYPE DATETIME YEAR TO HOUR NOT NULL, DEFAULT = CURRENT;

The Data Type Specification
The optional 4GL data type specification uses a restricted subset of the data
type declaration syntax that the DEFINE, ALTER TABLE, and CREATE TABLE
statements support. The data type cannot be declared here as a RECORD or as
an ARRAY even if 4GL uses the field to display values from a program record
or a program array; screen arrays are declared in another section of the form
specification file. (It also cannot be SERIAL because SERIAL is an SQL data
type, and only 4GL data types are allowed here.)

field-tag = FORMONLY. field name Field Description
p. 6-25

field name is an identifier that you assign to a FORMONLY field. This identifier
can also appear in 4GL statements that reference the field.

field-tag is the field tag, as declared in the SCREEN section.

Description Element

FORMONLY Fields

6-30 HCL Informix 4GL Reference Guide

If you do not specify any data type, FORM4GL treats the field as type CHAR
by default. Do not assign a length to CHAR, DECIMAL, and MONEY fields
because field length is determined by the display width in the SCREEN
section. For example, the demonstration application uses the following
FORMONLY field to store the running total price for the order as items are
entered:

f019 = FORMONLY.t_price;

You are required to specify a data type only if you also specify an INCLUDE
or DEFAULT attribute for this field. 4GL performs any necessary data type
conversion for the corresponding program variable during input or display.
4GL evaluates the LIKE clause at compile time, not at runtime. If the database
schema changes, you might need to recompile a program that uses the LIKE
clause to describe a FORMONLY field in a form specification file.

Like a field linked to a database column, a FORMONLY field cannot display a
BYTE value directly. The form displays the string <BYTE value> to indicate
that the user cannot see the BYTE value. Similarly, you need not allocate more
than one line on a form for a FORMONLY field of data type TEXT. You can
assign the PROGRAM attribute to a FORMONLY field to display TEXT or BYTE
values from 4GL variables.

The NOT NULL Keywords
The NOT NULL keywords specify that if you reference this screen field in an
INPUT statement, the user must enter a non-null value in the field. (These
keywords are more restrictive than the REQUIRED attribute, which permits
the user to enter a null value. For more information, see “REQUIRED” on
page 6-62.)

If the DATABASE section has the (deprecated) WITHOUT NULL INPUT clause,
the NOT NULL keywords instruct 4GL to use zero (for number or INTERVAL
data types) or blank spaces (for character data types) as the default value for
this field in INPUT statements. The default DATE value is 12/31/1899. The
default value for DATETIME fields is 1899-12-31 23:59:59.99999.

Multiple-Segment Fields

Screen Forms 6-31

Multiple-Segment Fields
If you need the form to support entry or display of long character strings, you
can specify multiple-segment fields that occupy several lines of the form. To
create a multiple-segment field, repeat the same field tag in different fields of
the layout in the SCREEN section, typically on successive lines.

WORDWRAP Fields
For a multiple-segment field to enter or display long character strings in
successive lines of the form, you must also specify the WORDWRAP attribute
for that field tag in the ATTRIBUTES section. During input and display, 4GL
treats all segments that have that field tag as segments of a single field.

The following example shows only the SCREEN and ATTRIBUTES sections of
a form specification file that specifies a multiple-segment field:

SCREEN SIZE 24 BY 80
{

title: [title]
author: [author]

synopsis: [synopsis]
[synopsis]
[synopsis]
[synopsis]
[synopsis]

}
...

ATTRIBUTES
title = booktab.title;
author = booktab.author;
synopsis = booktab.synopsis, WORDWRAP COMPRESS;

Here the screen field whose tag is synopsis appears in five physical segments
in the screen layout and has the WORDWRAP attribute. Its value is composed
of the physical segments, taken in top-to-bottom, left-to-right order. The field
should ordinarily be as long or longer than the program variable or database
column that it displays, so it can display all of the text. Users of your 4GL
application program might expect all segments to be the same size and to be
laid out in vertical alignment, as in the example, but that is not required. Your
form is likely to be easier to use, however, if multiple-segment fields are
compact and symmetrical.

Field Attributes

6-32 HCL Informix 4GL Reference Guide

In the description of the field in the last line of the ATTRIBUTES section of the
previous example, the keyword WORDWRAP enables a multiple-line editor
when the form is open and the cursor enters the field. If you omit it, words
cannot flow from segment to segment of the field, and users must move the
cursor from field to field with arrow keys or RETURN to edit values in the
form. (For more information about the multiple-line editor and about the
COMPRESS keyword, see “WORDWRAP” on page 6-67.)

Subscripted Fields
FORM4GL can create a default form specification that references a database
column of a character data type whose declared length in bytes is greater
than (characters - 22), where characters is the width of the form. For such
columns, FORM4GL generates two or more fields in the default specification
(each with a different field tag but with the same field name) whose total
length is the declared length of the corresponding database column.

In the ATTRIBUTES section of the default specification, the name of each such
field is immediately followed (in brackets) by an ordered pair of comma-
separated literal integers that identify the first and last of the bytes in the
database column that the field displays. For example:

c3 = engineer.code[1,56];
c4 = engineer.code[57,112];

These are called subscripted fields, and they are generated for backward
compatibility with the PERFORM forms compiler. Statements of 4GL that
enter or display data in screen forms (CONSTRUCT, INPUT, and INPUT
ARRAY) are difficult to use with subscripted 4GL fields beyond the first field.

Use a text editor to change such fields to segmented WORDWRAP fields.

Field Attributes
FORM4GL recognizes the following field attributes.

AUTONEXT DISPLAY LIKE NOENTRY UPSHIFT
CENTURY DOWNSHIFT PICTURE VALIDATE LIKE
COLOR FORMAT PROGRAM VERIFY
COMMENTS
DEFAULT

INCLUDE
INVISIBLE

REQUIRED
REVERSE

WORDWRAP

Field Attribute Syntax

Screen Forms 6-33

The following table summarizes the effects of these field attributes, which are
individually described in the sections that follow.

Attribute Effect

AUTONEXT Causes the cursor to advance automatically to the next field
CENTURY Specifies expansion of 2-digit years in DATE and DATETIME fields

COLOR Specifies the color or intensity of values displayed in a field
COMMENTS Specifies a message to display on the Comment line

DEFAULT Assigns a default value to a field during data entry
DISPLAY

LIKE
Assigns attributes from syscolatt table that the upscol utility
creates, associating attributes with specific database columns

DOWNSHIFT Converts to lowercase any uppercase character data
FORMAT Formats DECIMAL, SMALLFLOAT, FLOAT, or DATE output
INCLUDE Lists a set of acceptable values during data entry

INVISIBLE Does not echo characters on the screen during data entry
NOENTRY Prevents the user from entering data in the field
PICTURE Imposes a data-entry format on CHAR or VARCHAR fields
PROGRAM Invokes an external program to display TEXT or BYTE values
REQUIRED Requires the user to supply some value during data entry

REVERSE Causes values in the field to be displayed in reverse video
UPSHIFT Converts to uppercase any lowercase character data
VALIDATE

LIKE
Validates data entry with the syscolval table that the upscol utility
creates, associating default values with specific database columns

VERIFY Requires that data be entered twice when the database is modified
WORDWRAP Invokes a multiple-line editor in multiple-segment fields

Field Attribute Syntax
Syntax for assigning field attributes is described in the sections that follow.
As the syntax diagram for the ATTRIBUTES section indicated on page 6-25,
fields that have more than one attribute must separate successive attribute
specifications with a comma (,), and must terminate the list of attributes with
a semicolon (;), even if the attribute list is empty.

AUTONEXT

6-34 HCL Informix 4GL Reference Guide

AUTONEXT
The AUTONEXT attribute causes the cursor to advance automatically during
input to the next field when the current field is full.

Usage
You specify the order of fields in each INPUT or INPUT ARRAY statement. If
the most recent OPTIONS statement specifies INPUT WRAP, the next field after
the last field is the first field.

AUTONEXT is particularly useful with character fields in which the input
data is of a standard length, such as numeric postal codes or the abbrevia-
tions in the state table. It is also useful if a character field has a length of 1
because only one keystroke is required to enter data and move to the next
field.

If data values entered in the field do not meet requirements of other field
attributes like INCLUDE or PICTURE, the cursor does not automatically move
to the next field but remains in the current field, with an error message.

The demonstration application uses the customer form to enter all the names
and addresses of the customers. The following excerpt from the ATTRIBUTES
section of the customer form uses the AUTONEXT attribute:

a0 = customer.state, DEFAULT = "CA", AUTONEXT;
f007 = customer.zipcode, AUTONEXT;
f008 = customer.phone;

When two characters are entered into the customer.state field (thus filling the
field), the cursor moves automatically to the beginning of the next screen
field (the customer.zipcode field). When five characters are entered into the
customer.zipcode field (filling this field), the cursor moves automatically to
the beginning of the next field (the customer.phone field).

AUTONEXT

CENTURY

Screen Forms 6-35

CENTURY
The CENTURY attribute specifies how to expand abbreviated one- and two-
digit year specifications in a DATE and DATETIME field. Expansion is based on
this setting (and on the year value from the system clock at runtime).

In most versions of 4GL earlier than 7.20, if the user enters only the two
trailing digits of a year for literal DATE or DATETIME values, these digits are
automatically prefixed with the digits 19. For example, 12/31/02 is always
expanded to 12/31/1902 regardless of when the program is executed.

CENTURY can specify any of four algorithms to expand abbreviated years
into four-digit year values that end with the same digits (or digit) that the
user entered. CENTURY supports the same settings as the DBCENTURY
environment variable but with a scope that is restricted to a single field.

Symbol Algorithm for Expanding Abbreviated Years

C or c Use the past, future, or current year closest to the current date.

F or f Use the nearest year in the future to expand the entered value.

P or p Use the nearest year in the past to expand the entered value.

R or r Prefix the entered value with the first two digits of the current year.

Here past, closest, current, and future are all relative to the system clock.

Unlike DBCENTURY, which sets a global rule for expanding abbreviated year
values in DATE and DATETIME fields that do not have the CENTURY attribute,
CENTURY is not case sensitive; you can substitute lowercase letters (r, c, f,
p) for these uppercase letters. If you specify anything else, an error (-2018) is
issued. If the CENTURY and DBCENTURY settings are different, CENTURY
takes precedence.

CENTURY = "R"

"C"
"F"
"P"

CENTURY

6-36 HCL Informix 4GL Reference Guide

Three-digit years are not expanded. A single-digit year is first expanded to
two digits by prefixing it with a zero; CENTURY then expands this value to
four digits, according to the setting that you specified. Years between 1 and
99 AD (or CE) require leading zeros (to avoid expansion).

Just as with DBCENTURY, expansion of abbreviated years is sensitive to time
of execution and to the accuracy of the system clock-calendar.

For examples of the effects of the different CENTURY settings on abbreviated
year values, see “DBCENTURY” on page D-15. (Those examples are for
DBCENTURY, but except for case-sensitivity, DBCENTURY and CENTURY
have the same semantics.)

Important: The CENTURY attribute has no effect on DATETIME fields that do not
include YEAR as the first time unit nor on fields that are not DATE or DATETIME
fields. If an abbreviated year value is entered in a character field or a number field, for
example, neither CENTURY nor DBCENTURY has any effect.

The ATTRIBUTES clause that can follow the FOR clause of the PROMPT
statement can also specify CENTURY as an attribute, using this syntax.

PROMPT

||

 ,
variable

"string "

ATTRIBUTE (CENTURY

FOR

ATTRIBUTE
Clause
p. 3-96

= "R")

"C"
"F"
"P"

CHAR

response

HELP number

ON KEY END PROMPT
Clause
p. 4-325

 Here response must be a DATE or DATETIME variable for CENTURY to be
useful. This diagram is simplified, in that any FOR…ATTRIBUTE clause of
PROMPT that specifies CENTURY can also specify other display attributes, as
listed in “ATTRIBUTE Clause” on page 3-96. The setting is not case sensitive
but must be enclosed within quotation marks. See “PROMPT” on page 4-325
for descriptions of syntax terms that appear in this diagram.

COLOR

Screen Forms 6-37

COLOR
The COLOR attribute displays field text in a color or with other video
attributes, either unconditionally or only if a Boolean expression is TRUE.

Important: If you are using terminfo, the only color or intensities available are
REVERSE and UNDERLINE.

Usage
If you do not use the WHERE keyword to specify a 4GL Boolean expression,
the intensity or color in your display mode list applies to the field. This
example specifies unconditionally that field text appears in red:

f000 = customer.customer_num, COLOR = RED LEFT;

Specifying Logical Conditions with the WHERE Option
You can also use the keywords, symbols, and operators that are allowed in
4GL Boolean expressions, including LIKE, MATCHES, TODAY, and CURRENT,
in a WHERE clause to specify conditional attributes. If the Boolean expression
evaluates as FALSE or NULL, the field is displayed with default character-
istics, rather than with those specified by display mode. (For more information,
see “Default Attributes” on page 6-80.)

COLOR = attribute

WHERE Boolean
Expression

for 4GL Forms
p. 6-38

attribute is one of the keywords to specify a color or an intensity. You can specify
zero or one color keyword and zero or more intensity keywords. The
color keywords include BLACK, BLUE, CYAN, GREEN, MAGENTA,
RED, WHITE, and YELLOW. The intensity keywords include
REVERSE, LEFT, BLINK, and UNDERLINE.

Element Description

COLOR

6-38 HCL Informix 4GL Reference Guide

Boolean Expressions in 4GL Form Specification Files
The syntax of 4GL Boolean expressions in the WHERE clause of a COLOR
attribute specification follows.

Boolean Expression

for 4GL Forms

AND

OR 4GL Expression
(Subset)
p. 3-49

NOT = 4GL Expression
< (Subset)

field-tag > p. 3-49
<= field-tag
>=
< > TRUE
!= FALSE

IS NULL

NOT field-tag field-tag

NOT BETWEEN 4GL Expression AND 4GL
(Subset) Expression
p. 3-49 (Subset)

p. 3-49
 ,

IN (4GL Expression) (Subset)
p. 3-49

field-tag

Character MATCHES " character "
Expression

p. 3-69
LIKE Boolean ESCAPE "char"
(Expression for) 4GL Forms

Element Description
char is a single character, enclosed between a pair of single (') or double (")

quotation marks.
character is one or more literal or special characters, enclosed between two single

or double quotation marks.
field-tag is the field tag (as described in “Field Tags” on page 6-18) of the current

field.

COLOR

Screen Forms 6-39

In this diagram, terms for other 4GL expressions are restricted subsets. Except
for the constants TRUE and FALSE, you cannot reference the name of a
program variable in the WHERE clause of a COLOR attribute specification.
You can, however, include a field-tag or a literal value wherever the name of a
variable can appear in a 4GL expression that is a component of the 4GL
Boolean expression, as described in “Expressions of 4GL” on page 3-49.

If any component of a 4GL Boolean expression is null, the value of the entire
4GL Boolean expression is FALSE (rather than null), unless the IS NULL
operator is also included in the expression. As in other Boolean expressions
of 4GL, applying the NOT operator to a null value does not change its FALSE
evaluation. The conditional attribute is displayed only if the overall
condition is true. In the following example, the value of the expression is
FALSE if a NULL value appears in the display field whose field tag is f004:

3.1415265 * f004 < 25000

If you include a field-tag value in a 4GL Boolean expression when you specify
a conditional COLOR attribute, 4GL replaces field-tag at runtime with the
current value in the screen field and evaluates the expression.

If field-tag references a field that is linked to a database column of data type
TEXT or BYTE or to a FORMONLY field of either of those two data types, only
the IS NOT NULL or IS NULL keywords can include that field tag in an
expression. The specified color or intensity is applied to the <BYTE value>
message, not to the BYTE data value because only the PROGRAM attribute can
display a BYTE value. Values of the TEXT data type are displayed in the field,
beginning with the first printable data character. If the TEXT value is too large
to fit in the field, characters beyond what the field can hold are not displayed.

Specifying Ranges of Values and Set Membership
Conditional COLOR attributes can specify SQL Boolean operators that are not
valid in ordinary 4GL Boolean expressions. You can use the BETWEEN…AND
operator to specify a range of number, time, or character values. Here the first
expression cannot be greater than the second (for number expressions), later
than the second (for time expressions), or later in the code-set order than the
second (for character expressions). Appendix A, “The ASCII Character Set,”
lists the numeric values of ASCII characters, which is the collating sequence
for U.S. English locales.

COLOR

6-40 HCL Informix 4GL Reference Guide

The WHERE clause of a COLOR field description can also use the IN operator
to specify a comma-separated list (enclosed between parentheses) of values
with which to compare the field tag or expression.

“Set Membership and Range Tests” on page 5-40 describes the syntax of the
BETWEEN…AND and IN Boolean operators in conditional COLOR specifica-
tions for 4GL forms. See also the Informix Guide to SQL: Reference for the
complete syntax of Boolean expressions in SQL statements.

Data Type Compatibility
You might get unexpected results if you use relational operators or the
BETWEEN, AND, or IN operators with expressions of dissimilar data types. In
general, you can compare numbers with numbers, character strings with
character strings, and time values with time values.

If a time expression component of a 4GL Boolean expression is an INTERVAL
data type, any other time expression that is compared to it by a relational
operator must also be an INTERVAL value. You cannot compare a span of time
(an INTERVAL value) with a point in time (a DATE or DATETIME value).

Data Type Conversion in 4GL Boolean Expressions
If you specify a number, character, or time expression in a context where a
4GL Boolean expression is expected, 4GL applies the following rules after
evaluating the number, character, or time expression:

■ If the value is a non-zero real number (or a character string repre-
senting a non-zero number) or a non-zero INTERVAL, or any DATE or
DATETIME value, the 4GL Boolean value is TRUE.

■ If the value is null, and the IS NULL keywords are also included in the
expression, the value of the 4GL Boolean expression is TRUE.

■ Otherwise, the 4GL Boolean expression is FALSE.

COLOR

Screen Forms 6-41

The Display Modes
The display and intensity keywords of the COLOR attribute have the same
effects on a field as the same keywords of the upscol utility (described in
“Default Attributes” on page 6-80) or ATTRIBUTES clause (described in
“ATTRIBUTE Clause” on page 3-96).

The following table shows the effects of the color attribute keywords on a
monochrome terminal.

Attribute Display Attribute Display

WHITE Normal CYAN Dim

YELLOW Bold GREEN Dim

MAGENTA Bold BLUE Dim

RED Bold BLACK Dim

The following table shows the effects of the intensity attribute keywords on
a color terminal.

Attribute Display

NORMAL White

BOLD Red

DIM Blue

The LEFT attribute produces a left-aligned display in a screen field of any
number data type. It has no effect on fields of other data types. (Without the
COLOR = LEFT specification, number values are right-aligned by default.)

The next lines specify display attributes if Boolean expressions are TRUE:

f001 = FORMONLY.late, COLOR = RED BLINK WHERE f001 < TODAY;
f002 = manufact.manu_code, COLOR = RED WHERE f002 = "HRO";
f003 = customer.lname, COLOR = RED WHERE f003 LIKE "Quinn";
f004 = mytab.col6, COLOR = GREEN WHERE f004 < 10000;
f005 = mytab.col9, COLOR = BLUE REVERSE WHERE f005 IS NULL,

COLOR = YELLOW WHERE f005 BETWEEN 5000 AND 10000,
COLOR = GREEN BLINK WHERE f005 > 10000;

COLOR

6-42 HCL Informix 4GL Reference Guide

The following expression is TRUE if the field f022 does not include the under-
score character:

NOT f022 LIKE "%z_%" ESCAPE "z"

Related Attributes
DISPLAY LIKE, INVISIBLE, REVERSE

COMMENTS

Screen Forms 6-43

COMMENTS
The COMMENTS attribute displays a message on the Comment line at the
bottom of the window. The message is displayed when the cursor moves to
the specified field and is erased when the cursor moves to another field.

Usage
The message string must appear between quotation marks (") on a single line
of the form specification file.

In the following example, the field description specifies a message for the
Comment line to display. The message appears when the screen cursor enters
the field that is linked to the fname column of the customer table. In the
stores7 database, this column contains the first name of a customer:

c2 = customer.fname, comments =
"Please enter initial if available.";

The most common application of the COMMENTS attribute is to give infor-
mation or instructions to the user. This application is particularly appropriate
when the field accepts only a limited set of values. (For details of how to
specify a range or a list of acceptable values for data entry, see “INCLUDE”
on page 6-53.)

4GL programs can use the same screen form to support several distinct tasks
(for example, data input and query by example). Do not specify the
COMMENTS attribute in a field description unless message is appropriate to all
of the tasks in which message can appear.

If the same field requires a different message for different tasks, specify each
message using MESSAGE or DISPLAY statements rather than in the form
specification file.

 COMMENTS = "message "

message is a character string enclosed in quotation marks.

Element Description

COMMENTS

6-44 HCL Informix 4GL Reference Guide

The Position of the Comment Line
The default position of the Comment line in the 4GL screen is line 23. You can
reset this position with the OPTIONS statement.

The default position of the Comment line in a 4GL window is LAST. You can
reset this position in the OPTIONS statement to show the new position in all
4GL windows. Alternatively, you can reset it in the ATTRIBUTE clause of the
appropriate OPEN WINDOW statement if you want the new position in a
specific 4GL window. Chapter 4 describes the OPTIONS and OPEN WINDOW
statements.

If the OPEN WINDOW statement specifies COMMENT LINE OFF, any output to
the Comment line of the specified 4GL window is hidden even if the window
displays a form that includes fields that include the COMMENTS attribute.
(See also “Hiding the Comment Line” on page 4-290.)

Related Attribute
INCLUDE

DEFAULT

Screen Forms 6-45

DEFAULT
The DEFAULT attribute assigns a default value to a field during data entry.

Usage
Default values have no effect when you execute the INPUT statement by
using the WITHOUT DEFAULTS option. In this case, 4GL displays the values in
the program variables list on the screen. The situation is the same for the
INPUT ARRAY statement except that 4GL displays the default values when the
user inserts a new row.

If the field is FORMONLY, you must also specify a data type when you assign
the DEFAULT attribute to a field. (See “FORMONLY Fields” on page 6-29.)

If both the DEFAULT attribute and the REQUIRED attribute are assigned to the
same field, the REQUIRED attribute is ignored.

If you do not use the WITHOUT NULL INPUT option in the DATABASE section,
all fields default to null values unless you use the DEFAULT attribute. If you
use the WITHOUT NULL INPUT option in the DATABASE section and you do
not use the DEFAULT attribute, character fields default to blanks, number and
INTERVAL fields to 0, and MONEY fields to $0.00. The default DATE value is
12/31/1899. The default DATETIME value is 1899-12-31 23:59:59.99999.

You cannot assign the DEFAULT attribute to fields of data type TEXT or BYTE.

 DEFAULT = value

is a default value for the field. This restricted expression cannot reference
any variable or programmer-defined function.

value

Element Description

DEFAULT

6-46 HCL Informix 4GL Reference Guide

Literal Values
The value can be a quoted string, a literal number, a literal DATE value, a
literal DATETIME value, or a literal INTERVAL value. These values are
described in Chapter 3. Or the value can be a built-in function or operator
that returns a single value of a data type compatible with that of the field. For
details, see “Syntax of Built-In Functions and Operators” on page 5-13.

If you include in the value list a character string that contains a blank space, a
comma, or any special characters, or a string that does not begin with a letter,
you must enclose the entire string in quotation marks.

(If you omit the quotation marks, any uppercase letters are down-shifted.)

For a DATE field, you must enclose any literal value in quotation marks (").
For a DATETIME or INTERVAL field, you can enclose value in quotation marks,
or you can enter it as an unquoted literal, as in the following examples:

DATETIME (2012-12) YEAR TO MONTH
INTERVAL (10:12) HOUR TO MINUTE
- INTERVAL (28735) DAY TO DAY

For more information, see “DATETIME Qualifier” on page 3-76 and
“INTERVAL Literal” on page 3-82.

Built-In 4GL Operators and Functions as Values
Besides these literal values, you can also specify a built-in 4GL function or
operator that returns a single value of the appropriate data type. Arguments
or operands must be a literal value, a built-in 4GL function or operator that
returns a single value, or the named constants TRUE or FALSE. For example,
a default value of data type INTERVAL can be specified in the format:

integer UNITS time-unit

Here integer can be a positive or negative literal integer (as described in
“Literal Integers” on page 3-65) or an expression in parentheses that
evaluates to an integer, and time-unit is a keyword from an INTERVAL
qualifier, such as MONTH, DAY, HOUR. (This qualifier must be consistent with
the explicit or implied data type declaration of the field; do not, for example,
specify YEAR or MONTH as the time-unit value for a DAY TO FRACTION field.)

DEFAULT

Screen Forms 6-47

Use the TODAY operator as value to assign the current date as the default
value of a DATE field. Use the CURRENT operator as value to assign the
current date and time as the default for a DATETIME field. (4GL does not
assign these values automatically as defaults, so you must specify them
explicitly.) These expressions are evaluated at runtime, not at compile time.

The following field descriptions specify DEFAULT values:

c8 = state, UPSHIFT, AUTONEXT,
DEFAULT = "CA";

o12 = order_date, DEFAULT = TODAY;
f019 = FORMONLY.timestamp TYPE DATETIME YEAR TO DAY

COLOR = RED, DEFAULT = CURRENT;

Related Attributes
INCLUDE, REQUIRED, VALIDATE LIKE

DISPLAY LIKE

6-48 HCL Informix 4GL Reference Guide

DISPLAY LIKE
The DISPLAY LIKE attribute takes attributes that the upscol utility assigned
to a specified column in the syscolatt table and applies them to a field.

Usage
Specifying this attribute is equivalent to listing all the attributes that are
assigned to table.column in the syscolatt table. (“Default Attributes” on
page 6-80 describes the syscolatt table. See also the description of the upscol
utility in Appendix B.) You do not need to specify the DISPLAY LIKE attribute
if the field is linked to table.column in the field name specification.

The following example instructs 4GL to apply the default display attributes
of the items.total_price column to a FORMONLY field:

s12 = FORMONLY.total, DISPLAY LIKE items.total_price;

4GL evaluates the LIKE clause at compile time, not at runtime. If the database
schema changes, you might need to recompile a program that uses the LIKE
clause. Even if all of the fields in the form are FORMONLY, this attribute
requires FORM4GL to access the database that contains table.

Related Attribute
VALIDATE LIKE

DISPLAY LIKE column

table .

column is the name of a column in table or (if you omit table) the unique identifier
of a column in one of the tables that you declared in the TABLES section.
The column cannot be of data type BYTE.

is the unqualified name or alias of a database table, synonym, or view, as
declared in the TABLES section. (This value is not required unless several
columns in different tables have the same name or if the table is an
external table or an external, distributed table.)

table

Element Description

DOWNSHIFT

Screen Forms 6-49

DOWNSHIFT
Assign the DOWNSHIFT attribute to a character field when you want 4GL to
convert uppercase letters entered by the user to lowercase letters, both on the
screen and in the corresponding program variable.

Usage
Because uppercase and lowercase letters have different values, storing
character strings in one or the other format can simplify sorting and querying
a database.

By specifying the DOWNSHIFT attribute, you instruct 4GL to convert
character input data to lowercase letters in the program variable.

The maximum length of a character value to which you can apply the
DOWNSHIFT attribute is 511 bytes.

The results of conversion between uppercase and lowercase letters are based
on the locale files, which specify the relationship between corresponding
pairs of uppercase and lowercase letters. If the locale files do not provide this
information, no case conversion occurs. ♦

Related Attribute
UPSHIFT

 DOWN SHIFT

GLS

FORMAT

6-50 HCL Informix 4GL Reference Guide

FORMAT
You can use the FORMAT attribute with a DECIMAL, SMALLFLOAT, FLOAT, or
DATE field to control the format of output displays.

Usage
This attribute can format data that the application displays in the field. (Use
the PICTURE attribute to format data entered in the field by the user.) 4GL
right-aligns the data in the field. If format-string is smaller than the field
width, FORM4GL issues a compile-time warning, but the form is usable.

Formatting Number Values
For DECIMAL, SMALLFLOAT, and FLOAT data types, format-string consists of
pound signs (#) that represent digits and a decimal point. For example,
"###.##" produces at least three places to the left of the decimal point and
exactly two to the right.

If the actual number displayed requires fewer characters than format-string
specifies, 4GL right-aligns it and pads the left with blanks.

If necessary to satisfy the format-string specification, 4GL rounds number
values before it displays them.

The NUMERIC setting in the locale files affects how format-string is inter-
preted for numeric data. In the format string, the period symbol (.) is not a
literal character but a placeholder for the decimal separator specified by
environment variables or by locale file settings. Likewise, the comma (,) is a
placeholder for the thousands separator specified by environment variables.
Thus, the format string #,###.## formats the value 1234.56 as 1,234.56 in a
U.S. English locale but as 1.234,56 in a German locale. ♦

FORMAT = "format-string"

format-string is a string of characters that specifies a data display format. You
must enclose format-string within quotation marks (").

Description Element

GLS

FORMAT

Screen Forms 6-51

Formatting DATE Values
For DATE data types, 4GL recognizes these symbols as special in format-string.

Symbol Effect

mm Produces the two-digit representation of the month; for example,
Jan = 01, Feb = 02

mmm Produces a three-letter English-language abbreviation of the month;
for example, Jan, Feb

dd Produces the two-digit representation of the day of the month

ddd Produces a three-letter English language abbreviation of the day of
the week; for example, Mon, Tue

yy Produces the two-digit representation of the year, discarding the leading
digits; for example, the year 2003 would appear as 03

yyyy Produces a four-digit representation of the year

For DATE fields, FORM4GL interprets any other characters as literals and
displays them wherever you place them within format-string.

These format-string examples and their corresponding display formats for
DATE fields display the twenty-third day of September 1999.

Input Result

no FORMAT attribute 09/23/1999

FORMAT = "mm/dd/yy" 09/23/99

FORMAT = "mmm dd, yyyy" Sep 23, 1999

FORMAT = "yymmdd" 990923

FORMAT = "dd-mm-yy" 23-09-99

FORMAT = "(ddd.) mmm. dd, yyyy" (Thu.) Sep. 23, 1999

FORMAT

6-52 HCL Informix 4GL Reference Guide

The mmm and ddd specifiers in a format string can display language-specific
month name and day name abbreviations. This operation requires installing
message files in a subdirectory of $INFORMIXDIR/msg and subsequent
reference to that subdirectory by way of the environment variable DBLANG.
For example, in a Spanish locale, the ddd specifier translates the day
Saturday into the day name abbreviation Sab, which stands for Sabado (the
Spanish word for Saturday). For more information on GLS, see Appendix E,
“Developing Applications with Global Language Support.” ♦

Related Attribute
PICTURE

GLS

INCLUDE

Screen Forms 6-53

INCLUDE
The INCLUDE attribute specifies acceptable values for a field and causes 4GL
to check at runtime before accepting an input value.

Usage
Each value specification is a restricted expression that cannot include the
name of any 4GL variable or programmer-defined function. It can include
literal values (as described in“Expressions of 4GL” on page 3-49), built-in
functions, operators (as described in “Syntax of Built-In Functions and
Operators” on page 5-13), and the constants TRUE, FALSE, and NOTFOUND.
The same rules for DEFAULT attribute values also apply to INCLUDE values.
TEXT and BYTE fields cannot have the INCLUDE attribute.

If a field has the INCLUDE attribute, the user must enter an acceptable value
(from the value list) before 4GL accepts a new row. If the value list does not
include the default value, the INCLUDE attribute behaves like the REQUIRED
attribute, and an acceptable entry is required. Include the NULL keyword in
the value list to specify that it is acceptable for the user to press RETURN
without entering any value.

f006 = survey.item06, INCLUDE = (NULL, "YES", "NO");

In this example, the NULL keyword allows the user to enter nothing. You
cannot accomplish the same thing by substituting a string of blanks for the
NULL keyword in the INCLUDE specification because for most data types a
null value is different from ASCII 32, the blank character.

 ,

INCLUDE =(value)

TO value

NULL

is an element in a comma-separated list (within parentheses) of values
(value1, value2, …), a range of values (value1 TO value2), or any combi-
nation of individual values and ranges.

value

Element Description

INCLUDE

6-54 HCL Informix 4GL Reference Guide

Including a COMMENTS attribute for the same field to describe acceptable
values makes data entry easier because you can display a message to advise
the user of whatever restrictions you have imposed on data entry:

i18 = items.quantity, INCLUDE = (1 TO 50),
COMMENTS = "Acceptable values are 1 through 50";

If you include in the value list a character string that contains a blank space, a
comma, or any special characters or a string that does not begin with a letter,
you must enclose the entire string in quotation marks ("). (If you omit the
quotation marks, any uppercase letters are down-shifted.)

Ranges of Values
You can use the TO keyword to specify an inclusive range of acceptable
values. For example, ranges in the following field description include the
postal abbreviations for the names of the contiguous states of the United
States:

i20 = customer.state,
INCLUDE = (NULL, "AL" TO "GA", "IA" TO "WY"),
COMMENTS = "No Alaska (AK) or Hawaii (HI) addresses here.";

When you specify a range of values, the lower value must appear first. The
meaning of lower depends on the data type of the field:

■ For number or INTERVAL fields, it is the larger (or only) negative
value, or (if neither value is negative) the value closer to zero.

■ For other time fields, it is the earlier DATE or DATETIME value.
■ For character fields, the lower value is the string that starts with

a character closer to the beginning of the collating sequence. (See
Appendix A for a listing of the ASCII collating sequence, which U.S.
English locales use.)
For nondefault locales, the code-set order is used as the collating
sequence. ♦

In a number field, for example, the range "5 TO 10" is valid. In a character
field, however, it produces a compile-time error. (In the default locale, for
example, the character string "10" is less than "5" because 1 comes before 5
in the ASCII collating sequence.)

GLS

INCLUDE

Screen Forms 6-55

FORMONLY Fields
You must specify a data type when you assign the INCLUDE attribute to a
FORMONLY field (as described in “FORMONLY Fields” on page 6-29). The
TYPE clause is required in the following example:

f006 = FORMONLY.item07 TYPE CHAR(*),
INCLUDE = (NULL, "PERHAPS", "MAYBE");

Related Attributes
COMMENTS, DEFAULT, REQUIRED

INVISIBLE

6-56 HCL Informix 4GL Reference Guide

INVISIBLE
The INVISIBLE attribute prevents user-entered data from being echoed on the
screen during a CONSTRUCT, INPUT, INPUT ARRAY, or PROMPT statement.

Usage
Characters that the user enters in a field with this attribute are not displayed
during data entry, but the cursor moves through the field as the user types.
No other aspects of data entry are affected by the INVISIBLE attribute.

The following example illustrates the use of the INVISIBLE attribute:

i001 = FORMONLY.secret_password TYPE LIKE state.sname,
INVISIBLE,
COMMENTS = "Enter your secret password.";

If you specify INVISIBLE and any other display attribute for a field, 4GL
ignores the INVISIBLE attribute.

By default, the ERROR statement displays messages in REVERSE. If you
specify the INVISIBLE attribute, ERROR displays its message in NORMAL.

The INVISIBLE attribute has no effect on editing BYTE or TEXT fields.

This attribute does not prevent a DISPLAY, DISPLAY ARRAY, DISPLAY FORM,
MESSAGE, or OPEN WINDOW statement from displaying data in the field.

Specify the INVISIBLE attribute, rather than COLOR = BLACK, if you do not
want the field to display what the user types during data entry. (The BLACK
color attribute displays black characters on a color terminal and displays as
DIM on a monochrome terminal.)

Related Attribute
COLOR

INVISIBLE

NOENTRY

Screen Forms 6-57

NOENTRY
The NOENTRY attribute prevents data entry in the field during an INPUT or
INPUT ARRAY statement.

Usage
The following example illustrates the use of the NOENTRY attribute:

i13 = stock.stock_num, NOENTRY;

When the user enters data in the stock table, the stock_num column is not
available because this SERIAL column gets its value from the database server
during the INSERT statement.

The NOENTRY attribute does not prevent data entry into a field during a
CONSTRUCT statement (for a query by example).

Related Attribute
INVISIBLE

NOENTRY

PICTURE

6-58 HCL Informix 4GL Reference Guide

PICTURE
The PICTURE attribute specifies a character pattern for data entry in a text
field and prevents entry of values that conflict with the specified pattern.

Usage
A format-string value can include literals and these three special symbols.

Symbol Meaning

A Any letter

Any digit

X Any character

4GL treats any other character in format-string as a literal. The cursor skips
over any literals during data entry. 4GL displays the literal characters in the
display field and leaves blanks elsewhere.

For example, note the following field specification:

c10 = customer.phone,
picture = "###-###-####x#####";

It displays these symbols in the customer.phone field before data entry:

[- - x]

If the user attempts to enter a character that conflicts with format-string, the
terminal beeps, and 4GL does not echo the character on the screen.

PICTURE = "format-string "

format-string is a string of characters to specify a character pattern for data entry.
This string must be enclosed within quotation marks (").

Description Element

PICTURE

Screen Forms 6-59

The format-string value must fill the entire width of the display field. The
PICTURE attribute, however, does not require data entry into the entire field.
It only requires that whatever characters are entered conform to format-string.

When PICTURE specifies input formats for DATETIME or INTERVAL fields,
FORM4GL does not check the syntax of format-string, but your form will work
if the syntax is correct. Any error in format-string, however, such as an
incorrect field separator, produces a runtime error.

As another example, suppose you specify a field for part numbers like this:

f1 = part_no, picture = "AA#####-AA(X)";

4GL accepts any of the following inputs:

LF49367-BB(*)
TG38524-AS(3)
YG67489-ZZ(D)

The user does not enter the hyphen or the parentheses, but 4GL includes them
in the string that it passes to the program variable.

The PICTURE attribute is not affected by GLS environment variables because
it only formats character information. ♦

Editing Keys During Data Entry
4GL supports pressing CONTROL-X in fields that specify the PICTURE attribute.
Pressing CONTROL-X deletes the current character.

Related Attribute
FORMAT

GLS

PROGRAM

6-60 HCL Informix 4GL Reference Guide

PROGRAM
The PROGRAM attribute can specify an external application program to work
with screen fields of data type TEXT or BYTE.

Usage
You can assign the PROGRAM attribute to a BYTE or TEXT field to call an
external program to work with the BYTE or TEXT values. Users can invoke the
external program by pressing the exclamation point (!) key while the screen
cursor is in a BYTE or TEXT field. The external program then takes over
control of the screen. When the user exits from the external program, the form
is redisplayed with any display attributes besides PROGRAM in effect. For
example, this field description designates vi as the external editor of a
multiple-segment TEXT field that also has the WORDWRAP attribute:

f010 = personnel.resume, WORDWRAP, PROGRAM = "vi";

Here the WORDWRAP attribute (described in “WORDWRAP” on page 6-67)
specifies that as much of the TEXT value as possible be displayed in
successive segments of the multiple-segment field when the form displays a
value in the field, but the WORDWRAP editor cannot edit a TEXT value.

If the cursor enters the field whose tag is f010 in the same example and
presses the ! key, the form is cleared from the screen. Now the user can run
the vi utility to view or edit the TEXT value. When the editing session ends,
the form is restored on the screen, and control returns to the 4GL application.

When a display field is of data type TEXT, but the screen cursor is not in that
field, the 4GL application can display as many of the leading characters of a
TEXT data value as can fit in the field. (For BYTE fields, 4GL displays <BYTE
value> in the field.) This behavior is independent of the PROGRAM attribute.

PROGRAM = "command "

command is a command string (or the name of a shell script) that invokes an
editing program, enclosed within quotation marks.

Description Element

PROGRAM

Screen Forms 6-61

Default Editors
If a user moves the cursor to a TEXT field and presses the exclamation point
key in the first character position of the field, 4GL attempts to invoke an
external program. The program invoked for a TEXT field is chosen from
among the following programs, in descending order of priority:

■ The program (if any) identified by the PROGRAM ="command"
attribute specification for the field

■ The program (if any) named in the DBEDIT environment variable
■ The default editor, which depends on the host operating system

Specify the editor to use with the DBEDIT environment variable; this variable
should contain the name of a UNIX application such as vi or emacs. When the
user exits from the editor, control returns to the 4GL screen.

4GL applications that display or modify a value in a BYTE field must use the
PROGRAM attribute explicitly to assign an editor. For BYTE fields, the default
editor is not called, and the DBEDIT variable is not examined.

The Command String
Before invoking the program, your application copies the BYTE or TEXT field
to a temporary disk file. It then issues a system command composed of the
command string that you specify after the PROGRAM keyword, followed by
the name of the temporary file.

The command string can be longer than a single word. You can add additional
command parameters. The command string can also be the name of a shell
script, so that you can initiate a whole series of actions.

Your 4GL program needs to execute an INSERT or UPDATE statement by using
the appropriate program variables after input is terminated. For example,
you would use a statement similar to those that follow:

INSERT INTO mytable (textcol, bytecol)
VALUES (p_texdata, p_bytdata)

UPDATE mytable SET (textcol, bytecol) = (p_texdata, p_bytdata)

REQUIRED

6-62 HCL Informix 4GL Reference Guide

REQUIRED
The REQUIRED attribute forces the user to enter data in the field during an
INPUT or INPUT ARRAY statement.

Usage
The REQUIRED keyword is effective only when the field name appears in the
list of screen fields of an INPUT or INPUT ARRAY statement. For example,
suppose the ATTRIBUTES section includes the following field description:

o20 = orders.po_num, REQUIRED;

Because of the REQUIRED specification, 4GL requires the entry of a purchase
order value when the form is used to collect information for a new order.

You cannot specify a default value for a REQUIRED field. If both the
REQUIRED and DEFAULT attributes are assigned to the same field, 4GL
assumes that the DEFAULT value satisfies the REQUIRED attribute.

This attribute requires only that the user enter a printable character in the
field. If the user subsequently erases the entry during the same input, 4GL
considers the REQUIRED attribute satisfied. To insist on a non-null entry,
specify that the field is FORMONLY and NOT NULL.

Related Attribute
NOENTRY

REQUIRED

REVERSE

Screen Forms 6-63

REVERSE
The REVERSE attribute displays any value in the field in reverse video (dark
characters in a bright field).

Usage
The following example specifies that a field linked to the customer_num
column displays data in reverse (sometimes called inverse) video:

f000 = customer.customer_num, REVERSE;

On terminals that do not support reverse video, fields that have the REVERSE
attribute are enclosed between angle brackets (< >).

The REVERSE attribute disables any other COLOR attribute for the same field.

Related Attribute
COLOR

REVERSE

UPSHIFT

6-64 HCL Informix 4GL Reference Guide

UPSHIFT
During data entry in a character field, the UPSHIFT attribute converts
lowercase letters to uppercase letters, both on the screen display and in the
4GL program variable that stores the contents of that field.

Usage
Because uppercase and lowercase letters have different code-set values,
storing all character strings in one or the other format can simplify sorting
and querying a database.

The following example includes UPSHIFT in the attribute list of a field:

c8 = state, UPSHIFT, AUTONEXT,
INCLUDE = ("CA", "OR", "NV", "WA"),
DEFAULT = "CA" ;

Because of the UPSHIFT attribute, 4GL enters uppercase characters in the state
field regardless of the case used to enter them.

The AUTONEXT attribute tells 4GL to move automatically to the next field
once you type the total number of characters allowed for the field (in this
instance, two characters). The INCLUDE attribute restricts entry in this field
to the characters CA, OR, NV, or WA only. The DEFAULT value for the field is CA.

The results of conversion between uppercase and lowercase letters are based
on the locale files, which specify the relationship between corresponding
pairs of uppercase and lowercase letters. If the locale files do not provide this
information, no case conversion occurs. ♦

Related Attribute
DOWNSHIFT

UPSHIFT

GLS

VALIDATE LIKE

Screen Forms 6-65

VALIDATE LIKE
The VALIDATE LIKE attribute instructs 4GL to validate the data entered in the
field by using the validation rules that the upscol utility assigned to the
specified database column in the syscolval table.

Usage
This attribute is equivalent to listing all the attributes that you have assigned
to table.column in the syscolval table. “Default Attributes” on page 6-80
describes the syscolval table and the effects of this table in an ANSI-compliant
database. The following example assigns the default attributes of the
customer.state column to a FORMONLY field:

s13 = FORMONLY.state, VALIDATE LIKE customer.state;

The restrictions on the DISPLAY LIKE attribute also apply to this attribute. You
do not need the VALIDATE LIKE attribute if table.column is the same as field
name. You cannot specify a column of data type BYTE as table.column. Even if
all of the fields in the form are FORMONLY, this attribute requires FORM4GL
to access the database that contains table.

Related Attribute
DISPLAY LIKE

VALIDATE LIKE column

table .

column is the name of a column in table, or (if you omit table) the unique identifier
of a column in one of the tables that you declared in the TABLES section.

table is the unqualified name or alias of a database table, synonym, or view, as
declared in the TABLES section. (This value is not required unless several
columns in different tables have the same name or if the table is an
external table or an external, distributed table.)

Element Description

VERIFY

6-66 HCL Informix 4GL Reference Guide

VERIFY
The VERIFY attribute requires users to enter data in the field twice to reduce
the probability of erroneous data entry.

Usage
Because some data is critical, this attribute supplies an additional step in data
entry to ensure the integrity of your data. After the user enters a value into a
VERIFY field and presses RETURN, 4GL erases the field and requests reentry of
the value. The user must enter exactly the same data each time, character for
character: 15000 is not exactly the same as 15000.00.

For example, if you specify a field for salary information in the following
way, 4GL requires entry of exactly the same data twice:

s10 = quantity, VERIFY;

An error message appears if the user does not enter the same keystrokes.

The VERIFY attribute takes effect while INPUT, INPUT ARRAY, or UPDATE
statements of 4GL are executing. It has no effect on CONSTRUCT statements.

Related Attributes
INCLUDE, REQUIRED, VALIDATE LIKE

VERIFY

WORDWRAP

Screen Forms 6-67

WORDWRAP
In a multiple-segment field, the WORDWRAP attribute enables a multiple-line
editor. This editor can wrap long character strings to the next line of a
multiple-segment field for data entry, data editing, and data display.

Usage
If the same field tag is repeated in two or more locations in the screen layout,
this attribute instructs 4GL to treat all the instances of that field tag as
successive segments of a multiple-segment field (described in “Multiple-
Segment Fields” on page 6-31). These fields can display data strings that are
too long to fit on a single line of the screen form. For example, the following
excerpt from a form specification file shows a VARCHAR field linked to the
history column in the employee table.

history [f002]
[f002]
[f002]

attributes
f002 = employee.history, WORDWRAP COMPRESS;

4GL replaces each set of multiple-segment fields with a single WORDWRAP
field of a rectangular shape. The COMPRESS keyword option is applied to this
field, and the delimiters are replaced with blank spaces.

When a variable is bound to the WORDWRAP field during INPUT, only the
number of characters allowed by the bound variable can be entered. If
necessary, text in the field scrolls to allow the full number of characters to be
entered. Data compression takes place before storage in the bound variable.

If the lines of the multiple-segment field are not contiguous or if the field has
an irregular shape, the WORDWRAP field that results is based on the
maximum height and width of the multiple-segment field as a unit.

WORDWRAP COMPRESS

NONCOMPRESS

WORDWRAP

6-68 HCL Informix 4GL Reference Guide

A multiple-segment field with an irregular shape is shown in Figure 6-3.

Figure 6-3
Example of an

Irregularly Shaped Field

The resulting WORDWRAP field can overlap or be overlapped by labels or
individual form fields. To prevent such unpredictable effects, consolidate the
segments of multiple-segment fields into rectangular shapes.

Data Entry and Editing with WORDWRAP
When text is entered into a multiple-segment WORDWRAP field, 4GL breaks
character strings into segments at blanks (if it can) and pads field segments
with blanks to the right. Where possible, contiguous nonblank substrings
(words) within a string are not broken at field segment boundaries.

When keyboard input reaches the end of a line, the multiple-line editor
brings the current word down to the next field segment and moves text down
to subsequent lines as necessary. (The next field segment is determined by the
left-to-right, top-to-bottom order of field segments within the screen layout.)
When the user deletes text, the editor pulls words up from lower field
segments whenever it can.

In nondefault locales, WORDWRAP fields can process non-ASCII characters
that the locale supports. For the special case of Japanese locales, WORDWRAP
fields support Kinsoku processing, with the same features that are described
in “Kinsoku Processing with WORDWRAP” on page 7-66. ♦

GLS

WORDWRAP

Screen Forms 6-69

Data Display with WORDWRAP
If a CHAR, VARCHAR, or TEXT value is displayed in a WORDWRAP field, 4GL
puts the first data character in the first character position of the first segment
and displays consecutive data characters in successive positions to the right.

If the entire data string is too long to fit in the first field segment, 4GL
continues the display in the next field segment, dividing the data string at
blank characters. This process continues until all the field segments are filled
or until the end of the data string is reached.

The WORDWRAP attribute displays a TEXT field so that it fits into the form
without any field segments that begin with a blank. For a TEXT field, the
WORDWRAP attribute only affects how the value is displayed; WORDWRAP
does not enable the multiple-line editor. To let users edit a TEXT field, you
must use the PROGRAM attribute to indicate the name of an external editor.

Displaying Program Variables with WORDWRAP
Text in WORDWRAP fields can include printable ASCII characters, the TAB
(ASCII 9) character, and the newline (ASCII 10) character. These characters are
retained in the program variable. Other nonprintable characters might result
in runtime errors. The TAB character aligns the display at the next tab stop,
and the newline character continues the display at the start of the next line.
By default, tab stops are in every eighth column, beginning at the left edge of
the field. In non-English locales, WORDWRAP fields can include printable
characters that the locale supports.

Ordinarily, the length of the variable should not be greater than the total
length of all the field segments. If the data string is longer than the field (or if
too much padding is required for WORDWRAP), 4GL fills the field and
discards the excess data. This process displays a long variable in summary
form. If a truncated value is used to update the database, however, characters
are lost.

WORDWRAP

6-70 HCL Informix 4GL Reference Guide

The editor distinguishes between intentional blanks (from the database or
typed by the user) and editor blanks (inserted at the ends of lines for word-
wrap or to align after a newline character). Intentional blanks are retained as
part of the data. Editor blanks are inserted and deleted automatically as
required. When designing a multiple-segment field, allow room for editor
blanks, over and above the data length. The expected number of editor
blanks is half the length of an average word per segment. Text that requires
more space than you expect might be truncated after the final field segment.

The COMPRESS and UNCOMPRESS Options
The COMPRESS keyword prevents blanks produced by the editor from being
included in the program variable.

COMPRESS is applied by default and can cause truncation to occur if the sum
of intentional characters exceeds the field or column size. Because of editing
blanks in the WORDWRAP field, the stored value might not correspond
exactly to its multiple-line display, so a 4GL report generally cannot display
the data in identical form.

To suppress COMPRESS, specify UNCOMPRESS after the WORDWRAP
keyword. This option causes any editor blanks to be saved when the
WORDWRAP string is saved in a database column, in a variable, or in a file.

In the following fragment of a form specification file, a CHAR value in the
column charcolm is displayed in the multiple-segment field whose tag is mlf:

SCREEN SIZE 24 by 80
{
Enter text:

[mlf]
[mlf]

. . .
[mlf]
[mlf]

}

TABLES tablet...

ATTRIBUTES
mlf = tablet.charcolm, WORDWRAP COMPRESS;

If the data string is too long to fit in the first line, successive segments are
displayed in successive lines, until all of the lines are filled or until the last
text character is displayed (whichever happens first).

WORDWRAP

Screen Forms 6-71

If the form is used to insert data into tablet.charcolm, the keyword
COMPRESS specifies that 4GL will not store editor blanks.

WORDWRAP Editing Keys
When data is entered or updated in a WORDWRAP field, the user can use keys
to move the screen cursor over the data and to insert, delete, and type over
the data. The cursor never pauses on editor blanks.

The editor has two modes, insert (to add data at the cursor) and typeover (to
replace existing data with entered data). You cannot overwrite a newline
character. If the cursor in typeover mode encounters a newline character, the
cursor mode automatically changes to insert, pushing the newline character
to the right. Some keystrokes behave differently in the two modes.

When the cursor first enters a multiple-segment field, it is positioned on the
first character of the first field segment, and the editing mode is set to typeover.
The cursor movement keys are as follows:

■ RETURN leaves the entire multiple-segment field and goes to the first
character of the next field.

■ BACKSPACE or LEFT ARROW moves the cursor left one character, unless
at the left edge of a field segment. From the left edge of the first
segment, these keys either move the cursor to the first character of
the preceding field or only beep, depending on whether INPUT
WRAP is in effect. (Input wrap mode is controlled by the OPTIONS
statement.) From the left edge of a lower field segment, these keys
move the cursor to the right-most intentional character of the
previous field segment.

■ RIGHT ARROW moves the cursor right one character, unless at the
right-most intentional character in a segment. From the right-most
intentional character of the last segment, this key either moves the
cursor to the first character of the next field or only beeps, depending
on INPUT WRAP mode. From the right-most intentional character of
a higher segment, this key moves the cursor to the first intentional
character in a lower segment.

WORDWRAP

6-72 HCL Informix 4GL Reference Guide

■ UP ARROW moves the cursor from the top-most segment to the first
character of the preceding field. From a lower segment, this key
moves the cursor to the character in the same column of the next
higher segment, jogging left, if required, to avoid editor blanks, or if
it encounters a tab.

■ DOWN ARROW moves the cursor from the lowest segment to the first
character of the next field. From a higher segment, this key moves the
cursor to the character in the same column in the next lower segment,
jogging left if required to avoid editor blanks, or if it encounters a tab.

■ TAB enters a TAB character in insert mode and moves the cursor to the
next tab stop. This action can cause following text to jump right to
align at a tab stop. In typeover mode, this key moves the cursor to the
next tab stop that falls on an intentional character, going to the next
field segment if required.

The character keys enter data. Any following data shifts right, and words can
move down to subsequent segments. This action can result in characters
being discarded from the final field segment. These keystrokes can also alter
data:

■ CONTROL-A switches between typeover and insert mode.
■ CONTROL-X deletes the character under the cursor, possibly causing

words to be pulled up from subsequent segments.
■ CONTROL-D deletes all text from the cursor to the end of the multiple-

line field (not merely to the end of the current field segment).
■ CONTROL-N inserts a newline character, causing subsequent text to

align at the first column of the next segment of the field and possibly
moving words down to subsequent segments. This action can result
in characters being discarded from the final segment of the field.

WORDWRAP

Screen Forms 6-73

Non-WORDWRAP Displays
The appearance of a character value on the screen can vary, depending on
whether or not it is displayed in a multiple-segment WORDWRAP field. For
instance, if a value that was entered by using WORDWRAP is displayed
without this attribute, words will generally be broken, not wrapped, and TAB
and NEWLINE characters will be displayed as question marks. These differ-
ences do not represent any loss of data but only a different mode of display.
(You can view this effect, for example, if you also have INFORMIX-SQL
installed on your system, and you use the Query Language menu to display
character data values that were entered using WORDWRAP.)

If a value prepared under the multiple-line editor is again edited without
WORDWRAP, however, some formatting might be lost. For example, a user
might type over a TAB or NEWLINE character, not realizing what it was.
Similarly, a user might remove a blank from the first column of a line and thus
join a word to the last word on the previous line. These mistakes will be
visible when the value is next displayed in a WORDWRAP field or in a 4GL
report that uses the WORDWRAP operator.

INSTRUCTIONS Section

6-74 HCL Informix 4GL Reference Guide

INSTRUCTIONS Section
The INSTRUCTIONS section is the optional final section of a form specification
file. This section can declare nondefault screen records and screen arrays.

The INSTRUCTIONS section appears after the last field description (or after
the optional END keyword) of the ATTRIBUTES section.

INSTRUCTIONS Section

INSTRUCTIONS SCREEN RECORD record (Field List)

p. 6-75
array [size] END

DELIMITERS "opening closing "

Element Description
array is the 4GL identifier that you declare here for the screen array. (It is also

the name of the screen record that comprises each line of the array.)
closing is the closing field delimiter.
opening is the opening field delimiter.
record is the 4GL identifier that you declare here for the screen record.
size is a literal integer, enclosed in brackets ([]), to specify the number of

screen records in the screen array.

The END keyword is optional and provides compatibility with earlier
Informix products.

Screen Records
A screen record is a group of fields that screen interaction statements of the 4GL
program can reference as a single object. By establishing a correspondence
between a set of screen fields (the screen record) and a set of 4GL variables
(typically a program record), you can pass values between the program and
the fields of the screen record. In many applications, it is convenient to define
a screen record that corresponds to a row of a database table.

Screen Records

Screen Forms 6-75

Nondefault Screen Records
The INSTRUCTIONS section of a form specification file can declare nondefault
screen records. You use the SCREEN RECORD keywords of the INSTRUC-
TIONS section to declare a name for the screen record and to specify a list of
fields that are members of the screen record. A record declaration has this
syntax.

The field name is the SQL identifier of a database column linked to the field,
unless you specify FORMONLY as the table reference. If the database server
has the IFX_LONGID environment variable set to 1, then table identifiers can
require up to 128 bytes of storage.

The record name of a nondefault screen record can require up to 128 bytes of
storage, and must comply with the rules for 4GL identifiers (as described in
“4GL Identifiers” on page 2-14).

SCREEN RECORD record (Field List)

,

table . *
last

first THROUGH table .

THRU

Field List

Screen Record

is a field name that you declared in the ATTRIBUTES section.
is a field name that you declared later than first.
is the 4GL identifier that you declare for the screen record.
is the name, alias, or synonym of a table (or FORMONLY keyword).

first
last
record
table

Element Description

Screen Records

6-76 HCL Informix 4GL Reference Guide

Default Screen Records
4GL recognizes default screen records that consist of all the screen fields linked
to the same database table within a given form. FORM4GL automatically
creates a default record for each table that is used to reference a field in the
ATTRIBUTES section. The components of the default record correspond to the
set of display fields that are linked to columns in that table.

If the database server has the IFX_LONGID environment variable set to 1,
then a table identifier (for the name of a default screen record) or column
identifiers (for member fields within a default screen record) can require up
to 128 bytes of storage.

The name of the default screen record is the table name (or the alias, if you
declared an alias for that table in the TABLES section). For example, all the
fields linked to columns of the customer table constitute a default screen
record whose name is customer. If a form includes one or more FORMONLY
fields, those fields constitute a default screen record called formonly.

Like the name of a screen field, the identifier of a screen record must be
unique within the form, and it has a scope that is restricted to when its form
is open. Statements can reference record only when the screen form that
includes it is being displayed. FORM4GL returns an error if record is the same
as the name or alias of a table in the TABLES section.

The List of Member Fields
The fields within a screen record are called members of the record. The list of
member fields must be enclosed within a pair of parentheses. Use commas to
separate elements of the list of field names.

You must specify the table qualifier if the field name is not unique among the
fields in the ATTRIBUTES section or if table is a required alias (as described in
“TABLES Section” on page 6-23). Otherwise, table is optional but including it
might make the form specification file easier to read.

A screen record can include screen fields whose identifiers have different
table specifications (including the FORMONLY keyword). You can use the
notation table.* to include default screen records in the list of fields:

SCREEN RECORD worlds_record
(items.*, customer.*, state.code, FORMONLY.total)

Screen Arrays

Screen Forms 6-77

Here the asterisks (*) represent all of the fields in the form that the
ATTRIBUTES section associated with columns in the items and state tables.
These fields do not necessarily correspond to all of the columns in these
tables unless the form includes fields that are linked to all of the columns.

You can use the keyword THRU to specify consecutive fields, in the order of
their listing in the ATTRIBUTES section from field name1 to field name2,
inclusive. (The keyword THROUGH is a synonym for THRU.) For example,
the following instruction creates a screen record called address from fields
linked to some columns of the customer table. This record can simplify 4GL
statements to update customer address and telephone data.

SCREEN RECORD address
(customer.address1 THRU customer.phone)

The order of fields in the portion of a screen record specified by the table.* or
THRU notation is the order of the field names within the ATTRIBUTES section.

Screen Arrays
A screen array is usually a repetitive array of fields in the screen layout, each
containing identical groups of screen fields. Each row of a screen array is a
screen record. Each column of a screen array consists of fields with the same
field tag in the SCREEN section of the form specification file.

You must declare screen arrays in the INSTRUCTIONS section and use syntax
like the syntax described for a screen record in the previous section, but with
an additional parameter to specify the number of screen records in the array.

SCREEN RECORD array [size] (Field List
p. 6-75)

Screen Array

is the 4GL identifier that you declare here for the screen array. (It is also
the identifier of the screen record that comprises each line of the array.)
is a literal integer, enclosed in square brackets ([]), to specify how many
screen records are in the screen array.

array

size

Element Description

Screen Arrays

6-78 HCL Informix 4GL Reference Guide

The size value should be the number of lines in the logical form where the set
of fields that comprise each screen record is repeated within the screen array.
For example, a SCREEN section might represent a screen array like this:

SCREEN
{

CARRIER FLIGHT ARRIVES DEPARTS
[f00001] [f00002] [f0003] [f0004]
[f00001] [f00002] [f0003] [f0004]
[f00001] [f00002] [f0003] [f0004]

}

This example requires a size of [3]. Except for the size parameter, syntax for
specifying the identifier and the field names of a screen array is the same as
for a simple screen record (as described in “Nondefault Screen Records” on
page 6-75). Unlike 4GL program arrays, which can have up to three dimen-
sions, every 4GL screen array has exactly one dimension.

The next example declares an array of six records, each of which includes two
default screen records, namely the manufact.* and state.* screen records:

SCREEN RECORD mant_array [6]
(manufact.*, state.*, cust_calls.user_id, FORMONLY.delta)

To illustrate the declaration of a typical screen array in more detail, consider
the following fragment of a form specification file:

SCREEN
{

...

Item 1 [p][q][u][t]
Item 2 [p][q][u][t]
Item 3 [p][q][u][t]
Item 4 [p][q][u][t]
Item 5 [p][q][u][t]
}

TABLES orders items stock
ATTRIBUTES
...
p = stock.stock_num;
q = items.quantity;
u = stock.unit_price;
t = items.total_price;
...
INSTRUCTIONS
SCREEN RECORD sc_items[5] (stock.stock_num,

items.quantity, stock.unit_price,
items.total_price)

Field Delimiters

Screen Forms 6-79

The sc_items screen array has five rows and four columns and includes
fields linked to columns from two database tables. Rows are numbered from
1 to 5. The screen record that follows the display label Item 3 in the screen
layout, for example, can be referenced as sc_items[3] in a 4GL statement.

If there are no other columns of the items table in the form, the default screen
record items contains two fields, which correspond to the items.quantity and
items.total_price fields that are linked to columns of the items table.

If a screen array contains a default screen record, you can reference its fields
in specific lines of the screen array (such as items[5] for the q and t fields in
the last line), as if you had declared an array of records linked to that table.

You can reference array-name in the DISPLAY, DISPLAY ARRAY, INPUT, INPUT
ARRAY, and SCROLL statements of 4GL but only when the screen form that
includes the screen array is the current form.

Screen records and screen arrays can display program records. If the fields in
the screen record have the same sequence of data types as the columns in a
database table, you can use the screen record to simplify 4GL operations that
pass values between program variables and rows of the database.

Field Delimiters
You can change the delimiters that 4GL uses for fields from brackets ([]) to
any other printable character, including blank spaces. The DELIMITERS
instruction tells 4GL what symbols to use as field delimiters when it displays
the form on the screen. The opening and closing delimiter marks must be
enclosed within quotation marks (").

The following specifications display < and > as opening and closing delim-
iters of screen fields:

INSTRUCTIONS
DELIMITERS "<>"

END

Each delimiter occupies a space, so two fields on the same line are ordinarily
separated by at least two spaces. To specify only one space between consec-
utive screen fields, use the following procedure.

Default Attributes

6-80 HCL Informix 4GL Reference Guide

To use only one space between fields

1. In the SCREEN section, substitute a pipe symbol (|) for paired back-
to-back (][) brackets that separate adjacent fields.

2. In the INSTRUCTIONS section, define some symbol as both the
beginning and the ending delimiter.
For example, you could specify "| |" or "/ /" or ": :" or " "
(blanks).

The following specifications substitute | for][between adjacent fields in the
same line of the screen layout and display a colon as both the opening and
closing delimiter:

SCREEN
{

. . .
Full Name-[f011 |f012]

. . .
}

. . .
INSTRUCTIONS

DELIMITERS "::"

Here the fields whose tags are f011 and f012 will be displayed as:

Full Name-: | :

If you substitute blanks for colons as DELIMITERS symbols, field boundaries
are not marked (or are only marked if they have attributes that contrast with
the surrounding background).

Important: FORM4GL requires brackets ([]) in the SCREEN section of a form
specification file, regardless of any DELIMITERS instruction.

Default Attributes
Field attributes can also be specified in two special tables in the database,
syscolval and syscolatt. These tables are maintained by the upscol utility, as
described in Appendix B. FORM4GL searches these tables for default
validation and display attribute specifications. It applies these specifications
to form fields whose names match the names of the specified database
columns or that reference these columns in the DISPLAY LIKE or VALIDATE
LIKE attribute specifications.

Default Attributes

Screen Forms 6-81

The schema of the syscolval table is as follows.

Column Data Type Column Data Type
tabname CHAR(18) attrname CHAR(10)
colname CHAR(18) attrval CHAR(64)

The schema of the syscolatt table is as follows.

Column Data Type Column Data Type
tabname CHAR(18) underline CHAR(1)
colname CHAR(18) blink CHAR(1)
seqno SERIAL left CHAR(1)
color SMALLINT def_format CHAR(64)
inverse CHAR(1) condition CHAR(64)

Here tabname and colname are the names of the table and column to which
the attributes apply. Here colname cannot be a BYTE nor TEXT column. Valid
values for the attrname and attrval columns in syscolval are as follows.

attrname attrval

AUTONEXT YES, NO (the default)
COMMENTS As in this chapter
DEFAULT As in this chapter
INCLUDE As in this chapter
PICTURE As in this chapter
SHIFT UP, DOWN, NO (the default)
VERIFY YES, NO (the default)

FORM4GL adds the attributes from these tables to any attributes that are listed
in the form specification file. In case of conflict, attributes from the form
specification file take priority. 4GL applies the resulting set of field attributes
during execution of INPUT and INPUT ARRAY statements (by using
syscolval) and during execution of DISPLAY and DISPLAY ARRAY statements
(by using syscolatt).

Default Attributes

6-82 HCL Informix 4GL Reference Guide

The color column in syscolatt stores an integer that describes color (for color
terminals) or intensities (for monochrome terminals).

The next table shows the displays specified by each value of color and the
correspondence between default color names, number codes, and intensities.

Number Color Terminal Monochrome Terminal
0 WHITE NORMAL †
1 YELLOW BOLD
2 MAGENTA BOLD
3 RED BOLD †
4 CYAN DIM
5 GREEN DIM
6 BLUE DIM †
7 BLACK DIM

† If BOLD is specified as the attribute, the field is displayed as RED on a color
screen. If the keyword DIM is specified as the attribute, the field is displayed as
BLUE on a color screen. Color terminals display NORMAL as WHITE.

The background for colors is BLACK in all cases. The same keywords are also
supported by the COLOR attribute for color and monochrome terminals.

The valid values for inverse, underline, blink and left are Y (yes) and N (no).
The default for each of these columns is N; that is, normal display (bright
characters in a dark field), no underline, steady font, and right-aligned
numbers. Which of these attributes can be displayed simultaneously with the
color combinations or with each other is terminal dependent.

The def_format column takes the same string that you would enter for the
FORMAT attribute in a screen form. Do not use quotation marks.

The condition column takes string values that are a restricted set of the
WHERE clauses of a SELECT statement, except that the WHERE keyword and
the column name are omitted. 4GL assumes that the value in the column
identified by tabname and colname is the subject of all comparisons.

Examples of valid entries for the condition column follow:

<= 100 MATCHES "[A-M]*" BETWEEN 101 AND 1000
IN ("CA", "OR", "WA") >= 1001 NOT LIKE "%analyst%"

Precedence of Field Attribute Specifications

Screen Forms 6-83

The VALIDATE statement (described in Chapter 3) compares the members of
a program record or variable list to the validation rules in syscolval. The
INITIALIZE statement (described in Chapter 4) can read the default values in
syscolval for a list of columns and assign these values to a corresponding list
of 4GL variables.

Some statements (including CONSTRUCT, DISPLAY, DISPLAY ARRAY, ERROR,
INPUT, INPUT ARRAY, MESSAGE, PROMPT, OPEN WINDOW, and OPTIONS)
support an ATTRIBUTE clause (described in “ATTRIBUTE Clause” on
page 3-96) that can specify color and intensity attributes.

You can override default attributes in syscolatt by assigning other attributes
in the form specification file or in the ATTRIBUTE clause of the CONSTRUCT,
DISPLAY, DISPLAY ARRAY, INPUT, or INPUT ARRAY statement. If the current
4GL statement is one of these and includes an ATTRIBUTE clause, the field
displays only the attributes that are specified in that clause. For example, if a
column is designated as RED and BLINK in syscolatt, or in the form specifi-
cation file, and your 4GL program executes the following statement, the field
has only the BLUE attribute, not blinking BLUE:

DISPLAY . . . ATTRIBUTE BLUE

If an ATTRIBUTE clause is present in the currently executing statement, there
is no implicit carry-over of display attributes from the compiled form (except
FORMAT).

Precedence of Field Attribute Specifications
4GL uses these rules of precedence (highest to lowest) to resolve any conflicts
among multiply defined display attribute specifications:

1. The ATTRIBUTE clause of the current 4GL statement
2. The field descriptions in the ATTRIBUTES section of the current form
3. The default attributes specified in the syscolatt table of any fields

linked to database columns
To modify the syscolatt table, use the upscol utility. For information
on using this utility, see Appendix B.

4. The ATTRIBUTE clause of the most recent OPTIONS statement

Default Attributes in an ANSI-Compliant Database

6-84 HCL Informix 4GL Reference Guide

5. The ATTRIBUTE clause of the current form in the most recent DISPLAY
FORM statement

6. The ATTRIBUTE clause of the current 4GL window in the most recent
OPEN WINDOW statement

Default Attributes in an ANSI-Compliant Database
In a database that is not ANSI compliant, the default screen attributes and
validation criteria that you specify with the upscol utility are stored in two
tables, syscolval and syscolatt. These defaults are available to every user of a
form that references the specified column of the database.

In an ANSI-compliant database, however, the separate owner.syscolval and
owner.syscolatt tables are created for each user of the upscol utility. These
tables store the default specifications of that individual user. Which set of
tables is used by FORM4GL depends on the nature of the request.

If the TABLES section specifies a table alias for owner.table, FORM4GL uses the
upscol tables of the owner of table. If that user owns no upscol tables, no
defaults are assigned to fields associated with that table alias. If the TABLES
section of the form does not specify a table alias that includes the owner of a
database table, the upscol tables owned by the user running FORM4GL are
applied to fields associated with that database table unless the user owns no
upscol tables. In the ATTRIBUTES section, field descriptions of the following
forms use upscol tables (if they exist) owned by whoever runs FORM4GL,
unless table is an alias that specifies a different owner:

field-tag = . . . DISPLAY LIKE table.column
field-tag = . . . VALIDATE LIKE table.column

If table is an alias for owner.table, FORM4GL uses the upscol tables of the owner
specified by table, if they exist. If no upscol tables exist, the DISPLAY LIKE and
VALIDATE LIKE attributes have no effect. If owner is not the correct owner, the
compilation fails and an error message is issued. See also the INITIALIZE and
VALIDATE statements in Chapter 4.

ANSI

Creating and Compiling a Form

Screen Forms 6-85

Creating and Compiling a Form
For your 4GL program to work with a screen form, you must create a form
specification file that conforms to the syntax described earlier in this chapter,
and then compile the form. You can compile the form in one of two ways:
from within the Programmer’s Environment or at the command line. Both
methods require that the database and any tables referenced in the form
already exist, and that the database server be running and able to access the
database. These methods of compiling a form are described in this section.
Also, a section on using default forms is included.

Compiling a Form Through the Programmer’s Environment
The Programmer’s Environment is a system of menus that supports the steps
in the process of developing 4GL application programs. The Programmer’s
Environment is described in Chapter 1.

To create a screen form in the Programmer’s Environment

1. At the system prompt, enter one of the following commands:
■ If you have the C Compiler version, enter i4gl.
■ If you have the Rapid Development System, enter r4gl.

2. Press F at the INFORMIX-4GL menu to select the Form option.
3. Press G to select the Generate from the Form menu.

(Alternatively, you can select the New option. 4GL then prompts you
for a form name, prompts you for an editor if you have not already
selected one, and invokes that editor with an empty form specifica-
tion file. Now you must enter form specifications. The Generate
option is usually a more efficient way to create a customized form.)

4. Enter the name of the database and the name that you want to assign
to the form (for example, myform).
4GL asks you for the names of the tables whose columns you want in
your form.

Compiling a Form Through the Programmer’s Environment

6-86 HCL Informix 4GL Reference Guide

5. Enter the names of the tables you want to use.

After you select the tables, FORM4GL creates a default form specifica-
tion file, as well as a compiled default form, and then displays the
FORM design menu.
The default form specification file formats the screen as a list of all
the columns in the tables that you entered in step 4. It does not pro-
vide any special instructions to 4GL about how to display the data.

6. Press M to select the Modify option, and 4GL presents the MODIFY
FORM menu:
a. Select the default form specification (given as myform earlier),

and 4GL calls a system editor to display the file.
b. Edit the default form specification file to produce your

customized screen form and associated instructions.
(You can specify an editor by using the DBEDIT environment
variable. This strategy is fully explained in Appendix D, “Envi-
ronment Variables.”)

c. Save your file and quit the editor, and 4GL returns you to the
MODIFY FORM menu.

7. Press C to select Compile.
If your form specification file compiles successfully, FORM4GL cre-
ates a form file with the extension .frm (for example, myform.frm).
In this case, skip to step 9. If your form specification file does not
compile successfully, go on to step 8.

8. Press RETURN to select the Correct option from the COMPILE FORM
menu.
4GL again calls your editor to display the form specification file, with
the compilation errors marked. When correcting your errors, you
need not delete the error messages. 4GL does that for you. Save the
file and go back to step 7.

9. Save your form specification file with the Save-and-exit option.

Compiling a Form at the Command Line

Screen Forms 6-87

Compiling a Form at the Command Line
The FORM4GL command line has the following syntax.

form4gl filename

- q - l lines - c width - v

- d filename database table

- V

Element Description
database is the SQL identifier of a database.
filename is the name of a form specification file (with no .per extension).
lines is an integer that specifies the height of the form in lines of characters

that the terminal can display. (The default is 24.)
table is the name of a database table, as declared in the TABLES section.
width is an integer that specifies the width of the form in characters. (The

default is the number of characters in the longest line of the screen
layout, as specified in the SCREEN section.)

The -v option instructs the form compiler to verify that all fields are as wid
as any corresponding character fields that the ATTRIBUTES section specifies

The -V option instructs the form compiler to display the version number and
then exit, without compiling anything.

Use the -d option to generate a default form specification file. If you use thi
option, the compiler prompts you for the names of your form file, database
and tables. For more information, see the next section, “Default Forms.”

Compiling a Form at the Command Line

6-88 HCL Informix 4GL Reference Guide

To create a customized screen form directly from the operating system

1. Create a default form specification file by entering the following
command at the operating system prompt:

form4gl -d

FORM4GL asks for the name of your form specification file, the name
of your database, and the name of a table whose columns you want
in your form. It continues to ask for another table name until you
press RETURN for the name of a table. FORM4GL then creates a default
form specification file and appends the extension .per to its name. It
also creates a compiled default form with the extension .frm.

2. Use the system editor to modify the default form specification file to
meet your specifications.
If, as an alternative, you create a new form specification file and skip
step 1, be sure to give the filename the extension .per.

3. Enter a command of the form:
form4gl myform

Here myform is the name of your form specification file (without the
.per extension).
If the compilation is successful, FORM4GL creates a compiled form
file called myform.frm and you are finished creating your custom-
ized screen form. If not, FORM4GL instead creates a file named
myform.err, and you need to go on to step 4.

4. Review the file myform.err to discover the compilation errors.
5. Make corrections in the file myform.per, and then go back to step 3.

Default Forms

Screen Forms 6-89

Default Forms
For many applications, it is convenient to create a default form and then edit
this form to satisfy your specific application requirements. When you create
a default form, you must specify its filename, a database name, and the name
of at least one table whose columns are to be linked to fields in the form.

The width of a display field is the number of characters that can be placed
between the delimiters. In a default form specification, FORM4GL assigns
lengths to fields according to the declared data type of the column.

Data Type Default Field Width (in Characters)
BYTE 12
CHAR ,
NCHAR

MIN (57, n), where n is the length from the data-type declaration

DATE 10
DATETIME From 2 to 25, as implied in data-type declaration (Each unit of

time = 2 (except YEAR and FRACTION); every separator = 1.)
DECIMAL (2 + m), where m is the precision from the data type declaration
FLOAT 14
INTEGER 11
INTERVAL From 3 to 25 (as implied in data type declaration, plus one)
MONEY (3 + m), where m is the precision from the data type declaration
SMALLINT 6
SMALLFLOAT 14
TEXT 12
VARCHAR, MIN (57, n), where n is the maximum declared length

 NVARCHAR

SERIAL columns are linked to INTEGER fields. Field length is not directly
related to the data display in BYTE and TEXT fields, both of which require the
PROGRAM attribute to invoke an external program or editor. The 4GL form
can display as many TEXT characters as fit in the field and displays the string
<BYTE value> in a BYTE field. (For details about how to display BYTE and
TEXT values, see “PROGRAM” on page 6-60.)

Default Forms

6-90 HCL Informix 4GL Reference Guide

If you edit a default form, make sure that the fields are wide enough to
accommodate the widest value that might be entered or displayed. To
prevent 4GL from truncating displayed data, follow these rules:

■ Make character fields as wide as the corresponding database
column. You can use multiple-segment fields to display long strings
(as described in “Multiple-Segment Fields” on page 6-31).

■ Make number, DATETIME, and INTERVAL fields wide enough to
accommodate the largest displayed value.

Default field tags like f000 are assigned to the first display field, f001 to the
second, and so on, by FORM4GL. It assigns a field tag like a0 to any two- or
three-character field that cannot accommodate a four-character default field
tag. Up to 26 single-character fields can be assigned the single characters a, b,
c, and so forth, as default field tags.

The default screen layout has as many lines as the number of columns in the
tables. Each line of the screen layout contains a single field, beginning in the
20th character position. FORM4GL uses column names as default field labels,
which appear at the left of each field. The next example shows a default form
that is based only on the customer table of the stores7 database:

database stores7
screen size 24 by 80
{
customer_num [f000]
fname [f001]
lname [f002]
company [f003]
address1 [f004]
address2 [f005]
city [f006]
state [a0]
zipcode [f007]
phone [f008]
}

end

tables

customer

attributes
f000 = customer.customer_num;
f001 = customer.fname;
f002 = customer.lname;
f003 = customer.company;
f004 = customer.address1;

Using PERFORM Forms in 4GL

Screen Forms 6-91

f005 = customer.address2;
f006 = customer.city;
a0 = customer.state;
f007 = customer.zipcode;
f008 = customer.phone;
end

If the number of fields is greater than (lines - 4), you must edit the default
file, either to increase the lines value after the SIZE keyword (if the screen size
permits this) or else to reduce the number of lines in the screen layout.

Using PERFORM Forms in 4GL
The syntax of FORM4GL forms is different in several significant ways from the
syntax of PERFORM, the screen form generation utility of INFORMIX-SQL. You
can use PERFORM forms with 4GL, but you must first recompile them using
FORM4GL. In addition, not all PERFORM features are operative. You must also
use 4GL user-interaction statements like OPEN FORM, OPEN WINDOW,
INPUT, DISPLAY FORM, CLEAR FORM, and CONSTRUCT to write a form driver
to support data entry and data display through the 4GL form.

If you have designed forms for the PERFORM screen transaction program of
INFORMIX-SQL, you need to know how those forms behave when used with
4GL. The following features differ from PERFORM to 4GL:

■ Only the DELIMITERS keyword in the INSTRUCTIONS section of a
PERFORM form is supported by 4GL. Other keywords in that section
are ignored. To support other INSTRUCTIONS features of PERFORM
requires coding in your 4GL program. (See the BEFORE and AFTER
clauses of the INPUT statement.)

■ 4GL does not support multiple-page forms (those with more than one
screen layout); these forms produce undesirable overlays. (Use
multiple 4GL forms to produce the effects of forms that have several
pages.)

■ There is no concept of current table in 4GL. An INPUT or INPUT ARRAY
statement allows the user to enter data into fields that correspond to
columns in different tables or even in different databases.

Using PERFORM Forms in 4GL

6-92 HCL Informix 4GL Reference Guide

■ Joins defined in the PERFORM form are ignored in 4GL. You can
associate two field names with the same field tag by using the same
notation as in a PERFORM join, but no join is effected. However, you
can create more complex joins and lookups in 4GL with the full
power of SQL.

■ The PERFORM attributes LOOKUP, NOUPDATE, QUERYCLEAR,
RIGHT, and ZEROFILL are inoperative in 4GL. The DISPLAY, DISPLAY
ARRAY, DISPLAY FORM, MESSAGE, and OPEN WINDOW statements
of 4GL all ignore the INVISIBLE attribute.

■ The conditions of a COLOR attribute cannot reference other field tags
or aggregate functions.

■ Default attributes listed in syscolval and syscolatt do not apply to
PERFORM forms unless you recompile the forms with FORM4GL.

INFORMIX-4GL Reports

In This Chapter ... 7-3

Features of 4GL Reports .. 7-4

Producing 4GL Reports ... 7-5
The Report Driver .. 7-5
The Report Definition .. 7-7

The Report Prototype .. 7-8
Components of the Report Definition ... 7-9

DEFINE Section .. 7-10

OUTPUT Section .. 7-12
The BOTTOM MARGIN Clause .. 7-15
The LEFT MARGIN Clause ... 7-16
The PAGE LENGTH Clause ... 7-16
The REPORT TO Clause ... 7-17
The RIGHT MARGIN Clause .. 7-19
The TOP MARGIN Clause ... 7-20
The TOP OF PAGE Clause ... 7-21

ORDER BY Section ... 7-23
The Sort List ... 7-24
The Sequence of Execution of GROUP OF Control Blocks 7-25
The EXTERNAL Keyword ... 7-27

FORMAT Section .. 7-28
EVERY ROW .. 7-29

Chapter

7

7-2 HCL Informix 4GL Reference Guide

FORMAT Section Control Blocks.. 7-32

Statements Prohibited in FORMAT Section Control Blocks 7-33
AFTER GROUP OF ... 7-34

The Order of Processing AFTER GROUP OF Control Blocks 7-35
The GROUP Keyword in Aggregate Functions 7-36

BEFORE GROUP OF ... 7-37
The Order of Processing BEFORE GROUP OF Control Blocks . 7-38

FIRST PAGE HEADER.. 7-40
Displaying Titles and Headings .. 7-41
Restrictions on the List of Statements ... 7-41

ON EVERY ROW ... 7-42
Group Control Blocks ... 7-43

ON LAST ROW .. 7-44
PAGE HEADER ... 7-45
PAGE TRAILER ... 7-47

Restrictions on the List of Statements ... 7-48

Statements in REPORT Control Blocks .. 7-48
Statements Valid Only in the FORMAT Section ... 7-49
EXIT REPORT .. 7-50
NEED .. 7-52
PAUSE .. 7-54
PRINT ... 7-55

The FILE Option ... 7-57
The Character Position ... 7-57
The Expression List ... 7-59
Aggregate Report Functions .. 7-60
The ASCII Operator .. 7-62
The COLUMN Operator .. 7-62
The LINENO Operator ... 7-63
The PAGENO Operator .. 7-63
The SPACE or SPACES Operator ... 7-64
The WORDWRAP Operator .. 7-65

SKIP ... 7-68
Restrictions on SKIP Statements .. 7-69

INFORMIX-4GL Reports 7-3

In This Chapter
Creating reports is the method of producing output from 4GL programs that
offers the greatest formatting flexibility. This chapter describes how to define
reports to format data sets.

The following list summarizes the features besides reports that
INFORMIX-4GL offers for outputting values from a relational database or
values from 4GL program variables:

■ Output of unformatted database rows to an ASCII file by using the
UNLOAD statement (as described in “UNLOAD” on page 4-367)

■ Direct screen output by using the DISPLAY statement to display
values that the SELECT statement has retrieved from the database
and stored in 4GL program variables (as described in “DISPLAY” on
page 4-90)
(The SELECT statement is described in the Informix Guide to SQL:
Syntax.)

■ Output to a 4GL form (as described in Chapter 6, “Screen Forms”)
through the DISPLAY or DISPLAY ARRAY statements

■ Output to a reserved line of 4GL through the ERROR, PROMPT, MENU,
or MESSAGE statement, or the COMMENTS attribute (as described in
“Reserved Lines” on page 4-114)

■ Output of TEXT or BYTE values to an external editor that you specify
through the PROGRAM field attribute of a 4GL form (as described in
“PROGRAM” on page 6-60)

■ Output to the screen or to a file (or to another program, such as a text
editor) from a 4GL report (as described in “Sending Report Output to
the Screen” on page 7-19)

Features of 4GL Reports

7-4 HCL Informix 4GL Reference Guide

Features of 4GL Reports
For relational database management applications, 4GL includes a general-
purpose report writer that supports the following features:

■ The option to display report output to the screen for editing

■ Full control over page layout for your 4GL report, including first-
page and generic page headers, page trailers, columnar presentation,
and special formatting before and after groups sorted by value

■ Facilities for creating the report either from the rows returned by a
cursor or from input records assembled from any other source, such
as output from several different SELECT statements

■ Control blocks to manipulate data from a database cursor on a row-
by-row basis, either before or after the row is formatted by the report

■ Aggregate functions that can calculate and display frequencies,
percentages, sums, averages, maxima, and minima

■ The USING operator and other built-in 4GL functions and operators
for formatting and displaying information in output from the report

■ The WORDWRAP operator to format long character strings that
occupy multiple lines of output from the report

■ The option to update the database or execute any sequence of SQL
and other 4GL statements while writing a report, if the intermediate
values calculated by the report meet specified criteria; for example,
to write an alert message containing a second report

Producing 4GL Reports

INFORMIX-4GL Reports 7-5

Producing 4GL Reports
Many relational database management applications are designed to produce
a report that contains information from the database. A 4GL report can
arrange and format the data according to your instructions and display the
output on the screen, send it to a printer, or store it as a file for future use.

To write a report, a 4GL program must include two distinct components:

■ The report driver specifies what data the report includes.
■ The REPORT routine (also called the report definition) formats the data.

The report driver retrieves the specified rows from a database, stores their
values in program variables, and sends these, one input record at a time, to
the report definition. After the last input record is received and formatted,
4GL calculates any aggregate values that are based on all the data and then
sends the entire report to some output device.

By separating the two tasks of data retrieval and data formatting in this way,
4GL simplifies the production of recurrent reports and makes it easy to apply
the same report format to different data sets.

The Report Driver
The report driver invokes the report, retrieves data, and sends the data (as
input records) to be formatted by the REPORT program block. A report driver
can be part of the MAIN program block, or it can be in one or more 4GL
functions. It requires special-purpose statements to interface with the report
definition:

■ START REPORT

■ OUTPUT TO REPORT

■ FINISH REPORT (or TERMINATE REPORT)

The Report Driver

7-6 HCL Informix 4GL Reference Guide

END FOREACH

END WHILE

END FOR

OUTPUT
TO REPORT

p. 4-308

FINISH REPORT
p. 4-125

TERMINATE REPORT
page 4-364

START REPORT
p. 4-354

The following diagram (simplified to omit most of the control logic) shows
the elements of a report driver. These elements can appear in different
program blocks, but they are typically embedded within a FOR, FOREACH, or
WHILE loop.

FOREACH

p. 4-131

WHILE
p. 4-382

FOR

p. 4-128

The report driver takes the following actions:

■ Uses START REPORT to initialize the report

■ Begins a FOR, FOREACH, or WHILE loop to control the repeated
fetching of rows, and to store the retrieved data as input records

■ Uses OUTPUT TO REPORT to pass data to the report

■ Terminates the loop (with the END FOR, END FOREACH, or END
WHILE keywords) after all the values have been passed to the report

■ Uses FINISH REPORT to execute any ON LAST ROW control block and
to activate two-pass report processing (as described in “The
EXTERNAL Keyword” on page 7-27) or else uses TERMINATE
REPORT to exit from the report before processing is completed
(typically because of an error)

For information about the statements in the preceding list, see Chapter 4,
“INFORMIX-4GL Statements.”

The Report Definition

INFORMIX-4GL Reports 7-7

The Report Definition
The report definition formats input records. Like the FUNCTION or MAIN
statement, it is a program block that can be the scope of local variables. It is
not, however, a function: it is not reentrant, and CALL cannot invoke it.

The report definition receives data from its driver in sets called input records.
These records can include program records, but other data types (including
built-in and programmer-defined classes) are also supported. Each input
record is formatted and printed as specified by control blocks and statements
within the report definition. Most 4GL statements and functions can be
included in a report definition, and certain specialized statements and
operators for formatting output can appear only in a report definition.

The section “Statements Prohibited in FORMAT Section Control Blocks” on
page 7-33 identifies some 4GL statements that produce compilation errors
when they appear within a REPORT control block.

The REPORT program block has the following syntax.

REPORT report ()
FORMAT
Section END REPORT
p. 7-28 ,

argument)

DEFINE
Section
p. 7-10

argument is the name of a formal argument in each input record. The list can
include arguments of the RECORD data type, but the record.* notation
and ARRAY data type are not valid here.)

report is the 4GL identifier that you declare here for the report.

Description Element

OUTPUT
Section
p. 7-12

ORDER BY
Section
p. 7-23

The Report Definition

7-8 HCL Informix 4GL Reference Guide

To format input records, a typical report definition includes these sections:

■ A REPORT prototype to declare the name of the report, and the names
of the formal arguments of input records that the report formats

■ A DEFINE section to declare local variables and formal arguments

■ Optional OUTPUT and ORDER BY sections to specify (respectively)
the page layout of output from the report, and sorting instructions

■ Control blocks within the FORMAT section to produce headers,
footers, and formatted output from the data in the input records

■ The END REPORT keywords that terminate the report definition

In a typical 4GL application, the input records that the report formats contain
values retrieved from a database, but a 4GL report can also process input
records that were not derived from any database.

The Report Prototype
The report name value and the argument list value (enclosed in parentheses)
are called the report prototype. In its syntax, it resembles a function prototype
(as described in “The Prototype of the Function” on page 4-141).

You must declare the name of the report and the names of all the arguments
that contain the data that the driver passes to the report:

REPORT mcbeth_report (sound,fury)

A report name has global scope and must not conflict with names of other
reports, functions, or global variables or with its own formal arguments.

A formal argument cannot be an ARRAY variable or a RECORD variable that
contains an ARRAY member. Unless the argument list is empty, its arguments
must be declared in the DEFINE section as local variables. You must specify
an argument list value whenever any condition is true among those listed in
“DEFINE Section” on page 7-10 for declaring report arguments.

If you do not specify an argument list, output from the report can include text
from the control blocks, but the only data that the report can include must be
contained in variables of global or module scope.

The Report Definition

INFORMIX-4GL Reports 7-9

Components of the Report Definition
The report definition is composed of up to four sections. If any of the first
three are included, they must appear in the following order:

■ DEFINE section. This section declares the data types of local
variables used within the report, and of any variables (the input
records) that are passed as arguments to the report by the calling
statement. Reports without arguments or local variables do not
require a DEFINE section.

■ OUTPUT section. Output from the report consists of successive pages,
each containing a fixed number of lines whose margins and
maximum number of characters is fixed. This section can set margin
and page size values, and can also specify where to send the
formatted output.

■ ORDER BY section. This section specifies how the variables on
records are to be sorted. It is required if the report driver does not
send sorted data to the report. The specified sort order determines
the order in which 4GL processes any GROUP OF control blocks in the
FORMAT section.

■ FORMAT section. This section is required. It specifies the appearance
of the report, including page headers, page trailers, and aggregate
functions of the data. It can also contain control blocks that specify
actions to take before or after specific groups of rows are processed.
(Alternatively, it can produce a default report by only specifying
FORMAT EVERY ROW.)

Each of these four sections begins with the keyword for which it is named.
These elements of a report definition are described in sections that follow.

Like MAIN or FUNCTION, the report definition must appear outside any
other program block. It must begin with the REPORT statement and must end
with the END REPORT keywords. The FORMAT section is always required
(and DEFINE is usually required). You can include other sections as needed.

DEFINE Section

7-10 HCL Informix 4GL Reference Guide

data type

DEFINE Section
This section declares a data type for each formal argument in the REPORT
prototype and for any additional local variables that can be referenced only
within the REPORT program block. The DEFINE section is required if you pass
arguments to the report or if you reference local variables in the report.

Usage
For declaring local variables, the same rules apply to the DEFINE section as to
the DEFINE statement (described in “DEFINE” on page 4-81) in MAIN and
FUNCTION program blocks. Two exceptions, however, restrict the data types
of formal arguments:

■ Report arguments cannot be of type ARRAY.

■ Report arguments cannot be records that include ARRAY members.

Data types of local variables that are not formal arguments are unrestricted.

You must include arguments in the report prototype and declare them in the
DEFINE section, if any of the following conditions is true:

■ If you specify FORMAT EVERY ROW to create a default report, you
must pass all the values for each record of the report.

■ If an ORDER BY section is included, you must pass all the values that
ORDER BY references for each input record of the report.

■ If you use the AFTER GROUP OF control block, you must pass at least
the arguments that are named in that control block.

■ If an aggregate that depends on all records of the report appears
anywhere except in the ON LAST ROW control block, you must pass
each of the records of the report through the argument list.

 ,

DEFINE variable Data Type Declaration
(Subset) p. 4-84

variable is the name of a local variable or formal argument of the report.

Element Description

DEFINE Section

INFORMIX-4GL Reports 7-11

(The statements mentioned in the preceding list are described later in this
chapter.)

Aggregates dependent on all records include:

■ GROUP PERCENT(*) (anywhere in a report)
■ any aggregate without the GROUP keyword (anywhere outside the

ON LAST ROW control block)

For more information, see “The COUNT (*) and PERCENT (*) Aggregates”
on page 7-61.

If your report calls an aggregate function, an error might result if any
argument of an aggregate function is not also a format argument of the
report. You can, however, use global or module variables as arguments of
aggregates if the value of the variable does not change while the report is
executing.

If you use the LIKE keyword to specify data types indirectly, the DATABASE
statement must appear before the first program block of the same module
that includes the report definition, as described in “The Default Database at
Compile Time” on page 4-73. For more information, see also “Indirect
Typing” on page 4-83.

If the DEFINE section declares a variable or argument with the same identifier
as a global or module variable, the global or module variable is not visible in
the report. See also “DEFINE” on page 4-81.

A report can reference variables of global or module scope that are not
declared in the DEFINE section. Their values can be printed, but they can
cause problems in aggregates and in BEFORE GROUP OF and AFTER GROUP
OF clauses. Any references to nonlocal variables can produce unexpected
results, however, if their values change while a two-pass report is executing.

OUTPUT Section

7-12 HCL Informix 4GL Reference Guide

OUTPUT Section
The OUTPUT section can specify the destination and dimensions for output
from the report and the page-eject sequence for the printer. If you omit the
OUTPUT section, the report uses default values to format each page. (This
section is superseded by any corresponding START REPORT specifications.)

OUTPUT 1 REPORT TO PRINTER

SCREEN

1 TOP FILE

1 LEFT PIPE

"filename "
IN FORM MODE program

1 BOTTOM MARGIN IN LINE MODE

1 RIGHT

1 PAGE LENGTH

1 TOP OF PAGE "string "
= size

filename is a quoted string that specifies the name of a file to receive the report
output. The filename can also include a pathname.

program is a quoted string (or CHAR or VARCHAR variable) that specifies a
program, shell script, or command line to receive the output.

size is a literal integer that specifies the height (in lines) or width (in
characters) of a page of output from the report or of its margins.

string is a quoted string that specifies the page-eject character sequence.

Element Description

OUTPUT Section

INFORMIX-4GL Reports 7-13

Usage
The OUTPUT section can direct the output from the report to a printer, file, or
pipe, and can initialize the page dimensions and margins of report output.
The START REPORT statement of the report driver can override all of these
specifications by assigning another destination in its TO clause or by
assigning other dimensions, margins, or another page-eject sequence in the
WITH clause. For more information, see “START REPORT” on page 4-354.

Because the size specifications for the dimensions and margins of a page of
report output that the OUTPUT section can specify must be literal integers,
you might prefer to reset these values in the START REPORT statement, where
you can use variables to assign these values dynamically at runtime.

Important: Versions of 4GL earlier than 7.3 were not able to assign the destination or
the page dimensions of output dynamically through the START REPORT statement.
These START REPORT features are described in “The TO Clause” on page 4-355 and
“The WITH Clause” on page 4-360.

The OUTPUT section consists of the OUTPUT keyword, followed by one or
more specifications. The OUTPUT section has the following structure:

■ The REPORT TO clause specifies a default destination for output. If
you omit this clause, the default is to the screen.

■ If REPORT TO specifies PRINTER, the TOP OF PAGE clause can specify
a 1- or 2-character page-eject sequence that causes the printer to
begin a new page of report output rather than padding each page
with blank lines.

OUTPUT Section

7-14 HCL Informix 4GL Reference Guide

LEFT MARGIN size (default = 5 characters)

TOP MARGIN size
(default = 3 lines)

BOTTOM MARGIN size
(default = 3 lines)

RIGHT MARGIN size (default = 132 characters)
(for default reports or PRINT WORDWRAP only)

PAGE LENGTH size
(default = 66 lines)

Figure 7-1
Physical

Dimensions of a
Page of Report

Output

The five clauses that are shown in Figure 7-1 specify the physical dimensions
of a 4GL report page:

■ The LEFT MARGIN clause specifies how many blank spaces to
include at the beginning of each new line of output. The default is
5 blank spaces.

■ The RIGHT MARGIN clause specifies the maximum number of
characters in each line of output, including the left margin. If you
omit this clause but specify FORMAT EVERY ROW, the default is
132 characters wide.

■ The TOP MARGIN clause specifies how many blank lines appear
above the first line of text on each page of output. The default is
3 blank lines.

■ The BOTTOM MARGIN clause specifies how many blank lines follow
the last line of output on each page. The default is 3 blank lines.

■ The PAGE LENGTH clause specifies the total number of lines on each
page, including data, the margins, and any page headers or page
trailers from the FORMAT section. The default page length is 66 lines.

OUTPUT Section

INFORMIX-4GL Reports 7-15

These values cannot be negative and cannot be larger than 32,766.

Sections that follow describe these OUTPUT section specifications in alpha-
betical order.

The BOTTOM MARGIN Clause
This clause sets a bottom margin for each page of output from the report.

The bottom margin appears as size blank lines below any output specified by
the PAGE TRAILER control block of the FORMAT section. If you do not include
a BOTTOM MARGIN specification, the default bottom margin is three lines,
meaning that at least three lines are left blank at the end of each page. The
restriction 1 ≤ size ≤ 32,766 applies (as for all OUTPUT section specifications).

The following BOTTOM MARGIN specification instructs 4GL to continue
printing to the bottom of each page, with no blank lines as a bottom margin:

OUTPUT
REPORT TO "sendthis.out"
TOP MARGIN 0
BOTTOM MARGIN 0
PAGE LENGTH 6

BOTTOM MARGIN size

is a literal integer (as described in “Literal Integers” on page 3-65) that
specifies the non-negative vertical height (in lines) of the bottom margin
of each page.

size

Element Description

OUTPUT Section

7-16 HCL Informix 4GL Reference Guide

The LEFT MARGIN Clause
This clause sets the width of a left margin for each line of report output.

Output begins in the (size + 1) character position. Measurements indicated by
arguments to the COLUMN function are always relative to the margin set by
LEFT MARGIN. If you do not include a LEFT MARGIN clause, the default value
for the left margin is five character positions. When this default is in effect,
any output of data begins in the sixth character position.

The following LEFT MARGIN specification instructs 4GL to begin printing
each line of output as far to the left as possible.

OUTPUT
REPORT TO "about.out"
LEFT MARGIN 0
PAGE LENGTH 6

The PAGE LENGTH Clause
This clause specifies the number of lines on each page of report output.

 LEFT MARGIN size

is a literal integer (described in “Literal Integers” on page 3-65) to specify
the non-negative width (in characters) of the left margin of each page.

size

Element Description

 PAGE LENGTH size

is a literal integer (as described in “Literal Integers” on page 3-65) that
specifies the non-negative height (in lines) of each page, including top
and bottom margins.

size

Element Description

OUTPUT Section

INFORMIX-4GL Reports 7-17

Any top or bottom margin is included within the size that you specify here.
If you omit the PAGE LENGTH specification, the default page length is 66
lines. The next example specifies a PAGE LENGTH value of 22 lines:

OUTPUT
PAGE LENGTH 22
BOTTOM MARGIN 0

Depending on font size, 22 lines is the maximum length that some systems
can use with the PAUSE statement without causing undesirable scrolling.

The REPORT TO Clause
This clause specifies a default destination for output from the report. This
destination can be a file, an operating system pipe, or the system printer.

If the START REPORT statement includes a valid TO clause that directs output
of the report to some destination, the START REPORT destination takes prece-
dence, and any REPORT TO clause in the OUTPUT section has no effect.

Sending Report Output to a Pipe

REPORT TO PIPE sends the output to an operating system pipe. You can also
specify IN LINE MODE or IN FORM MODE after the PIPE keyword to specify
the screen mode of the display that program produces.

REPORT TO SCREEN

PRINTER

filename

IN FORM MODE

IN LINE FILE

PIPE program

filename is a quoted string that contains the name of a file to receive the report
output. This filename can also include a pathname.

program is a quoted string that specifies a program, shell script, or command line
to receive the output from the report.

Element Description

OUTPUT Section

7-18 HCL Informix 4GL Reference Guide

If no screen mode is specified, IN FORM MODE is the default unless a previous
OPTIONS statement has set IN LINE MODE as the default. For more infor-
mation about line mode and formatted mode in 4GL operations that produce
screen output, see “Screen Display Modes” on page 4-341.

The quoted string that follows the PIPE (and optional screen mode) keywords
must contain the name of a program, shell script, or command line that is to
receive the report output. This string can also include command-line
arguments.

The following OUTPUT section directs the report output to the more utility:

OUTPUT
REPORT TO PIPE "more"

Sending Report Output to a Printer

If you specify REPORT TO PRINTER, 4GL sends the output to the program
named in the DBPRINT environment variable. If DBPRINT is not set, output
from the report is sent to the default printer. For example, the following code
segment sends report output to the printer:

OUTPUT REPORT TO PRINTER

Sending Report Output to a File

To send the output to a printer other than the system printer, use the REPORT
TO FILE “filename” option to send output to a file, and then send the file to a
printer of your choice. Here the FILE keyword is optional.

The next example of an OUTPUT section directs the report output to the
label.out file:

OUTPUT
REPORT TO "label.out"
LEFT MARGIN 0
TOP MARGIN 0
BOTTOM MARGIN 0
PAGE LENGTH 6

OUTPUT Section

INFORMIX-4GL Reports 7-19

Sending Report Output to the Screen

You can use the SCREEN keyword explicitly to specify this destination.
Output is directed to the screen by default if both the REPORT TO clause and
the TO clause of the START REPORT statement are omitted. To pause the
display of the report after each screenful of output, you can include the
PAUSE statement in the PAGE HEADER or PAGE TRAILER block of the report.
The PAUSE statements waits for the user to press RETURN before displaying
more output. For more information, see “PAUSE” on page 7-54.

The RIGHT MARGIN Clause
This clause sets the right margin for each line of a default report (one that
specifies EVERY ROW in the FORMAT section) or of a PRINT WORDWRAP
statement.

The syntax of the RIGHT MARGIN clause follows.

This clause sets the right margin by specifying a line width, in characters. The
size value is not dependent on the LEFT MARGIN but starts its count from the
left edge of the page, so the width of the LEFT MARGIN is included in the size
of RIGHT MARGIN. The 132-character default size is effective only when both
of the following conditions are true:

■ The RIGHT MARGIN clause is omitted from the OUTPUT section.
■ The FORMAT section contains the EVERY ROW specification for a

default report format, or else a PRINT statement with WORDWRAP is
executing.

A default EVERY ROW report lists the variable names across the top of the
page and presents the data in columns beneath these headings. If there is not
sufficient room between left and right margins to do this, 4GL produces a
two-column output format that lists the variable name and the data value of
each output record on each line of output.

RIGHT MARGIN size

is a literal integer that specifies the maximum number of characters on
each line, including the left margin.

size

Element Description

OUTPUT Section

7-20 HCL Informix 4GL Reference Guide

The following example illustrates a RIGHT MARGIN clause. After processing
the OUTPUT section, 4GL sets a maximum line width of 70 and does not allow
text to be printed to the right of the 70th character position:

REPORT simple(customer)
DEFINE customer LIKE customer.*
OUTPUT

RIGHT MARGIN 70
FORMAT

EVERY ROW
END REPORT

Setting a Temporary Line Width with WORDWRAP

The PRINT statement in the FORMAT section can also include a WORDWRAP
RIGHT MARGIN clause. This clause sets a temporary right margin that cannot
be larger than the explicit or default right margin of the OUTPUT section.

While its PRINT statement is executing, this temporary line width overrides
the explicit or default right margin from the OUTPUT section. After the PRINT
statement completes execution, the explicit or default RIGHT MARGIN size
from the OUTPUT section is restored as the maximum line width.

The TOP MARGIN Clause
This clause sets a top margin for each page of the report.

If you omit the TOP MARGIN specification, the default top margin is three
lines, and any page header begins in the fourth line.

The following TOP MARGIN clause begins printing at the top of each page:

OUTPUT
TOP MARGIN 0
PAGE LENGTH 65

TOP MARGIN size

is a literal integer (as described in “Literal Integers” on page 3-65) that
specifies the vertical height (in lines) of the top margin of each page.

size

Element Description

OUTPUT Section

INFORMIX-4GL Reports 7-21

The number of blank lines specified as the top margin size value appears in
report output above any page header that you specify in a PAGE HEADER or
FIRST PAGE HEADER control block of the FORMAT section.

Figure 7-2
LEFT MARGIN size Margins of a Page

of Report Output

TOP MARGIN size

Begin output from
PAGE HEADER or
FIRST PAGE HEADER

PAGE LENGTH size

BOTTOM MARGIN size

End output from
PAGE TRAILER

RIGHT MARGIN size
(for default reports or PRINT WORDWRAP only)

The sum of the size values that you specify as your top and bottom margins,
plus the number of lines (if any) for the page header and trailer, represents
the portion of each page that is not available for displaying data. Unless the
page length is greater than this total, your report cannot display any records.

The TOP OF PAGE Clause
This optional clause identifies the page-eject character sequence for a printer.

is a quoted string that begins with the page-eject character. string

Element Description

TOP OF PAGE "string "

OUTPUT Section

7-22 HCL Informix 4GL Reference Guide

If you include the TOP OF PAGE clause, 4GL uses the specified page-eject
character to set up new pages.

For example, the TOP OF PAGE clause in the following example specifies
CONTROL-L as the page-eject character:

REPORT labels_report (rl)
DEFINE rl RECORD LIKE customer.*

OUTPUT
TOP OF PAGE "^L"
REPORT TO "r_out"

On many printers, this string is "^L", the ASCII form-feed character. 4GL uses
the first character of the string as the TOP OF PAGE character unless it is the
caret (^). In this case, 4GL interprets the second character as a control
character. (If you are not sure of what character string to specify for a given
printer, refer to the documentation for that printer.)

If the report definition includes the TOP OF PAGE clause, all page breaks in the
output are initiated by using the specified page-eject character rather than by
padding with blank lines. If no TOP OF PAGE clause is included, LINEFEED
characters are used (before the page trailer) to pad each page to the proper
length before each page break.

New Pages of Report Output

In the output from the report, 4GL includes blank line padding (or else the
page-eject character, if you specify this in the string value) to advance to the
next page whenever the program causes a new page of output to be set up.
New pages can be initiated by any of the following conditions:

■ PRINT attempts to print on a page that is already full.
■ SKIP TO TOP OF PAGE is executed.
■ SKIP n LINES specifies more lines than are available on the current

page.
■ NEED specifies more lines than are available on the current page.

If you omit the TOP OF PAGE clause, 4GL fills the remaining lines of the
current page with LINEFEED characters when a new page is set up.

ORDER BY Section

INFORMIX-4GL Reports 7-23

ORDER BY Section
The ORDER BY section specifies how to sort input records, and determines the
sequence of execution of GROUP OF control blocks in the FORMAT section.

Usage
The ORDER BY section specifies a sort list for the input records. Include this
section if values that the report definition receives from the report driver are
significant in determining how BEFORE GROUP OF or AFTER GROUP OF
control blocks will process the data in the formatted report output.

If you omit the ORDER BY section, 4GL processes input records in the order
received from the report driver and processes any GROUP OF control blocks
in their order of appearance in the FORMAT section. If records are not sorted
in the report driver, the GROUP OF control blocks might be executed at
random intervals (that is, after any input record) because unsorted values
tend to change from record to record. For more information, see “AFTER
GROUP OF” on page 7-34 and “BEFORE GROUP OF” on page 7-37.

If you specify only one variable in the GROUP OF control blocks, and the
input records are already sorted in sequence on that variable by the SELECT
statement, you do not need to include an ORDER BY section in the report.

 ,

ORDER BY argument ASC

EXTERNAL DESC

argument is the name of an argument from the report prototype (as described in
“The Report Prototype” on page 7-8). The list of variables that you
specify here is called the sort list.

Element Description

ORDER BY Section

7-24 HCL Informix 4GL Reference Guide

The Sort List
The list of variables in the ORDER BY section specifies the order in which 4GL
sorts the input records. You can only sort on the variables that appear in the
argument list of the REPORT statement. The following program fragment, for
example, sorts output in ascending order of stock_tot values:

REPORT r_invoice (c, stock_tot)
DEFINE c RECORD LIKE customer.*,

stock_tot SMALLINT

ORDER BY stock_tot

If you include more than one variable in the sort list, 4GL uses the left-to-right
sequence of variables as the order of decreasing precedence. Unless the DESC
keyword is specified, records are sorted in ascending (lowest-to-highest) order
by values of the first (highest-priority) variable. Records having the same
value for the first variable are ordered by values of the second variable and
so on. Records with the same values on all but the last (lowest-priority)
variable in the sort list are ordered by that variable.

Sorting that is based on character values uses the code-set order, unless you
set the DBNLS environment variable to 1 and define a nondefault collation
sequence in the COLLATION category of the locale files. ♦

If you specify the DESC keyword, the report sorts records in descending
(highest-to-lowest) order of values for the specified variables; precedence of
variables within the sort list, however, is the same as with the ASC keyword,
based on the left-to-right order of variables within the sort list.

The next program fragment sorts records first by zipcode, and then within
the same zipcode by comp_name, and within comp_name by address1:

REPORT labels_rpt(c)
DEFINE c RECORD LIKE custome.*
ORDER BY c.zipcode, c.comp_name, c.address1

You can also sort the records by specifying a sort list in the ORDER BY clause
of the SELECT statement (in the report driver). If you specify sort lists in both
the report driver and the report definition, the sort list in the ORDER BY
section of the REPORT takes precedence.

If all the input records come from database rows that are returned by a single
cursor, the report executes more quickly if you use the ORDER BY clause of
the SELECT statement instead of the ORDER BY section of the report.

GLS

ORDER BY Section

INFORMIX-4GL Reports 7-25

Even if the report definition receives records sorted by the report driver, you
might want to specify ORDER EXTERNAL BY to specify the exact order in
which GROUP OF control blocks are processed. The EXTERNAL keyword can
prevent the input records from being sorted again. For more information, see
“The EXTERNAL Keyword” on page 7-27.

The Sequence of Execution of GROUP OF Control Blocks
The ORDER BY section determines the order in which 4GL processes BEFORE
GROUP OF and AFTER GROUP OF control blocks. If you omit the ORDER BY
section, 4GL processes any GROUP OF control blocks in the lexical order of
their appearance within the FORMAT section.

If you include an ORDER BY section, and the FORMAT section contains more
than one BEFORE GROUP OF or AFTER GROUP OF control block, the order in
which these control blocks are executed is determined by the sort list in the
ORDER BY section. In this case, their order within the FORMAT section is not
significant because the sort list overrides their lexical order.

4GL processes all the statements in a BEFORE GROUP OF or AFTER GROUP OF
control block on these occasions:

■ Each time the value of the current group variable changes
■ Each time the value of a higher-priority variable changes

How often the value of the group variable changes depends in part on
whether the input records have been sorted:

■ If the records are sorted, AFTER GROUP OF executes after 4GL
processes the last record of the group of records; BEFORE GROUP OF
executes before 4GL processes the first records with the same value
for the group variable.

■ If the records are not sorted, the BEFORE GROUP OF and AFTER
GROUP OF control blocks might be executed before and after each
record because the value of the group variable might change with
each record. All the AFTER GROUP OF and BEFORE GROUP OF control
blocks are executed in the same lexical order in which they appear in
the FORMAT section.

ORDER BY Section

7-26 HCL Informix 4GL Reference Guide

The following program illustrates how the ORDER BY section and the
GROUP OF control blocks interact:

MAIN
START REPORT sample_rpt TO "sample.out"
OUTPUT TO REPORT sample_rpt (1,1,1)
OUTPUT TO REPORT sample_rpt (2,2,2)
FINISH REPORT sample_rtp

END MAIN

REPORT sample_rpt (a,b,c)
DEFINE a,b,c, col INTEGER
ORDER EXTERNAL BY a,b,c
FORMAT

FIRST PAGE HEADER
LET col = 0

ON EVERY ROW
PRINT COLUMN col, "**rec**", a,b,c

AFTER GROUP OF c
PRINT COLUMN col, "after c"
LET col = col - 4

AFTER GROUP OF a
PRINT COLUMN col, "after a"
LET col = col - 4

AFTER GROUP OF b
PRINT COLUMN col, "after b"
LET col = col -4

BEFORE GROUP OF b
LET col = col + 4
PRINT COLUMN col, "before b"

BEFORE GROUP OF a
LET col = col + 4
PRINT COLUMN col, "before a"

BEFORE GROUP OF c
LET col = col + 4
PRINT COLUMN col, "before c"

END REPORT

The sample_rpt report in the previous example produces output in a, b, c
order (for the BEFORE GROUP OF control blocks) and c, b, a order (for the
AFTER GROUP OF control blocks), based on the a, b, c order that the ORDER
BY section specifies:

before a
before b

before c
rec 1 1 1
after c
after b

after a
before a

ORDER BY Section

INFORMIX-4GL Reports 7-27

before b
before c
rec 2 2 2
after c

after b
after a

If you delete or comment out the ORDER BY section, however, the resulting
code would produce the following output, based on the physical sequence of
variables in GROUP OF control blocks (here c, a, b) in the FORMAT section:

before c
before a

before b
rec 1 1 1
after b

after a
after c
before c

before a
before b
rec 2 2 2
after b

after a
after c

The EXTERNAL Keyword
Specify ORDER EXTERNAL BY if the input records have already been sorted
by the SELECT statement. The list of variables after the keywords ORDER
EXTERNAL BY control the execution order of GROUP BY control blocks.

Without the EXTERNAL keyword, the report is a two-pass report, meaning that
4GL processes the set of input records twice. During the first pass, it sorts the
data and stores the sorted values in a temporary file in the database. During
the second pass, 4GL calculates any aggregate values and produces output
from data in the temporary files.

With the EXTERNAL keyword, 4GL only needs to make a single pass through
the data: it does not need to build the temporary table in the database for
sorting the data. Specifying EXTERNAL to instruct 4GL not to sort the records
again might result in an improvement in performance.

FORMAT Section

7-28 HCL Informix 4GL Reference Guide

In the previous code example, the EXTERNAL keyword in the ORDER BY
section instructs the report to accept the input records without sorting them.
Without this keyword, the report needs access to a database to create its
temporary table for sorting. (If no database is open and you run a two-pass
report, a runtime error occurs when 4GL cannot create the temporary table.)

If the input records for your report come sequenced in the desired order (for
example, from the rows returned by only one cursor), or to sequence values
in descending order, use the ORDER BY clause in the SELECT statement that is
associated with the cursor. Then use the EXTERNAL keyword in the ORDER
BY section of your report.

FORMAT Section
A report definition must contain a FORMAT section. The FORMAT section
determines how the output from the report will look. It works with the values
that are passed to the REPORT program block through the argument list or
with global or module variables in each record of the report. In a source file,
the FORMAT section begins with the FORMAT keyword and ends with the
END REPORT keywords.

4GL supports two types of FORMAT sections. The simplest (a default report)
contains only the EVERY ROW keywords between the FORMAT and END
REPORT keywords.

More complex FORMAT sections can contain control blocks like ON EVERY
ROW or BEFORE GROUP OF, which contain statements to execute while the
report is being processed. Control blocks can contain report execution state-
ments and other executable 4GL statements that are not SQL statements. For
more information, see “Statements in REPORT Control Blocks” on page 48.

Sections that follow describe the syntax of default FORMAT sections, of the
seven types of FORMAT section control blocks, and of the report execution
statements that can appear only within a control block.

EVERY ROW

INFORMIX-4GL Reports 7-29

The FORMAT section has the following structure.

If you do not use the EVERY ROW keywords to specify a default report, you
can combine one or more control blocks in any order within the FORMAT
section. Except for BEFORE GROUP OF and AFTER GROUP OF control blocks,
each type of control block must be unique within the report.

EVERY ROW
The EVERY ROW keywords specify a default output format, including every
input record that is passed to the report. If you use the EVERY ROW option,
no other statements or control blocks are valid.

FORMAT EVERY ROW END REPORT

AFTER GROUP OF
p. 7-34

BEFORE GROUP OF
p. 7-37

1 FIRST PAGE HEADER
p. 7-40

1 PAGE HEADER
p. 7-45

1 ON EVERY ROW
p. 7-42

1 PAGE TRAILER
p. 7-47

1 ON LAST ROW
p. 7-44

EVERY ROW

EVERY ROW

7-30 HCL Informix 4GL Reference Guide

Usage
This option formats the report in a simple default format, containing only the
values that are passed to the REPORT program block through its arguments,
and the names of the arguments.

You cannot modify the EVERY ROW statement with any of the statements
listed in “Statements in REPORT Control Blocks” on page 7-48, nor can you
include any control blocks in the FORMAT section. To display every record in
a format other than the default format, use the ON EVERY ROW control block
(as described in the “FORMAT Section Control Blocks” on page 7-32).

The following example of a report definition uses the EVERY ROW option:

REPORT minimal(customer)
DEFINE customer RECORD LIKE customer.*
FORMAT

EVERY ROW
END REPORT

Here is a portion of the output from the preceding default specification:

customer.customer_num 101
customer.fname Ludwig
customer.lname Pauli
customer.company All Sports Supplies
customer.address1 213 Erstwild Court
customer.address2
customer.city Sunnyvale
customer.state CA
customer.zipcode 94086
customer.phone 408-789-8075

customer.customer_num 102
customer.fname Carole
customer.lname Sadler

customer.company Sports Spot
customer.address1 785 Geary St
customer.address2
customer.city San Francisco
customer.state CA
customer.zipcode 94117
customer.phone 415-822-1289

EVERY ROW

INFORMIX-4GL Reports 7-31

Reports generated with the EVERY ROW option use as column headings the
names of the variables that the report driver passes as arguments at runtime.
If all fields of each input record can fit horizontally on a single line, the
default report prints the names across the top of each page and the values
beneath. Otherwise, it formats the report with the names down the left side
of the page and the values to the right, as in the previous example. When a
variable contains a null value, the default report prints only the name of the
variable, with nothing for the value.

The following example is a brief report specification that uses the EVERY
ROW statement. (Assume here that the cursor that retrieved the input records
for this report was declared with an ORDER BY clause, so that no ORDER BY
section is needed in this report definition.)

DATABASE stores7

REPORT simple(order_num, customer_num, order_date)
DEFINE order_num LIKE orders.order_num,

customer_num LIKE orders.customer_num,
order_date LIKE orders.order_date

FORMAT
EVERY ROW

END REPORT

The following example is part of the output from the preceding report
definition:

order_num customer_num order_date

1001 104 01/20/1993
1002 101 06/01/1993
1003 104 10/12/1993
1004 106 04/12/1993
1005 116 12/04/1993
1006 112 09/19/1993
1007 117 03/25/1993
1008 110 11/17/1993
1009 111 02/14/1993
1010 115 05/29/1993
1011 104 03/23/1993
1012 117 06/05/1993

You can use the RIGHT MARGIN keywords in the OUTPUT section to control
the width of a report that uses the EVERY ROW statement.

FORMAT Section Control Blocks

7-32 HCL Informix 4GL Reference Guide

FORMAT Section Control Blocks
Control blocks define the structure of a report by specifying one or more
statements to be executed when specific parts of the report are processed. If
no data records are output to the report, none of the statements in these blocks
are executed. (See “Statements in REPORT Control Blocks” on page 7-48.)
Each of the seven types of control blocks is optional, but if you do not use the
EVERY ROW keywords, you must include at least one control block in the
FORMAT section.

Control Block When Statements in Block Are Executed

FIRST PAGE HEADER Before processing of the first page begins

PAGE HEADER Before processing of the each subsequent page begins

BEFORE GROUP OF Before processing a group of sorted records

ON EVERY ROW As each record is passed to the report

AFTER GROUP OF After processing a group of sorted records

PAGE TRAILER After processing of each page ends

ON LAST ROW After the last record is passed to the report

A report can include BEFORE GROUP OF, AFTER GROUP OF, and ON EVERY
ROW control blocks where the GROUP OF blocks reference the same variable.
In this case, when the value of the variable changes, the report processes all
BEFORE GROUP OF blocks before the ON EVERY ROW block and the ON
EVERY ROW block before all AFTER GROUP OF blocks.

If a report driver includes START REPORT and FINISH REPORT statements, but
no data records are passed to the report, no control blocks are executed. That
is, unless the report executes an OUTPUT TO REPORT statement that passes at
least one input record to the report; then neither the FIRST PAGE HEADER
control block nor any other control block is executed.

Statements Prohibited in FORMAT Section Control Blocks

INFORMIX-4GL Reports 7-33

The sequence in which the BEFORE GROUP OF and AFTER GROUP OF control
blocks are executed depends on the sort list in the ORDER BY section. For
example, assume that the ORDER BY section specifies a sort list of variables a,
b, and c in that order (as in the example in “The Sequence of Execution of
GROUP OF Control Blocks” on page 7-25). 4GL processes the control blocks
in the following order, regardless of the physical sequence in which these
control blocks appear within the FORMAT section.

Figure 7-3
The Order of Group
Processing, if “a,b,c” Is

the Sort List in the
ORDER BY Section

In this example, a control block can be executed multiple times relative to any
other block that is marked with a lower number in the right column. Without
an ORDER BY section, the default is the physical order of first mention of the
variables in either BEFORE or AFTER GROUP OF control blocks.

Important: New values assigned to variables in the PAGE HEADER control block are
not available until after the first PRINT, SKIP, or NEED statement is executed in an
ON EVERY ROW control block. This situation guarantees that any group values
printed in the PAGE HEADER control block have the same values as in the ON EVERY
ROW control block. Versions of 4GL earlier than 4.1 did not support this feature.

Statements Prohibited in FORMAT Section Control Blocks
The following statements of 4GL are not valid within any control block of the
FORMAT section of a REPORT program block.

CONSTRUCT FUNCTION MENU
DEFER INPUT PROMPT
DEFINE INPUT ARRAY REPORT
DISPLAY ARRAY MAIN RETURN

In this version of 4GL, a compile-time error is issued if you attempt to include
any of these statements in a control block of a report. You can, however, call
a function that includes any of these statements (except MAIN and DEFER).

BEFORE GROUP OF a
BEFORE GROUP OF b

BEFORE GROUP OF c
ON EVERY ROW

AFTER GROUP OF c
AFTER GROUP OF b

AFTER GROUP OF a

{1}
{2}
{3}
{4}
{3}
{2}
{1}

AFTER GROUP OF

7-34 HCL Informix 4GL Reference Guide

AFTER GROUP OF
The AFTER GROUP OF control block specifies the action that 4GL takes after it
processes a group of sorted records. Grouping is determined by the ORDER
BY specification in the SELECT statement or in the report definition.

Usage
A group of records is all of the input records that contain the same value for
the variable whose name follows the AFTER GROUP OF keywords. This group
variable must be passed through the report arguments. A report can include
no more than one AFTER GROUP OF control block for any group variable.

When 4GL executes the statements in a AFTER GROUP OF control block, local
variables have the values from the last record of the current group. From this
perspective, the AFTER GROUP OF control block could be thought of as the on
last record of group control block.

AFTER GROUP OF variable statement

statement is a report execution statement (as described in “Statements in REPORT
Control Blocks” on page 7-48) or another 4GL statement.

variable is the name of a formal argument to the report definition. You must pass
at least the value of variable through the arguments.

Element Description

AFTER GROUP OF

INFORMIX-4GL Reports 7-35

The Order of Processing AFTER GROUP OF Control Blocks
4GL executes the AFTER GROUP OF control block on these occasions:

■ Whenever the value of the group variable changes
■ Whenever the value of a higher-priority variable in the sort list

changes
■ At the end of the report (after processing the last input record but

before 4GL executes any ON LAST ROW or PAGE TRAILER control
blocks)
In this case, each AFTER GROUP OF of control block is executed in
ascending priority.

“The Sort List” on page 7-24 describes how input records are sorted
according to a group variable (or a list of group variables) and the order of
precedence among several variables in the sort list. How often the value of
the group variable changes depends in part on whether the input records
have been sorted by the SELECT statement:

■ If records are already sorted when the report driver passes them to
the report, the AFTER GROUP OF block is executed after 4GL has
processed the last record of the group.

■ If records are not sorted, the AFTER GROUP OF control blocks might
be executed after any record because the value of the group variable
might change with each record. If the report includes no ORDER BY
section, all AFTER GROUP OF control blocks are executed in the same
order in which they appear in the FORMAT section.

The AFTER GROUP OF control block is designed to work with sorted data.
You can sort the records by specifying a sort list in either of the following
ways:

■ An ORDER BY section in the report definition
■ The ORDER BY clause of the SELECT statement in the report driver

AFTER GROUP OF

7-36 HCL Informix 4GL Reference Guide

To sort data in the ORDER BY clause of the SELECT statement, perform the
following tasks:

■ Use the column value in the ORDER BY clause of the SELECT statement
as the group variable in the AFTER GROUP OF control block.

■ If the report contains BEFORE or AFTER GROUP OF control blocks,
make sure to include an ORDER EXTERNAL BY section in the report
definition to specify the precedence of variables in the sort list.

To sort data in the report definition (with an ORDER BY section), include the
name of a formal argument as the group variable in both the ORDER BY
section and in the AFTER GROUP OF control block. If you specify sort lists in
both the report driver and in the report definition, the sort list in the ORDER
BY section of the report definition takes precedence.

If the sort list includes more than one variable, 4GL sorts the records by values
in the first variable (highest priority). Records that have the same value for
the first variable are then ordered by the second variable and so on until
records that have the same values for all other variables are ordered by the
last variable (lowest priority) in the sort list.

The GROUP Keyword in Aggregate Functions
In the AFTER GROUP OF control block, you can include the GROUP keyword
to qualify aggregate report functions like AVG(), SUM(), MIN(), or MAX():

AFTER GROUP OF r.order_num
PRINT "", r.order_date, 7 SPACES,

r.order_num USING "###&",
8 SPACES, r.ship_date, " ",
GROUP SUM(r.total_price) USING "$$$$,$$$,$$$.&&"

AFTER GROUP OF r.customer_num

PRINT 42 SPACES, " -------------------"
PRINT 42 SPACES,

GROUP SUM(r.total_price) USING "$$$$,$$$,$$$.&&"

Using the GROUP keyword to qualify an aggregate function is only valid
within the AFTER GROUP OF control block. It is not valid, for example, in the
BEFORE GROUP OF control block. The aggregate report functions of 4GL are
described in Chapter 5 and in “Aggregate Report Functions” on page 7-60.

After the last input record is processed, 4GL executes the AFTER GROUP OF
control blocks before it executes the ON LAST ROW control block.

BEFORE GROUP OF

INFORMIX-4GL Reports 7-37

BEFORE GROUP OF
The BEFORE GROUP OF control block specifies what action 4GL takes before
it processes a group of input records. Group hierarchy is determined by the
ORDER BY specification in the SELECT statement or in the report definition.

Usage
A group of records is all of the input records that contain the same value for
the variable specified after the BEFORE GROUP OF keywords. You can include
no more than one BEFORE GROUP OF control block for each group variable.

When 4GL executes the statements in a BEFORE GROUP OF control block, the
report variables have the values from the first record of the new group. From
this perspective, the BEFORE GROUP OF control block could be thought of as
the on first record of group control block.

BEFORE GROUP OF variable statement

statement is a report execution statement (described in “Statements in REPORT
Control Blocks” on page 7-48) or another 4GL statement.

variable is the name of a variable from the list of formal arguments to the report
definition. You must pass at least the value of variable through the
arguments of the report definition.

Element Description

BEFORE GROUP OF

7-38 HCL Informix 4GL Reference Guide

The Order of Processing BEFORE GROUP OF Control Blocks
Each BEFORE GROUP OF block is executed in order, from highest to lowest
priority, at the start of a report (after any FIRST PAGE HEADER or PAGE
HEADER control blocks, but before processing the first record) and on these
occasions:

■ Whenever the value of the group variable changes (after any
AFTER GROUP OF block for the old value completes execution)

■ Whenever the value of a higher-priority variable in the sort list
changes (after any AFTER GROUP OF block for the old value
completes execution)

How often the value of the group variable changes depends in part on
whether the input records have been sorted by the SELECT statement:

■ If records are already sorted, the BEFORE GROUP OF block executes
before 4GL processes the first record of the group.

■ If records are not sorted, the BEFORE GROUP OF block might be
executed after any record because the value of the group variable can
change with each record. If no ORDER BY section is specified, all
BEFORE GROUP OF control blocks are executed in the same order in
which they appear in the FORMAT section.

The BEFORE GROUP OF control block is designed to work with sorted data.
You can sort the records by specifying a sort list in either of the following
areas:

■ An ORDER BY section in the report definition
■ The ORDER BY clause of the SELECT statement in the report driver

To sort data in the report definition (with an ORDER BY section), make sure
that the name of the group variable appears in both the ORDER BY section and
in the BEFORE GROUP OF control block.

BEFORE GROUP OF

INFORMIX-4GL Reports 7-39

To sort data in the ORDER BY clause of a SELECT statement, perform the
following tasks:

■ Use the column name in the ORDER BY clause of the SELECT
statement as the group variable in the BEFORE GROUP OF control
block.

■ If the report contains BEFORE or AFTER GROUP OF control blocks,
make sure that you include an ORDER EXTERNAL BY section in the
report to specify the precedence of variables in the sort list.

If you specify sort lists in both the report driver and the report definition, the
sort list in the ORDER BY section of the REPORT takes precedence.

When 4GL starts to generate a report, it first executes the BEFORE GROUP OF
control blocks in descending order of priority before it executes the ON
EVERY ROW control block. (See also Figure 7-3 on page 7-33.)

If the report is not already at the top of the page, the SKIP TO TOP OF PAGE
statement in a BEFORE GROUP OF control block causes the output for each
group to start at the top of a page.

BEFORE GROUP OF r.customer_num
SKIP TO TOP OF PAGE

FIRST PAGE HEADER

7-40 HCL Informix 4GL Reference Guide

FIRST PAGE HEADER
This control block specifies the action that 4GL takes before it begins
processing the first input record. You can use it, for example, to specify what
appears near the top of the first page of output from the report.

Usage
Because 4GL executes the FIRST PAGE HEADER control block before gener-
ating any output, you can use this control block to initialize variables that you
use in the FORMAT section.

In the following example, from a report that produces multiple labels across
the page, the FIRST PAGE HEADER does not display any information:

FIRST PAGE HEADER
{Nothing is displayed in this control block. It just
initializes variables that are used in the ON EVERY ROW
control block.}

{Initialize label counter.}
LET i = 1

{Determine label width; allow 8 spaces between labels).}
LET l_size = 72/count1

{Divide 8 spaces among the labels across the page.}
LET white = 8/count1

If a report driver includes START REPORT and FINISH REPORT statements, but
no data records are passed to the report, this control block is not executed.
That is, unless the report executes an OUTPUT TO REPORT statement that
passes at least one input record to the report, neither the FIRST PAGE HEADER
control block nor any other control block is executed.

FIRST PAGE HEADER statement

statement is a report execution statement (described in “Statements in REPORT
Control Blocks” on page 7-48) or another 4GL statement.

Element Description

FIRST PAGE HEADER

INFORMIX-4GL Reports 7-41

Displaying Titles and Headings
As its name implies, you can also use a FIRST PAGE HEADER control block to
produce a title page as well as column headings. On the first page of a report,
this control block overrides any PAGE HEADER control block. That is, if both
a FIRST PAGE HEADER and a PAGE HEADER control block exist, output from
the first appears at the beginning of the first page, and output from the
second begins all subsequent pages.

The TOP MARGIN (set in the OUTPUT section) determines how close the
header appears to the top of the page.

Restrictions on the List of Statements
The following restrictions apply to FIRST PAGE HEADER control blocks:

■ You cannot include a SKIP integer LINES statement inside a loop
within this control block.

■ The NEED statement is not valid within this control block.
■ If you use an IF…THEN…ELSE statement within this control block,

the number of lines displayed by any PRINT statements following the
THEN keyword must be equal to the number of lines displayed by
any PRINT statements following the ELSE keyword.

■ If you use a CASE, FOR, or WHILE statement that contains a PRINT
statement within this control block, you must terminate the PRINT
statement with a semicolon (;). The semicolon suppresses any
LINEFEED characters in the loop, keeping the number of lines in the
header constant from page to page.

■ You cannot use a PRINT filename statement to read and display text
from a file within this control block.

Corresponding restrictions also apply to CASE, FOR, IF, NEED, SKIP, PRINT,
and WHILE statements in PAGE HEADER and PAGE TRAILER control blocks.

ON EVERY ROW

7-42 HCL Informix 4GL Reference Guide

ON EVERY ROW
The ON EVERY ROW control block specifies the action to be taken by 4GL for
every input record that is passed to the report definition.

Usage
4GL executes the statements within the ON EVERY ROW control block for each
new input record that is passed to the report. The following example is from
a report that lists all the customers, their addresses, and their telephone
numbers across the page:

ON EVERY ROW
PRINT customer_num USING "###&",

COLUMN 12, fname CLIPPED, 1 SPACE,
lname CLIPPED, COLUMN 35, city CLIPPED,
", " , state, COLUMN 57, zipcode,
COLUMN 65, phone

The next example displays information about items and their prices:

ON EVERY ROW
PRINT snum USING "##&", COLUMN 10, manu_code, COLUMN 18,
description CLIPPED, COLUMN 38, quantity USING "##&",
COLUMN 43, unit_price USING "$$$$.&&",
COLUMN 55, total_price USING "$$,$$$,$$$.&&"

ON EVERY ROW statement

statement is a report execution statement (described in “Statements in REPORT
Control Blocks” on page 7-48) or another 4GL statement.

Element Description

ON EVERY ROW

INFORMIX-4GL Reports 7-43

The next example is from a mailing label report:

ON EVERY ROW
IF (city IS NOT NULL) AND

(state IS NOT NULL) THEN
PRINT fname CLIPPED, 1 SPACE, lname
PRINT company
PRINT address1
IF (address2 IS NOT NULL) THEN PRINT address2
PRINT city CLIPPED ", " , state, 2 SPACES, zipcode
SKIP TO TOP OF PAGE

END IF

4GL delays processing the PAGE HEADER control block (or the FIRST PAGE
HEADER control block, if it exists) until it encounters the first PRINT, SKIP, or
NEED statement in the ON EVERY ROW control block.

Group Control Blocks
If a BEFORE GROUP OF control block is triggered by a change in the value of
a variable, 4GL executes all appropriate BEFORE GROUP OF control blocks (in
the order of their priority) before it executes the ON EVERY ROW control
block. Similarly, if execution of an AFTER GROUP OF control block is triggered
by a change in the value of a variable, 4GL executes all appropriate AFTER
GROUP OF control blocks (in the reverse order of their priority) before it
executes the ON EVERY ROW control block.

ON LAST ROW

7-44 HCL Informix 4GL Reference Guide

ON LAST ROW
The ON LAST ROW control block specifies the action that 4GL is to take after
it processes the last input record that was passed to the report definition and
encounters the FINISH REPORT statement.

Usage
The statements in the ON LAST ROW control block are executed after the
statements in the ON EVERY ROW and AFTER GROUP OF control blocks if
these blocks are present.

When 4GL processes the statements in an ON LAST ROW control block, the
variables that the report is processing still have the values from the final
record that the report processed. The ON LAST ROW control block can use
aggregate functions to display report totals, as in this example:

ON LAST ROW
SKIP 1 LINE
PRINT COLUMN 12, "TOTAL NUMBER OF CUSTOMERS:",

COLUMN 57, COUNT(*) USING "#&"

If the report driver executes the TERMINATE REPORT statement (rather than
FINISH REPORT), the ON LAST ROW control block is not executed.

ON LAST ROW statement

statement is a report execution statement (described in “Statements in REPORT
Control Blocks” on page 7-48) or another 4GL statement.

Element Description

PAGE HEADER

INFORMIX-4GL Reports 7-45

PAGE HEADER
The PAGE HEADER control block specifies the action that 4GL takes before it
begins processing each page of the report. It can specify what information, if
any, appears at the top of each new page of output from the report.

Usage
You can use a PAGE HEADER control block to display column headings. The
following example produces column headings for printing data across the
page:

PAGE HEADER
PRINT "NUMBER",
COLUMN 12, "NAME",
COLUMN 35, "LOCATION",
COLUMN 57, "ZIP",
COLUMN 65, "PHONE"
SKIP 1 LINE

This control block is executed whenever a new page is added to the report.
The TOP MARGIN specification (in the OUTPUT section) affects how many
blank lines appear above the output produced by statements in the PAGE
HEADER control block. You can use the PAGENO operator in a PRINT
statement within a PAGE HEADER control block to display the current page
number automatically at the top of every page. The FIRST PAGE HEADER
control block overrides this control block on the first page of a report.

PAGE HEADER statement

statement is a report execution statement (described in “Statements in REPORT
Control Blocks” on page 7-48) or another 4GL statement.

Element Description

PAGE HEADER

7-46 HCL Informix 4GL Reference Guide

New group values can appear in the PAGE HEADER control block when this
control block is executed after a simultaneous end-of-group and end-of-page
situation. 4GL delays the processing of the PAGE HEADER control block until
it encounters the first PRINT, SKIP, or NEED statement in the ON EVERY ROW,
BEFORE GROUP OF, or AFTER GROUP OF control block. This order guarantees
that any group columns printed in the PAGE HEADER control block have the
same values as the columns printed in the ON EVERY ROW control block. The
same restrictions apply to CASE, FOR, IF, NEED, SKIP, PRINT, and WHILE state-
ments in the PAGE HEADER control block as apply to the FIRST PAGE HEADER
and PAGE TRAILER control blocks.

PAGE TRAILER

INFORMIX-4GL Reports 7-47

PAGE TRAILER
The PAGE TRAILER control block specifies what information, if any, appears
at the bottom of each page of output from the report.

Usage
4GL executes the statements in the PAGE TRAILER control block before the
PAGE HEADER control block when a new page is needed. New pages can be
initiated by any of the following conditions:

■ PRINT attempts to print on a page that is already full.
■ SKIP TO TOP OF PAGE is executed.
■ SKIP n LINES specifies more lines than are available on the current

page.
■ NEED specifies more lines than are available on the current page.

You can use the PAGENO operator in a PRINT statement within a PAGE
TRAILER control block to display the page number automatically at the
bottom of every page, as in the following example:

PAGE TRAILER
PRINT COLUMN 28,

PAGENO USING "page <<<<"

The BOTTOM MARGIN specification (in the OUTPUT section) affects how close
to the bottom of the page the output displays the page trailer.

 ,

PAGE TRAILER statement

statement is a report execution statement or another 4GL statement.

Element Description

Statements in REPORT Control Blocks

7-48 HCL Informix 4GL Reference Guide

Restrictions on the List of Statements
The number of lines produced by the PAGE TRAILER control block cannot
vary from page to page and must be unambiguously expressed. See the list
of specific restrictions that apply to CASE, FOR, IF, NEED, SKIP, PRINT, and
WHILE statements in the FIRST PAGE HEADER control block.

Statements in REPORT Control Blocks
Control blocks determine when 4GL takes an action in a report; within each
block, the statements determine what action 4GL takes. The list of statements
in a control block terminates when another control block begins or when EXIT
REPORT or END REPORT is encountered.

You can include most SQL statements and most 4GL statements in report
control blocks, as well as several statements that can be used only in the
FORMAT section of a report definition. “Statements Prohibited in FORMAT
Section Control Blocks” on page 7-33 lists 4GL statements that are not valid in
this context.

The 4GL statements most frequently used in the control blocks of reports are
CASE, FOR, IF, LET, and WHILE. They have the same syntax as elsewhere in
4GL applications, as Chapter 4 describes. (Local variables referenced in such
statements must be declared in the DEFINE section of the report definition;
you cannot declare variables within these control blocks.)

Statements Valid Only in the FORMAT Section

INFORMIX-4GL Reports 7-49

Statements Valid Only in the FORMAT Section
The following statements, sometimes called report execution statements, can
appear only in control blocks of the FORMAT section of a report definition.

Statement Effect

EXIT REPORT Terminates processing of the report

NEED Forces a page break unless some specified number of lines is
available on the current page of the report

PAUSE Allows the user to control scrolling of screen output (This
statement has no effect if output is sent to any destination except
the screen.)

PRINT Appends a specified item to the output of the report

SKIP Inserts blank lines into a report or forces a page break

Descriptions of these report execution statements follow. None of them are
valid within a MAIN or FUNCTION program block.

EXIT REPORT

7-50 HCL Informix 4GL Reference Guide

EXIT REPORT
This statement causes processing of the report to terminate and returns
control of execution to the next statement following the most recently
executed OUTPUT TO REPORT statement of the report driver.

Usage
Executing the EXIT REPORT statement has the following effects:

■ Terminates the processing of the current report
■ Deletes any intermediate files or temporary tables that were created

in processing the REPORT statement

The EXIT REPORT statement has the same effect as TERMINATE REPORT
except that EXIT REPORT must appear within the definition of the report that
it terminates. This statement is useful after the program (or the user) becomes
aware that a problem prevents the report from producing part of its intended
output. For details of output that is not produced when a report terminates
before it has finished processing, see “TERMINATE REPORT” on page 4-364.

The distinction between EXIT REPORT and TERMINATE REPORT is contextual:

■ EXIT REPORT is valid only within the REPORT definition.
■ TERMINATE REPORT is valid only within the report driver.

You can include the TERMINATE REPORT statement in a REPORT definition,
but there it can only reference a different report. In this case, it is logically
part of the driver of the other report.

The RETURN statement cannot be used as a substitute for EXIT REPORT. An
error is issued if RETURN is encountered within the definition of a 4GL report.

EXIT REPORT

EXIT REPORT

INFORMIX-4GL Reports 7-51

References
NEED, PAUSE, PRINT, REPORT, RETURN, SKIP, TERMINATE REPORT

NEED

7-52 HCL Informix 4GL Reference Guide

NEED
This statement causes any subsequent display to start on the next page if
fewer than the specified number of lines remain between the current line and
the bottom margin of the current page of report output.

Usage
This statement has the effect of a conditional SKIP TO TOP OF PAGE statement,
the condition being that the number to which the integer expression evaluates
is greater than the number of lines that remain on the current page.

The NEED statement can prevent the report from dividing parts of the output
that you want to keep together on a single page. In the following example,
the NEED statement causes the PRINT statement to send output to the next
page unless at least six lines remain on the current page:

AFTER GROUP OF r.order_num
NEED 6 LINES
PRINT " ",r.order_date, 7 SPACES,

GROUP SUM(r.total_price) USING "$$$$,$$$,$$$.&&"

The lines value specifies how many lines must remain between the line above
the current character position and the bottom margin for the next PRINT
statement to produce output on the current page. If fewer than lines remain
on the page, 4GL prints both the PAGE TRAILER and the PAGE HEADER.

The NEED statement does not include the BOTTOM MARGIN value when it
compares lines to the number of lines remaining on the current page. NEED is
not valid in FIRST PAGE HEADER, PAGE HEADER, or PAGE TRAILER blocks.

NEED lines LINES

is an integer expression that returns a positive whole number that is less
than the page length.

lines

Element Description

NEED

INFORMIX-4GL Reports 7-53

References
PAUSE, PRINT, REPORT, SKIP

PAUSE

7-54 HCL Informix 4GL Reference Guide

PAUSE
The PAUSE statement temporarily suspends output to the screen until the
user presses RETURN.

Usage
Output is sent by default to the screen unless the START REPORT statement or
the OUTPUT section specifies a destination for report output. The PAUSE
statement can be executed only if the report sends its output to the screen. It
has no effect if you include a TO clause in either of these contexts:

■ In the OUTPUT section of the report definition (as described in “The
REPORT TO Clause” on page 7-17)

■ In the START REPORT statement of the report driver (as described in
“The TO Clause” on page 4-355)

Include the PAUSE statement in the PAGE HEADER or PAGE TRAILER block of
the report. For example, the following code causes 4GL to skip a line and
pause at the end of each page of report output displayed on the screen:

PAGE TRAILER
SKIP 1 LINE
PAUSE "Press RETURN to display next screen."

References
NEED, PRINT, REPORT, SKIP

PAUSE

"string "

is a quoted string that PAUSE displays. If you do not supply a message,
PAUSE displays no message.

string

Element Description

PRINT

INFORMIX-4GL Reports 7-55

PRINT
The PRINT statement produces output from a report definition.

,
PRINT 4GL Expression

p. 3-49

COLUMN left offset ;

PAGENO

LINENO

BYTE variable

Integer Expression SPACE p. 3-63

Aggregate Report Functions SPACES

p. 5-14

Character
Expression

p. 3-69 WORDWRAP RIGHT MARGIN temporary

TEXT variable

FILE "filename"

Element Description
BYTE variable is the identifier of a 4GL variable of data type BYTE.
filename is a quoted string that specifies the name of a text file to include in

the output from the report. This string can include a pathname.
left offset is an expression that returns a positive whole number. It specifie

a character position offset (from the left margin) no greater than th
difference (right margin - left margin).

temporary is an expression that evaluates to a positive whole number. It
specifies the absolute position of a temporary right margin.

TEXT variable is the identifier of an 4GL variable of the TEXT data type.

For the syntax of 4GL expressions like left offset, relative offset, and temporary
that return integer values, see “Integer Expressions” on page 3-63.

PRINT

7-56 HCL Informix 4GL Reference Guide

Usage
This statement can include character data in the form of an ASCII file, a TEXT
variable, or a comma-separated expression list of character expressions in the
output of the report. (For TEXT variable or filename, you cannot specify
additional output in the same PRINT statement.) You cannot display a BYTE
value. Unless its scope of reference is global or the current module, any
program variable in expression list must be declared in the DEFINE section.

Output is sent to the destination specified in the REPORT TO clause of the
OUTPUT section or in the TO clause of the START REPORT statement of the
report driver. Otherwise, the screen is the destination. (For more information,
see “Sending Report Output to the Screen” on page 7-19.)

The following example is from the FORMAT section of a report definition that
displays both quoted strings and values from rows of the customer table:

FIRST PAGE HEADER
PRINT COLUMN 30, "CUSTOMER LIST"
SKIP 2 LINES
PRINT "Listings for the State of ", thisstate
SKIP 2 LINES
PRINT "NUMBER", COLUMN 12, "NAME", COLUMN 35, "LOCATION",
COLUMN 57, "ZIP", COLUMN 65, "PHONE"

SKIP 1 LINE
PAGE HEADER
PRINT "NUMBER", COLUMN 12, "NAME", COLUMN 35, "LOCATION",

COLUMN 57, "ZIP", COLUMN 65, "PHONE"
SKIP 1 LINE
ON EVERY ROW
PRINT customer_num USING "###&", COLUMN 12, fname CLIPPED,

1 SPACE, lname CLIPPED, COLUMN 35, city CLIPPED, ", " ,
state, COLUMN 57, zipcode, COLUMN 65, phone

You cannot use PRINT to display a BYTE value. The string "<byte value>" is
the only output from PRINT of any object that is not of the TEXT data type.

PRINT

INFORMIX-4GL Reports 7-57

The FILE Option
The PRINT FILE statement reads the contents of the specified filename into the
report, beginning at the current character position. This statement permits
you to insert a multiple-line character string into the output of a report.

The following example uses the PRINT FILE statement to include the body of
a form letter from file occupant.let in the output of a report that generates
letters:

PRINT "Dear", 1 SPACES, "fname",","
PRINT FILE "/usr/claire/occupant.let"

If filename stores the value of a TEXT variable, the PRINT FILE filename
statement has the same effect as specifying PRINT variable. (But only PRINT
variable can include the WORDWRAP operator, as described in “The
WORDWRAP Operator” on page 7-65.)

The Character Position
PRINT statement output begins at the current character position, sometimes
called simply the current position. On each page of a report, the initial default
character position is the first character position in the first line. This position
can be offset horizontally and vertically by margin and header specifications
and by executing any of the following statements:

■ The SKIP statement moves it down to the left margin of a new line.
■ The NEED statement can conditionally move it to a new page.
■ The PRINT statement moves it horizontally (and sometimes down).

Unless you use the keyword CLIPPED or USING, values are displayed with
widths (including any sign) that depend on their declared data types.

Data Type Default Display Width (in characters)

BYTE 12 (4GL displays the string <byte value> as the only output.)

CHAR The length from the data type declaration

DATE 10

DATETIME From 2 to 25, as implied in the data type declaration

DECIMAL (2 + m), where m is the precision from the data type declaration

(1 of 2)

PRINT

7-58 HCL Informix 4GL Reference Guide

Data Type Default Display Width (in characters)

FLOAT 14

INTEGER 11

INTERVAL From 3 to 25, as implied in the data type declaration

MONEY (3 + m), where m is the precision from the data type declaration

NCHAR The length from the data type declaration

NVARCHAR The data length of the character string

SMALLFLOAT 14

SMALLINT 6

TEXT The data length of the character string

VARCHAR The data length of the character string

(2 of 2)

Unless you specify the FILE or WORDWRAP option, each PRINT statement
displays output on a single line. This fragment displays output on two lines:

PRINT fname, lname
PRINT city, ", " , state, 2 SPACES, zipcode

If you terminate a PRINT statement with a semicolon, however, you suppress
the implicit LINEFEED character at the end of the line. The next example has
the same effect as the PRINT statements in the previous example:

PRINT fname;
PRINT lname
PRINT city, ", ";
PRINT state, 2 SPACES, zipcode

PRINT

INFORMIX-4GL Reports 7-59

The Expression List
The expression list of a PRINT statement returns one or more values that can
be displayed as printable characters. The following built-in functions and
operators can appear in the expression list of PRINT. Some of these can appear
only in a REPORT program block. Letter superscripts indicate restrictions on
the context where some of the following functions can appear within an 4GL
program. (All of these built-in functions and operators are described in
Chapter 5.)

ASCII

AVG()s
DATE()
DAY()

MIN()s

MDY()
SUM()s

TIME

CLIPPED EXTEND() MONTH() TODAY

COLUMN GROUPr ORD() UNITS

COUNT(*)s LENGTH() PAGENOr USING

CURRENT LINENOr PERCENT(*)r WEEKDAY()

DATE MAX()s SPACESr YEAR()
r You can use these expressions only within the FORMAT section of a REPORT defi-
nition. (A description appears later in this section.)
s You can use these aggregate functions only in the FORMAT section of a REPORT or
in statements of SQL. (The PERCENT(*) aggregate cannot appear in these SQL
statements.)

If the expression list applies the USING operator to format a DATE or MONEY
value, the format string of the USING operator takes precedence over the
DBDATE, DBMONEY, and DBFORMAT environment variables. For more
information, see “USING” on page 5-123.

PRINT

7-60 HCL Informix 4GL Reference Guide

)

Aggregate Report Functions
Aggregate report functions summarize data from several records in a report.
The syntax and effects of aggregates in a report resemble those of SQL
aggregate functions but are not identical. (See the Informix Guide to SQL:
Syntax for the syntax of SQL aggregate functions in SQL statements.)

GROUP

PERCENT

COUNT

AVG

SUM

MAX

MIN

(*)
(Number Expression

p. 3-66

INTERVAL
(Expression

p. 3-72

(4GL Expression

p. 3-49

)

)

WHERE

Boolean

Expression
p. 3-60

 The expression (in parentheses) that SUM(), AVG(), MIN(), or MAX() takes as
an argument is typically of a number or INTERVAL data type; ARRAY, BYTE,
RECORD, and TEXT are not valid. The AVG(), SUM(), MIN(), and MAX() aggre-
gates ignore input records for which their arguments have null values, but
each returns NULL if every record has a null value for the argument.

The GROUP Keyword

This optional keyword causes the aggregate function to include data only fo
a group of records that have the same value for a variable that you specify i
an AFTER GROUP OF control block. An aggregate function can only includ
the GROUP keyword within an AFTER GROUP OF control block.

The WHERE Clause

The optional WHERE clause allows you to select among records passed to the
report, so that only records for which the Boolean expression is TRUE are
included. (See also “Boolean Expressions” on page 3-60.)

PRINT

INFORMIX-4GL Reports 7-61

The AVG() and SUM() Aggregates

These aggregates evaluate as the average (that is, the arithmetic mean value)
and the total (respectively) of expression among all records or among records
qualified by the optional WHERE clause and any GROUP specification.

The COUNT (*) and PERCENT (*) Aggregates

These aggregates return, respectively, the total number of records qualified
by the optional WHERE clause and the percentage of the total number of
records in the report. You must include the (*) symbol.

The following fragment of a report definition uses the AFTER GROUP OF
control block and GROUP keyword to form sets of records according to how
many items are in each order. The last PRINT statement calculates the total
price of each order, adds a shipping charge, and prints the result.

AFTER GROUP OF number
SKIP 1 LINE
PRINT 4 SPACES, "Shipping charges for the order: ",

ship_charge USING "$$$$.&&"
PRINT 4 SPACES, "Count of small orders: ",

count(*) WHERE total_price < 200.00 USING "##,###"
SKIP 1 LINE
PRINT 5 SPACES, "Total amount for the order: ",

ship_charge + GROUP SUM(total_price) USING "$$,$$$,$$$.&&"

Because no WHERE clause is specified here, GROUP SUM() combines the
total_price of every item in the group included in the order.

The MIN() and MAX() Aggregates

For number, currency, and INTERVAL values, MIN() returns the minimum
and MAX() returns the maximum values for expression among all records or
among records qualified by the WHERE clause and any GROUP specification.

For DATETIME or DATE data values, greater than means later and less than
means earlier in time.

Character strings are sorted according to their first character. If your 4GL
program is executed in the default (U.S. English) locale, for character data
types, greater than means after in the ASCII collating sequence, where a> A> 1,
and less than means before in the ASCII sequence, where 1< A< a. Appendix A
lists the ASCII characters in their default collating sequence.

PRINT

7-62 HCL Informix 4GL Reference Guide

Character values are sorted in code-set order, unless the COLLATION
category in the locale files specifies a nondefault collation sequence (and the
DBNLS environment variable is set to 1). ♦

The ASCII Operator
The ASCII operator has the following syntax.

This returns the character whose numeric code you specify, just as described
in Chapter 5, with one exception. To print a NULL character in a report, call
the ASCII operator with 0 in a PRINT statement. For example, the following
statement prints the NULL character:

PRINT ASCII 0

ASCII 0 only displays a NULL character in the PRINT statement. In other
contexts, ASCII 0 returns a blank space. (See also “ASCII” on page 5-31.)

The COLUMN Operator
The COLUMN operator can appear in PRINT statements to move the character
position forward within the current line. It has the following syntax.

The operand must be a non-negative integer that specifies a character
position offset (from the left margin) no greater than the line width (that is,
no greater than the difference (right margin - left margin).

This designation moves the character position to a left-offset, where 1 is the
first position after the left margin. If current position is greater than the
operand, the COLUMN specification is ignored. (See also “COLUMN” on
page 5-47.)

GLS

ASCII Integer Expression
p. 3-63

COLUMN Integer Expression
p. 3-63

PRINT

INFORMIX-4GL Reports 7-63

The LINENO Operator
This operator takes no operand but returns the value of the line number of
the report line that is currently printing. 4GL calculates the line number by
calculating the number of lines from the top of the current page, including the
TOP MARGIN. In the following example, a PRINT statement instructs 4GL to
calculate and display the current line number, beginning in the tenth
character position after the left margin:

IF (LINENO > 9) THEN
PRINT COLUMN 10, LINENO USING "Line <<<"

END IF

The PAGENO Operator
This operator takes no operand but returns the number of the page that 4GL
is currently printing. The next example conditionally prints the value of
PAGENO, using the USING operator to format it, if its value is less than 10,000.

IF (PAGENO < 10000) THEN
PRINT COLUMN 28, PAGENO USING "page <<<<"

END IF

You can use PAGENO in the PAGE HEADER or PAGE TRAILER block, or in
other control blocks to number sequentially the pages of a report.

If you use the SQL aggregate COUNT(*) in the SELECT statement to find how
many records are returned by the query, and if the number of records that
appear on each page of output is both fixed and known, you can calculate the
total number of pages, as in the following example:

SELECT COUNT(*) num FROM customer INTO TEMP cnt
SELECT * FROM customer, cnt --Note temp table in FROM clause

. . . --and no join is
necessary
FORMAT

FIRST PAGE HEADER
LET y = cnt/50--assumes 50 records per page; you must

--round up if there is a remainder.}
PAGE TRAILER
PRINT "Page ", PAGENO USING "<<" " of ", y USING "<<"

If the calculated number of pages was 20, the first page trailer would be:

Page 1 of 20

PAGENO is incremented with each page, so the last page trailer would be:

Page 20 of 20

PRINT

7-64 HCL Informix 4GL Reference Guide

The SPACE or SPACES Operator
This operator has the following syntax.

This operator returns a string of blanks, equivalent to a quoted string
containing the specified number of blanks. In a PRINT statement, these blanks
are inserted at the current character position.

Its operand must be an integer expression (as described in “Integer Expres-
sions” on page 3-63) that returns a positive number, specifying an offset
(from the current character position) no greater than the difference (right
margin - current position). After PRINT SPACES has executed, the new
current character position has moved to the right by the specified number of
characters.

Outside PRINT statements, SPACE or SPACES) and its operand must appear
within parentheses.

The following statements use this operator to separate values in PRINT state-
ments, to concatenate six blank spaces to the string "=ZIP" and to print the
result after the variable zipcode:

FORMAT
ON EVERY ROW

LET mystring = (6 SPACES), "=ZIP"
PRINT fname, 2 SPACES, lname
PRINT company
PRINT address1
PRINT city, ", " , state, 2 SPACES, zipcode, mystring

Integer Expression
p. 3-63 SPACE

SPACES

PRINT

INFORMIX-4GL Reports 7-65

The WORDWRAP Operator

The WORDWRAP operator automatically wraps successive segments of long
character strings onto successive lines of report output. Any string value that
is too long to fit between the current position and the right margin is divided
into segments and displayed between temporary margins:

■ The current character position becomes the temporary left margin.
■ Unless you specify RIGHT MARGIN, the right margin defaults to 132,

or to the size value from the RIGHT MARGIN clause of the OUTPUT
section.

Specify WORDWRAP RIGHT MARGIN temporary to set a temporary right
margin, counting from the left edge of the page. This value cannot be smaller
than the current character position or greater than 132 (or the size value from
the RIGHT MARGIN clause of the OUTPUT section). The current character
position becomes the temporary left margin. These temporary values
override the specified or default left and right margins from the OUTPUT
section.

After the PRINT statement has executed, any explicit or default margins from
the OUTPUT section are restored.

The following PRINT statement specifies a temporary left margin in column
10 and a temporary right margin in column 70 to display the character string
that is stored in the 4GL variable called mynovel:

PRINT COLUMN 10, mynovel WORDWRAP RIGHT MARGIN 70

WORDWRAP
RIGHT temporary

MARGIN

TEXT variable

Character
Expression

p. 3-69

temporary is a literal integer (as described in “Literal Integers” on page 3-65)
that specifies a character position (from the left edge of the page)
of a temporary right margin.

TEXT variable is the name of a 4GL variable of the TEXT data type.

Description Element

PRINT

7-66 HCL Informix 4GL Reference Guide

Tabs, Line Breaks, and Page Breaks with WORDWRAP

The data string can include printable ASCII characters. It can also include the
TAB (ASCII 9), LINEFEED (ASCII 10), and ENTER (ASCII 13) characters to
partition the string into words that consist of substrings of other printable
characters. Other nonprintable characters might cause runtime errors. If the
data string cannot fit between the margins of the current line, 4GL breaks the
line at a word division, and pads the line with blanks at the right.

From left to right, 4GL expands any TAB character to enough blank spaces to
reach the next tab stop. By default, tab stops are in every eighth column,
beginning at the left-hand edge of the page. If the next tab stop or a string of
blank characters extends beyond the right margin, 4GL takes these actions:

1. Prints blank characters only to the right margin
2. Discards any remaining blanks from the blank string or tab
3. Starts a new line at the temporary left margin
4. Processes the next word

4GL starts a new line when a word plus the next blank space cannot fit on the
current line. If all words are separated by a single space, this action creates an
even left margin. 4GL applies the following rules (in descending order of
precedence) to the portion of the data string within the right margin:

■ Break at any LINEFEED, or ENTER, or LINEFEED, ENTER pair.
■ Break at the last blank (ASCII 32) or TAB character before the right

margin.
■ Break at the right margin, if no character farther to the left is a blank,

ENTER, TAB, or LINEFEED character.

4GL maintains page discipline under the WORDWRAP option. If the string is
too long for the current page, 4GL executes the statements in any page trailer
and header control blocks before continuing output onto a new page.

Kinsoku Processing with WORDWRAP

For Japanese locales, a suitable break can also be made between the Japanese
characters. However, certain characters must not begin a new line, and some
characters must not end a line. This convention creates the need for kinsoku
processing, whose purpose is to format the line properly, without any
prohibited word at the beginning or ending of a line.

GLS

PRINT

INFORMIX-4GL Reports 7-67

4GL reports use the wrap-down method for WORDWRAP and kinsoku
processing. The wrap-down method forces down to the next line characters
that are prohibited from ending a line. A character that precedes another that
is prohibited from beginning a line can also wrap down to the next line.

Characters that are prohibited from beginning or ending a line must be listed
in the locale. 4GL tests for prohibited characters at the beginning and ending
of a line, testing the first and last visible characters.

The kinsoku processing only happens once for each line. That is, no further
kinsoku processing occurs, even if prohibited characters are still on the same
line after the first kinsoku processing. ♦

References
DISPLAY, NEED, REPORT, SKIP

SKIP

7-68 HCL Informix 4GL Reference Guide

SKIP
The SKIP statement can insert blank lines into the output of a report or
advance the character position to the top of the next page of report output.

Usage
The SKIP statement allows you to insert blank lines into report output or to
skip to the top of the next page as if you had included an equivalent number
of PRINT statements without specifying any expression list. The LINE and
LINES keywords are synonyms in the SKIP statement.

Output from any PAGE HEADER or PAGE TRAILER control block appears in
its usual location. This program fragment prints names and addresses:

FIRST PAGE HEADER
PRINT COLUMN 30, "CUSTOMER LIST"
SKIP 2 LINES
PRINT "Listings for the State of ", thisstate
SKIP 2 LINES
PRINT "NUMBER", COLUMN 12, "NAME", COLUMN 35, "LOCATION",

COLUMN 57, "ZIP", COLUMN 65, "PHONE"
SKIP 1 LINE

PAGE HEADER
PRINT "NUMBER", COLUMN 12, "NAME", COLUMN 35, "LOCATION",

COLUMN 57, "ZIP", COLUMN 65, "PHONE"
SKIP 1 LINE

ON EVERY ROW
PRINT customer_num USING "####",
COLUMN 12, fname CLIPPED, 1 SPACE,

lname CLIPPED, COLUMN 35, city CLIPPED, ", " , state,
COLUMN 57, zipcode, COLUMN 65, phone

SKIP TO TOP OF PAGE

integer LINE

LINES

integer is a literal integer (as described in “Literal Integers” on page 3-65) that
specifies the number of lines.

Element Description

SKIP

INFORMIX-4GL Reports 7-69

Restrictions on SKIP Statements
The SKIP LINES statement cannot appear within a CASE statement, a FOR
loop, or a WHILE loop. The SKIP TO TOP OF PAGE statement cannot appear in
a FIRST PAGE HEADER, PAGE HEADER, or PAGE TRAILER control block.

List of Appendixes

Appendix A The ASCII Character Set

Appendix B INFORMIX-4GL Utility Programs

Appendix C Using C with INFORMIX-4GL

Appendix D Environment Variables

Appendix E Developing Applications with Global Language Support

Appendix F Modifying termcap and terminfo

Appendix G Reserved Words

Appendix H The Demonstration Application

Appendix I SQL Statements That Can Be Embedded in 4GL Code

Appendix J Notices

GLS

The ASCII Character Set

This appendix lists the ASCII (American Standard Code for
Information Interchange) character set, in ascending order of
numeric codes 0 through 127. In the default (U.S. English) locale,
this ASCII collating sequence is the basis for relational compar-
isons of strings in INFORMIX-4GL and SQL Boolean expressions.

Nondefault locales always include the ASCII characters but can
include additional non-ASCII characters and can specify other
collation sequences. When character strings are sorted by 4GL,
however, the code-set order is always the basis for collation; any
other collation sequence specified in the locale files is ignored.
See the Informix Guide to GLS Functionality for details of how
Informix database servers perform collation in nondefault
locales. In some situations (involving NCHAR or NVARCHAR
values and nondefault locales), the database server and 4GL
do not follow the same rules for collating character strings.

See also “Collation Order” on page E-4. ♦

In the table that follows, a caret (^) prefix in the first Character
column represents the CONTROL key.

Appendix

A

Code Character Code Character Code Character
0 ^@ 43 + 86 V
1 ^A 44 , 87 W
2 ^B 45 - 88 X
3 ^C 46 . 89 Y
4 ^D 47 / 90 Z
5 ^E 48 0 91 [
6 ^F 49 1 92 \
7 ^G 50 2 93]

(1 of 2)

A-2 HCL Informix 4GL Reference Guide

Code Character Code Character Code Character
8 ^H 51 3 94 ̂
9 ^I 52 4 95 _

10 ^J 53 5 96 ̀
11 ^K 54 6 97 a
12 ^L 55 7 98 b
13 ^M 56 8 99 c
14 ^N 57 9 100 d
15 ^O 58 : 101 e
16 ^P 59 ; 102 f
17 ^Q 60 < 103 g
18 ^R 61 = 104 h
19 ^S 62 > 105 i
20 ^T 63 ? 106 j
21 ^U 64 @ 107 k
22 ^V 65 A 108 l
23 ^W 66 B 109 m
24 ^X 67 C 110 n
25 ^Y 68 D 111 o
26 ^Z 69 E 112 p
27 esc 70 F 113 q
28 ^\ 71 G 114 r
29 ^] 72 H 115 s
30 ^^ 73 I 116 t
31 ^_ 74 J 117 u
32 75 K 118 v
33 ! 76 L 119 w
34 " 77 M 120 x
35 # 78 N 121 y
36 $ 79 O 122 z
37 % 80 P 123 {
38 & 81 Q 124 |
39 ' 82 R 125 }
40 (83 S 126 ~
41) 84 T 127 del
42 * 85 U

 (2 of 2)

INFORMIX-4GL Utility
Programs

This appendix describes the utility programs that are included
with INFORMIX-4GL. You can invoke these utilities at the system
prompt to perform the following tasks:

■ The mkmessage utility compiles programmer-defined
help messages for 4GL applications.

■ The upscol utility enables you to establish default
attributes for display fields that are linked to database
columns in your screen forms. It can also establish initial
default values for program variables and screen fields
that you associate with columns of tables in your
database.

Appendix

B

The mkmessage Utility

B-2 HCL Informix 4GL Reference Guide

The mkmessage Utility
The mkmessage utility converts ASCII source files that contain user messages
to a format that 4GL programs can use in on-line displays. This section
describes how to use mkmessage with help files and with customized
runtime error messages.

Programmer-Defined Help Messages
When executing a 4GL program, the user can request help whenever the
program is waiting for user input, such as making a menu selection, while
inputting data to a form, or while responding to a prompt. You can supply
help messages that are displayed whenever the user presses the Help key
(specified in the OPTIONS statement). These messages can be specific to the
menu option currently highlighted or to a CONSTRUCT, INPUT, INPUT
ARRAY, or PROMPT statement.

Message Source Files
4GL looks for the appropriate help message in the help file that you specify in
an OPTIONS statement by using the HELP FILE option. You can have several
help files, but only one can be in effect at a time. The structure of the message
source file is as follows:

.num
message-text

In the example, .num is a period followed by an integer, and message-text is
one or more lines of characters. (Characters can include blanks and must be
from the code set of the locale.) The file can contain as many messages as you
like.

Each help message should be preceded by a line with nothing on it but a
period (in the first column) and a unique integer num. The message-text line
starts on the next line and continues until the next numbered line. Each line
must end in a RETURN. All blank lines between two numbered lines are
considered part of the message that belongs to the first of the two numbers.
Lines that begin with # are interpreted as comment lines (and ignored).

Creating Executable Message Files

INFORMIX-4GL Utility Programs B-3

The integer num can specify the help message in your 4GL programs. (For 4GL
statements that support a HELP clause for displaying contextual help
messages, see the CONSTRUCT, INPUT, INPUT ARRAY, MENU, and PROMPT
statement descriptions in Chapter 4, “INFORMIX-4GL Statements.”)

If the message text occupies more than 20 lines, 4GL automatically breaks the
message into pages of 20 lines. You can change these default page breaks by
placing the CONTROL-L character in the first column of a line in your message
file to start a new page. 4GL handles clearing and redisplaying the screen.

For an example of a message file, see “helpdemo.src” on page H-30.

Creating Executable Message Files
Once you have created your message source file, you can process it for use by
4GL with this syntax.

After creating an output file with the mkmessage utility, specify out-file in the
OPTIONS statement to identify it as the current help file.

To use help messages from the help file on a field-by-field basis in an INPUT
or INPUT ARRAY statement, you must use the INFIELD() and SHOWHELP()
library functions that are supplied with 4GL. For example, you can use these
functions as the following code segment demonstrates:

OPTIONS
HELP FILE "stores7.hlp",
HELP KEY F1

...
INPUT pr_fname, pr_lname, pr_phone

FROM fname, lname, phone HELP 101
ON KEY (F1)

CASE
WHEN INFIELD(lname)

CALL showhelp(111)
WHEN INFIELD(fname)

mkmessage in-file out-file

in-file is an ASCII source file of help messages.
out-file s the pathname of the executable output file.

Element Description

Customized Error Messages

B-4 HCL Informix 4GL Reference Guide

CALL showhelp(112)
WHEN INFIELD(phone)

CALL showhelp(113)
OTHERWISE

CALL showhelp(101)
END CASE

END INPUT

Customized Error Messages
You can also use the mkmessage utility to customize runtime error messages.
4GL is distributed with a file called 4glusr.msg. This ASCII file contains some
common error messages, including the messages for runtime errors that
cannot be trapped by the WHENEVER ERROR statement and messages that
support the 4GL Help menu. The 4glusr.iem file contains the executable
version of this file.

You can edit the messages in 4glusr.msg with a text editor (for example, to
make them specific to a 4GL application or to translate them into another
language). Be sure to preserve the required numeric codes, prefixed by a
period (.) to identify each message.

If you choose to modify the contents of the 4glusr.msg message file, you must
specify 4glusr.iem in your mkmessage command line as the object filename:

mkmessage in-file 4glusr.iem

The executable file 4glusr.iem is initially installed in the directory
$INFORMIX/msg. 4GL looks for message files in one of two directories,
namely /$INFORMIXDIR/$DBLANG or else /$INFORMIXDIR/msg. If
DBLANG is defined, 4GL looks only in /$INFORMIXDIR/$DBLANG. If this
directory is not defined, 4GL looks only in /$INFORMIXDIR/msg. You must
place the newly modified file 4glusr.iem in the appropriate
/$INFORMIXDIR/msg or /$INFORMIXDIR/$DBLANG directory.

The upscol Utility

INFORMIX-4GL Utility Programs B-5

The upscol Utility
The upscol utility program allows you to create and modify the syscolval
and syscolatt tables, which contain default information for fields in screen
forms that correspond to database columns. Chapter 6, “Screen Forms,”
describes these tables and their use by 4GL.

You invoke the upscol utility by entering the command upscol at the system
prompt. After you select a database at the CHOOSE DATABASE screen, the
following menu appears.

The options in the UPDATE SYSCOL menu are:

■ Validate. Updates the information in syscolval.
■ Attributes. Updates the information in syscolatt.
■ Exit. Returns to the operating system.

If you select either Validate or Attributes, upscol checks whether the corre-
sponding table exists and, if not, upscol asks whether you want to create the
table. In the text that follows, the corresponding table is called syscol. If you
choose not to create it, enter n, and you return to the UPDATE SYSCOL menu.

If the data validation table already exists, or if you enter y to create it, upscol
displays the CHOOSE TABLE screen and prompts you for the name of a table
in the database. After you select a table, the CHOOSE COLUMN screen
prompts you to select the name of a column whose default values you want
to modify in syscol.

In the illustrations that follow, tab-name represents the selected table (from
the specified db-name database), and col-name represents the selected
column within the tab-name table. An actual upscol session would display
the SQL identifiers of whatever database, table, and column you specified.

UPDATE SYSCOL: Attributes Exit
Update information in the data validation table.

db-name Press CTRL-W for Help

Validate

The upscol Utility

B-6 HCL Informix 4GL Reference Guide

The selected table and column names appear, with the database name, on the
dividing line beneath the next menu, which is called the ACTION menu.

Now upscol displays the first row of syscol that relates to the table and
column in the work area beneath this menu. If no such entries exist, a
message stating this appears on the Error line.

The options in the ACTION menu are these:

■ Add. Adds new rows to the syscol table.
■ Update. Updates the currently displayed row.
■ Remove. Removes the currently displayed row (after a prompt for

verification).
■ Next. Displays the next row of syscol.
■ Query. Restarts the display at the first row of syscol for the table and

column.
■ Table. Selects a new database table and column.
■ Column. Selects a new column within the chosen table.
■ Exit. Return to the UPDATE SYSCOL menu.

ACTION: Update Remove Next Query Table Column Exit
Add an entry to the data validation [or screen display attribute] table.

--------- db-name:tab-name:col-name ------- Press CTRL-W for Help ------

Add

Adding or Updating Under the Validate Option

INFORMIX-4GL Utility Programs B-7

Adding or Updating Under the Validate Option
When you select Add in the ACTION menu after choosing the Validate
option in the UPDATE SYSCOL menu, the VALIDATE menu appears.

The options are attribute names and their selection has the following effects:

■ Autonext. Produces a menu with three options, Yes, No, and Exit.
Exit returns you to the VALIDATE menu. The default is No.

■ Comment. Produces a prompt to enter a Comment line message. No
quotation marks are required around the message, but it must fit on
a single screen line.

■ Default. Produces a prompt to enter the DEFAULT attribute,
formatted as described in Chapter 6. Quotation marks are required
where necessary to avoid ambiguity.

■ Include. Produces a prompt to enter the INCLUDE attribute,
formatted as described in Chapter 6. Quotation marks are required
where necessary to avoid ambiguity.

■ Picture. Produces a prompt to enter the PICTURE attribute, formatted
as described in Chapter 6. No quotation marks are required.

■ Shift. Produces a menu with four options, Up, Down, None, and
Exit. Up corresponds to the UPSHIFT attribute and Down to the
DOWNSHIFT attribute. Exit returns you to the VALIDATE menu. The
default is None.

■ Verify. Produces a menu with three options, Yes, No, and Exit.
Exit returns you to the VALIDATE menu. The default is No.

■ Exit. Returns you to the ACTION menu.

The upscol utility adds or modifies a row of syscolval after you complete
each of these options except Exit.

VALIDATE: Comment Default Include Picture Shift Verify Exit
Automatically proceed to next field when at end of current field.

--------- db-name:tab-name:col-name ----------- Press CTRL-W for Help ------

Autonext

Adding or Updating Under the Attribute Option

B-8 HCL Informix 4GL Reference Guide

The Update option on the ACTION menu takes you immediately to the
ATTRIBUTE menu or prompt that corresponds to the current attribute for the
current column. You can look at another attribute for the current column by
using the Next option, start through the list again by using the Query option,
remove the current attribute with the Remove option, and select a new
column or table with the Column or Table option.

Adding or Updating Under the Attribute Option
When you select Add or Update in the ACTION menu after choosing
Attribute in the UPDATE SYSCOL menu, the ATTRIBUTE menu appears.

If you are adding a new row to syscolatt, a default row is displayed in the
work area below the menu. If you are updating an existing row of syscolatt,
the current row appears. No entry is made in syscolatt until you choose
Exit_Set, so you can alter all the attributes before you decide whether to
modify syscolatt (with Exit_Set) or to cancel the changes (with Discrd_Exit).

The options of the ATTRIBUTE menu include screen attribute names, and
their selection has the following effects:

■ Blink. Produces a menu with three options, Yes, No, and Exit. The
default is No.

■ Color. Produces a menu with the available color options (for color
terminals) or intensities (for monochrome terminals) for display of
data values in tab-name.col-name. You can toggle back and forth
among the colors or intensities by pressing CONTROL-N.

■ Fmt. Prompts you for the format string to be used when tab-
name.col-name is displayed.

ATTRIBUTE: Color Fmt Left Rev Under Where Discrd Exit Exit Set
Set Field blinking attribute

--------- db-name:tab-name:col-name ------------ Press CTRL-W for Help ------

Blink

Adding or Updating Under the Attribute Option

INFORMIX-4GL Utility Programs B-9

■ Left. Produces a menu with three options, Yes, No, and Exit. Yes
causes numeric data to be left-aligned within the screen field. The
default is No.

■ Rev. Produces a menu with three options, Yes, No, and Exit. Yes
causes the field to be displayed in reverse video. The default is No.

■ Under. Produces a menu with three options, Yes, No, and Exit. Yes
causes the field to be displayed with underlining. The default is No.

■ Where. Prompts for the values and value ranges under which these
attributes will apply. See Chapter 6 for allowable syntax.

■ Discrd_Exit. Discards the indicated changes and returns you to the
ACTION menu.

■ Exit_Set. Enters the indicated changes into the syscolatt table and
returns you to the ACTION menu.

After you complete each of these options except Discrd_Exit, upscol adds or
modifies a row of syscolatt.

Whoever runs the upscol utility produces a pair of tables, syscolval and
syscolatt, which provide default values for all the users of a database that is
not ANSI compliant.

If the current database is ANSI-compliant, however, the user who runs upscol
becomes the owner of the syscolatt and syscolval tables specified at the
upscol menus, but other users can produce their own user.syscolval and
user.syscolatt tables. The default specifications in an upscol table are applied
by 4GL only to columns of tables that have the same owner as the upscol
table. (For details, see “Default Attributes in an ANSI-Compliant Database”
on page 6-84, and the INITIALIZE and VALIDATE statements in Chapter 6.)

Using C with
INFORMIX-4GL

Some programming tasks might be more easily or more
efficiently coded with a combination of INFORMIX-4GL code
and C code. In these cases, you have two options:

■ Write a 4GL program that calls C functions.
■ Write a C program that calls 4GL functions.

To call either a C function or a 4GL function, you must know
about the argument stack mechanism (discussed in “Using the
Argument Stack” on page C-3) that 4GL uses to pass arguments
between the functions and the calling code. This appendix
discusses issues that relate to the application programming
interface (API) between the 4GL language and the C language:

■ Calling a C function from a 4GL program
The CALL statement of 4GL can invoke C functions that
observe the calling conventions of the 4GL argument
stack (as described in “Calling a C Function from a 4GL
Program” on page C-12).

■ Calling a 4GL function from a C program
For a C program to call a 4GL function, it must include a
special header file. 4GL provides macros to initialize the
argument stack and to support other requirements of the
C language (as described in “Macros for Calling 4GL
Functions” on page C-21).

■ Decimal functions for C
4GL provides a library of functions that facilitate the con-
version of its own DECIMAL data type values to and
from every data type of the C language (as described in
“Decimal Functions for C” on page C-26).

Appendix

C

C-2 HCL Informix 4GL Reference Guide

The following topics are described in this appendix.

Topic Page
Using the Argument Stack C-3

Passing Values Between 4GL Functions C-3
Receiving Values from 4GL C-5
Passing Values to 4GL C-8

Calling a C Function from a 4GL Program C-12
Compiling and Executing the Program C-15

Calling a 4GL Function from a C Program C-15
Including the fglapi.h File C-16
Initializing the Argument Stack C-16
Invoking the 4GL Function C-17
Using Interrupt Signals C-19
Compiling and Executing the C Program C-19

Macros for Calling 4GL Functions C-21
fgl_start() C-21
fgl_call() C-23
fgl_exitfm() C-24
fgl_end() C-24

Decimal Functions for C C-26
deccvasc() C-28
dectoasc() C-30
deccvint() C-32
dectoint() C-33
deccvlong() C-34
dectolong() C-35
deccvflt() C-36
dectoflt() C-37
deccvdbl() C-38
dectodbl() C-39
decadd(), decsub(), decmul(), and decdiv() C-40
deccmp() C-41
deccopy() C-42
dececvt() and decfcvt() C-43

The sections that describe these functions also contain code examples.

Using C with INFORMIX-4GL C-3

Using the Argument Stack

Using the Argument Stack
Within a 4GL program, 4GL uses a pushdown stack to pass arguments and
results between 4GL functions. The caller of a function pushes its arguments
onto the stack; the called function pops them off the stack to use the values.
The called function pushes its return values onto the stack, and the caller
pops them off to retrieve the values.The argument stack is also used when a
4GL program calls a C function that you have written or when a C program
calls a 4GL function. This section describes the following operations:

■ Passing values between 4GL functions
■ Receiving values from 4GL

■ Passing values to 4GL

C code that calls any of the library functions that push, pop, or return values
in the pushdown stack should include the file fglsys.h at the top of the file:

#include <fglsys.h>

Passing Values Between 4GL Functions
Consider the following 4GL program:

MAIN
DEFINE j,k,sum,dif SMALLINT
LET j=5
LET k=7
CALL sumdiff(j,k) RETURNING sum, dif

END MAIN

FUNCTION sumdiff(a,b)
DEFINE a,b,s,d DECIMAL(16)
LET s = a+b
LET d = a-b
RETURN s,d

END FUNCTION

When the program executes the CALL statement, 4GL first notes the current
argument stack depth. Then it pushes the function arguments onto the top of
the stack in sequence from left to right (first j and then k in the example).
The stack receives not only the value of an argument but its data type as well
(SMALLINT in the example).

Using the Argument Stack

C-4 HCL Informix 4GL Reference Guide

The called function pops the arguments off the stack into local variables
(a and b, respectively). In the example, the types of these variables
(DECIMAL) are different from the types of the arguments that were pushed
by the caller (SMALLINT). However, because the stack stores the type of each
passed value, 4GL is able to convert the arguments to the proper type. In this
instance, 4GL easily converts SMALLINT values to DECIMAL. Any type
conversion that is supported by the LET statement is supported when
popping stacked values.

The RETURN statement pushes the returned values onto the stack in sequence
from left to right (first s and then d in the example). The RETURNING clause
in the originating CALL statement then pops these values off the stack and
into the specified variables (sum and diff, respectively) and converts the data
types DECIMAL back to SMALLINT.

When 4GL calls a function within an expression, the use of the stack is the
same as in the CALL statement. The function is expected to return a single
value on the stack, and 4GL attempts to convert this value as required to
evaluate the expression.

Important: Releases of 4GL earlier than Version 7.51 provided function libraries that
used different function names. For details, see the fglsys.h file, included in 4GL. To
consistently maintain differences on 32-bit and 64-bit platforms, 4GL 7.51 introduces
new mappings for C data types. These new data types should be used when calling
any 4GL library. For more details of the mapping between the new data types and C-
defined variables, see the fgltypes.h file, included in 4GL.

Function prototypes in the sections that follow use the function names that
were provided in releases of 4GL earlier than Version 7.51, but show the data
types of the current functions. The corresponding new function names are
shown immediately after each list of pre-Version 7.51 function prototypes.

Important: If you are compiling C programs with your 4GL program based on the
pre-Version 7.51 functions for manipulating the 4GL function stack, in order to get
the correct mappings from the old functions names to the new functions names, you
must include fglsys.h as the header file in the C program.

Using the Argument Stack

Using C with INFORMIX-4GL C-5

Receiving Values from 4GL

C functions or programs receive arguments from 4GL by using the argument
stack. Within the C function or program, you pop values off the stack by
using pop external functions that are included with 4GL. If you try to pop a
value when none is on the stack, a core dump or other fatal behavior can
occur.

This section describes the pop external functions, according to the data type
of the value that each pops from the argument stack.

Library Functions for Popping Numbers
You can call the following 4GL library functions from a C function or program
to pop number values from the argument stack:

extern void popint(mint *iv)
extern void popshort(int2 *siv)
extern void poplong(int4 *liv)
extern void popflo(float *fv)
extern void popdub(double *dfv)
extern void popdec(dec_t *decv)

The correspondence between pre-Version 7.51 function names and new
function names follows.

Old Function Name New Function Name

popint ibm_lib4gl_popMInt
popshort ibm_lib4gl_popInt2

poplong ibm_lib4gl_popInt4

popflo ibm_lib4gl_popFloat

popdub ibm_lib4gl_popDouble

popdec ibm_lib4gl_popDecimal

Each of these functions, like all library functions for popping values,
performs the following actions:

1. Removes one value from the argument stack
2. Converts its data type if necessary
3. Copies it to the designated variable

Using the Argument Stack

C-6 HCL Informix 4GL Reference Guide

If the value on the stack cannot be converted to the specified type, the result
is undefined.

If the ibm_lib4gl_popInt2() function returns a value outside the range of
-32767 to 32767, a conversion error has occurred.

The dec_t structure referred to by ibm_lib4gl_popDecimal() is used to hold
a DECIMAL value. It is discussed later in this appendix.

Library Functions for Popping Character Strings
You can call the following 4GL library functions to pop character values:

extern void popquote(int1 *qv, mint len)
extern void popstring(int1 *qv, mint len)
extern void popvchar(int1 *qv, mint len)

The correspondence between pre-Version 7.51 function names and new
function names follows.

Old Function Name New Function Name

popquote ibm_lib4gl_popQuotedStr
popstring ibm_lib4gl_popString
popvchar ibm_lib4gl_popVarChar

Both ibm_lib4gl_popQuotedStr() and ibm_lib4gl_popVarChar() copy
exactly len bytes into the string buffer *qv. Here
ibm_lib4gl_popQuotedStr() pads with spaces as necessary, but
ibm_lib4gl_popVarChar() does not pad to the full length. The final byte
copied to the buffer is a null byte to terminate the string, so the maximum
string data length is len-1. If the stacked argument is longer than len-1, its
trailing bytes are lost.

The len argument sets the maximum size of the receiving string buffer. Using
ibm_lib4gl_popQuotedStr(), you receive exactly len bytes (including
trailing blank spaces and the null), even if the value on the stack is an empty
string. To find the true data length of a string retrieved by
ibm_lib4gl_popQuotedStr(), you must trim trailing spaces from the
popped value. (The functions ibm_lib4gl_popString() and
ibm_lib4gl_popQuotedStr() are identical, except that
ibm_lib4gl_popString() automatically trims any trailing blanks.)

Using the Argument Stack

Using C with INFORMIX-4GL C-7

Because 4GL can convert values to CHAR from any data type except TEXT or
BYTE, you can use these functions to pop almost any argument.

Library Functions for Popping Time Values
You can call the following 4GL library functions to pop DATE, DATETIME, and
INTERVAL values:

extern void popdate(int4 *datv)
extern void popdtime(dtime_t *dtv, mint qual)
extern void popinv(intrvl_t *iv, mint qual)

The correspondence between pre-Version 7.51 function names and new
function names follows.

Old Function Name New Function Name

popdate ibm_lib4gl_popDate
popdtime ibm_lib4gl_popDateTime

popinv ibm_lib4gl_popInterval

The structure types dtime_t and intrvl_t are used to represent DATETIME and
INTERVAL data ina C program. They are discussed in the INFORMIX-ESQL/C
Programmer’s Guide. The qual argument receives the binary representation
of the DATETIME or INTERVAL qualifier. The INFORMIX-ESQL/C Programmer’s
Guide also discusses library functions for manipulating and printing DATE,
DATETIME, and INTERVAL variables.

Library Functions for Popping BYTE or TEXT Values
You can call the following function to pop a BYTE or TEXT argument:

extern void poplocator(loc_t **blob)

The correspondence between pre-Version 7.51 function names and new
function names follows.

Old Function Name New Function Name

poplocator ibm_lib4gl_popBlobLocator

Using the Argument Stack

C-8 HCL Informix 4GL Reference Guide

The structure type loc_t defines a BYTE or TEXT value. Its use is discussed in
your Administrator’s Guide. The ibm_lib4gl_popBlobLocator() function is
unusual in that it does not copy the passed value. The function copies only
the address of the passed value (as is indicated by the double asterisk in the
function prototype). The following C fragment illustrates this:

mint get_a_text(mint nargs)
{

loc_t *theText;
ibm_lib4gl_popBlobLocator(&theText)
...

}

What ibm_lib4gl_popBlobLocator() stores at the address specified by its
parameter is the address of the locator structure owned by the calling
function. A change to the locator or the value that it describes is visible to the
calling program, which is not the case with other data types.

Any BYTE or TEXT argument must be popped as BYTE or TEXT because 4GL
provides no automatic data type conversion.

Passing Values to 4GL
C functions or programs can pass one or more arguments to 4GL by putting
the arguments on the stack:

■ When returning values to a 4GL program from a C function, you use
the external return functions that are provided with 4GL to put the
arguments on the stack.

■ When passing values to a 4GL function from a C program, you use
the external push functions that are provided with 4GL to put the
arguments on the stack.

The external return functions copy their arguments to storage allocated
outside the calling function. This storage is released when the returned value
is popped. This situation makes it possible to return values from local
variables of the function.

The external push functions do not make a copy of the pushed data value in
allocated memory. They require a pushed value to be a variable that will be
valid for the duration of the call. It is up to the calling code to dispose of the
values, as necessary, after the call. Sections that follow describe the external
return and push functions.

Using the Argument Stack

Using C with INFORMIX-4GL C-9

The Return Library Functions
The following 4GL library functions are available to return values:

extern void retint(mint iv)
extern void retshort(int2 siv)
extern void retlong(int4 lv)
extern void retflo(float *fv)
extern void retdub(double *dfv)
extern void retdec(dec_t *decv)

extern void retquote(int1 *str0)
extern void retstring(int1 *str0)
extern void retvchar(int1 *vc)

extern void retdate(int4 date)
extern void retdtime(dtime_t *dtv)

extern void retinv(intrvl_t *inv)

The correspondence between pre-Version 7.51 function names and new
function names follows.

Old Function Name New Function Name

retint ibm_lib4gl_returnMInt
retshort ibm_lib4gl_returnInt2

retlong ibm_lib4gl_returnInt4

retflo ibm_lib4gl_returnFloat

retdub ibm_lib4gl_returnDouble

retdec ibm_lib4gl_returnDecimal

retquote ibm_lib4gl_returnQuotedStr

retstring ibm_lib4gl_returnString

retvchar ibm_lib4gl_returnVarChar

retdate ibm_lib4gl_returnDate
retdtime ibm_lib4gl_returnDateTime

retinv ibm_lib4gl_returnInterval

The argument of ibm_lib4gl_returnQuotedStr() is a null-terminated string.
The ibm_lib4gl_returnString() function is included only for symmetry; it
internally calls ibm_lib4gl_returnQuotedStr().

No library function is available for returning BYTE or TEXT values, which are
passed by reference.

Using the Argument Stack

C-10 HCL Informix 4GL Reference Guide

The C function can return data in whatever form is convenient. If conversion
is possible, 4GL converts the data type as required when popping the value.
If data type conversion is not possible, an error occurs.

C functions called from 4GL must always exit with the statement return(n),
where n is the number of return values pushed onto the stack. A function that
returns nothing must exit with return(0).

The Push Library Functions
You can use the following 4GL library functions to push number values:

extern void pushint(mint iv)
extern void pushshort(int2 siv)
extern void pushlong(int4 liv)
extern void pushflo(float *fv)
extern void pushdub(double *dfv)
extern void pushdec(dec_t *decv, unsigned decp)

The correspondence between pre-Version 7.51 function names and new
function names follows.

Old Function Name New Function Name

pushint ibm_lib4gl_pushMInt
pushshort ibm_lib4gl_pushInt2

pushlong ibm_lib4gl_pushInt4

pushflo ibm_lib4gl_pushFloat

pushdub ibm_lib4gl_pushDouble

pushdec ibm_lib4gl_pushDecimal

The dec_t structure type and the C functions for manipulating decimal data
are discussed later in this appendix. The second argument of
ibm_lib4gl_pushDecimal(), namely decp, specifies the decimal precision
and scale.

For example, to give a decimal variable named dec_var the precision of 15
and the scale of 2, you could specify the following values:

ibm_lib4gl_pushDecimal(dec_var, PRECMAKE(15,2));

Here PRECMAKE is a macro defined in the decimal.h file.

Using the Argument Stack

Using C with INFORMIX-4GL C-11

You can use the following library functions to push character values:

extern void pushquote(int1 *cv, mint len)
extern void pushvchar(int1 *vcv, mint len)

The correspondence between pre-Version 7.51 function names and new
function names follows.

Old Function Name New Function Name

pushquote ibm_lib4gl_pushQuotedStr
pushvchar ibm_lib4gl_pushVarChar

The arguments to ibm_lib4gl_pushQuotedStr() and
ibm_lib4gl_pushVarChar() are an unterminated character string and the
count of characters that it contains (not including any null terminator).

You can use the following library functions to push DATE, DATETIME, and
INTERVAL values:

extern void pushdate(int4 datv)
extern void pushdtime(dtime_t *dtv)
extern void pushinv(intrvl_t *inv)

The correspondence between pre-Version 7.51 function names and new
function names follows.

Old Function Name New Function Name

pushdate ibm_lib4gl_pushDate
pushdtime ibm_lib4gl_pushDateTime

pushinv ibm_lib4gl_pushInterval

This library function pushes the location of a TEXT or BYTE argument:

extern void pushlocator(loc_t *blob)

The correspondence between pre-Version 7.51 function names and new
function names follows.

Old Function Name New Function Name

pushlocator ibm_lib4gl_pushBlobLocator

Calling a C Function from a 4GL Program

C-12 HCL Informix 4GL Reference Guide

Calling a C Function from a 4GL Program
To call a C function from a 4GL program, use the CALL statement and specify
the following information:

■ The name of the C function
■ Any arguments to pass to the C function
■ Any variables to return to the 4GL program

Important: To run or debug a 4GL Rapid Development System program that calls C
functions, you must first create a customized runner. For a complete description of
this process, refer to “Creating a Customized Runner” on page 1-87.

For example, the following CALL statement calls the C function sendmsg().
It passes two arguments (chartype and 4, respectively) to the function and
expects two arguments to be passed back (msg_status and return_code,
respectively):

CALL sendmsg(chartype, 4) RETURNING msg_status, return_code

The C function receives an integer argument that specifies how many values
were pushed on the argument stack (in this case, two arguments). This is the
number of values to be popped off the stack in the C function. The function
also needs to return values for the msg_status and return_code arguments
before passing control back to the 4GL program.

The C function should not assume it has been passed the correct number of
stacked values. The C function should test its integer argument to see how
many 4GL arguments were stacked for it. (If a function is called from two or
more statements in the same source module, 4GL verifies that the same
number of arguments is used in each call. A function could be called,
however, from different source modules, with a different number of
arguments from each module. This error, if it is an error, is not caught by 4GL.)

Calling a C Function from a 4GL Program

Using C with INFORMIX-4GL C-13

This example shows a C function that requires exactly one argument:

#include <fglsys.h>
#include <fgltypes.h>
...
...
mint nxt_bus_day(mint nargs);
{

int4 theDate;
if (nargs != 1)
{

fprintf(stderr,
"nxt_bus_day: wrong number of parms (%d)\n",
nargs);

ibm_lib4gl_returnDate(0L);
return(1);

}
ibm_lib4gl_popDate(&theDate);
switch(rdayofweek(theDate))
{
case 5: /* change friday -> monday */

++theDate;
case 6: /* saturday -> monday*/

++theDate;
default: /* (sun..thur) go to next day */

++theDate;
}
ibm_lib4gl_returnDate(theDate); /* stack result */
return(1) /* return count of stacked */

}

The function returns the date of the next business day after a given date.
Because the function must receive exactly one argument, the function checks
for the number of arguments passed. If the function receives a different
number of arguments, it terminates the program (with an identifying
message).

Calling a C Function from a 4GL Program

C-14 HCL Informix 4GL Reference Guide

The C function in the next example can operate with one, two, or three
arguments. The purpose of the function is to return the index of the next
occurrence of a given character in a string. The string is the first argument
and is required. The second argument is the character to search for; if it is
omitted, a space character is used. The third argument is an offset at which to
start the search; if it is omitted, zero is used.

#include <fglsys.h>
#include <fgltypes.h>
...
...
#define STSIZE 512+1
mint fglindex(mint nargs);
{

int1 theString[STSIZE], theChar[2];
mint offset, pos;
theChar = ''; / initialize defaults */
offset = 0;
switch(nargs)
{
case 3: /* fglindex(s,c,n) */

ibm_lib4gl_pushMInt(&offset);
case 2: /* fglindex(s,c) */

ibm_lib4gl_pushQuotedStr(theChar,2);
case 1: /* fglindex(s) */

ibm_lib4gl_pushQuotedStr(theString,STSIZE);
break;

default: /* zero or >3 parms, ret 0 */
for(;nargs;nargs)
ibm_lib4gl_pushQuotedStr(theString,STSIZE);
ibm_lib4gl_returnMInt(999);
return(1);

}
if (pos = index(theString+offset,*theChar))

ibm_lib4gl_returnMInt(offset+pos-1);
else

ibm_lib4gl_returnMInt(0);
return(1);

}

The switch statement is useful in popping the correct number of arguments
from the stack. By arranging the valid cases in descending order, the correct
number of arguments can be popped in the correct sequence with minimal
coding. In this example, the C function does not terminate the 4GL program
when given an incorrect number of arguments. Instead, it disposes of all
stacked arguments by popping them as character strings. Then it returns an
impossible value.

Calling a 4GL Function from a C Program

Using C with INFORMIX-4GL C-15

Important: A 4GL Rapid Development System program that calls C functions cannot
specify as an argument to the C function a 4GL program variable whose scope of
reference is global.

Compiling and Executing the Program
The version of 4GL you are using determines how you compile and run a 4GL
program that calls C functions. If you are using the 4GL Rapid Development
System, you need to create a customized runner to handle the C functions. If
you are using the C Compiler version, you do not need a customized runner.
For complete information on compiling and executing 4GL programs, see
Chapter 1, “Compiling INFORMIX-4GL Source Files.” For information on
creating a customized runner, see “RDS Programs That Call C Functions” on
page 1-83.

Calling a 4GL Function from a C Program
4GL provides an application programming interface (API) with the
C language that allows you to call 4GL functions from a C program. You can
call either 4GL Rapid Development System functions or C Compiler
functions.

To write a C program that calls 4GL functions

1. Include the fglapi.h header file.
2. Execute the fgl_start() macro to perform initialization tasks.
3. Execute the fgl_call() macro to call each 4GL function.
4. If the 4GL function displays a form, execute the fgl_exitfm() macro

to reset your terminal for character mode.
5. At the end of the program, execute the fgl_end() macro to free

resources.

To pass values between the C program and 4GL function, use the push and
pop functions described in “Using the Argument Stack” on page C-3.

Calling a 4GL Function from a C Program

C-16 HCL Informix 4GL Reference Guide

This section first explains how to use these features of the API with C:

■ Including the fglapi.h file
■ Initializing values
■ Calling 4GL functions
■ Handling Interrupt signals
■ Compiling and executing the C program

Including the fglapi.h File
You must include the fglapi.h header file in any C program that calls 4GL
functions. This header file defines the fgl_start(), fgl_call(), fgl_exitfm(),
and fgl_end() macros and is located in the $INFORMIXDIR/incl directory.
(See Appendix D, “Environment Variables,”for information on how to set the
INFORMIXDIR environment variable.)

You can include fglapi.h, as demonstrated in the following example:

#include <fglapi.h>
o4Main()
{

...
}

Initializing the Argument Stack
Before you can call a 4GL function in a C program, you must execute the
fgl_start() macro. This macro performs the following actions:

■ It initializes the argument stack so that you can pass arguments
between the C program and the 4GL functions.

■ If you are using the p-code compiler, it specifies the filename (and
path) of the file that contains the 4GL functions.

You can execute this macro once per C program.

Calling a 4GL Function from a C Program

Using C with INFORMIX-4GL C-17

The following example demonstrates how to call the fgl_start() macro. It
specifies a file named test as the file that contains the 4GL functions:

#include <fglapi.h>

o4Main()
{
fgl_start("test");
...
}

If you compile the 4GL function to C code, the filename argument is optional
and is ignored if you specify it. In this case, you can call fgl_start() as follows:

#include <fglapi.h>

o4Main()
{
fgl_start();
...
}

The fgl_start() macro is described in detail in “fgl_start()” on page 21.

Invoking the 4GL Function
The C program must perform the following actions to call a 4GL function:

1. Push the argument values that the function expects onto the
argument stack

2. Use the fgl_call() macro to identify the name of the 4GL function and
to tell it how many arguments to expect

The 4GL function must perform the following actions to receive arguments
from and to pass values back to the C program:

1. Include the appropriate arguments in the FUNCTION statement
2. Use the DEFINE statement to define variables for all the arguments

passed to the function
3. Use the RETURN statement in the 4GL function to return control to

the C program and to list any values to pass to the calling C program

The C program can then pop the values passed from the function off the
argument stack.

Calling a 4GL Function from a C Program

C-18 HCL Informix 4GL Reference Guide

For example, the C program listed on the next page calls a 4GL function
named get_customer().

The program passes one argument to the get_customer() function. Then
get_customer() passes one argument back to the C program. The argument
passed to the function is the filename and path of the demonstration
database. The C program prompts the user for this filename.

The get_customer() function displays a menu of the first 10 customers in the
customer table of the specified database. The user then chooses a customer
name from the menu, and the function passes the chosen name back to the
C program. Finally, the C program displays the name of the customer.

#include <fglapi.h>
#include <fglsys.h>
#include <fgltypes.h>
#include <stdio.h>

o4Main()
{

int1 str[80];

fgl_start("example");
printf("enter the full path name of a STORES database: ");
fflush(stdout);
scanf("%s", str);
ibm_lib4gl_pushQuotedStr(str, strlen(str));
fgl_call(get_customer, 1);
ibm_lib4gl_popQuotedStr(str, 80);
printf("name entered: %s\n", str);
fgl_end();

}

The logic of the 4GL function get_customer() is as follows:

FUNCTION get_customer(dbname)
DEFINE dbname CHAR(30),

cust_array ARRAY[50] of CHAR(15),
i INT

DATABASE dbname
DECLARE c1 CURSOR FOR SELECT lname

FROM customer ORDER BY lname

LET i = 1
FOREACH c1 INTO cust_array[i]

LET i = i + 1
END FOREACH

MENU "enter name=>"

COMMAND cust_array[1] RETURN cust_array[1]
COMMAND cust_array[2] RETURN cust_array[2]

Calling a 4GL Function from a C Program

Using C with INFORMIX-4GL C-19

COMMAND cust_array[3] RETURN cust_array[3]
COMMAND cust_array[4] RETURN cust_array[4]
COMMAND cust_array[5] RETURN cust_array[5]
COMMAND cust_array[6] RETURN cust_array[6]
COMMAND cust_array[7] RETURN cust_array[7]
COMMAND cust_array[8] RETURN cust_array[8]
COMMAND cust_array[9] RETURN cust_array[9]
COMMAND cust_array[10] RETURN cust_array[10]

END MENU
END FUNCTION

Using Interrupt Signals
An 4GL program can trap Interrupt signals by using the DEFER INTERRUPT
and DEFER QUIT statements. When executing a C program that calls 4GL
functions, you must be careful how you handle interrupts in the C program,
so that you do not confuse the 4GL signal handling with any signal handling
that occurs in the C program.

The fgl_start() macro defines functions to call when interrupts occur. When
one of these interrupts occurs, the appropriate function clears the screen and
terminates the program.

By using DEFER INTERRUPT and DEFER QUIT within a 4GL function, you can
control the processing that occurs when the interrupt is detected.

Compiling and Executing the C Program
The method by which you compile and execute a C program that calls a 4GL
function is similar to the method you use to compile and execute a 4GL
program. The following table shows the commands to compile a C program
that calls 4GL functions based on the version of 4GL you are using.

Version of 4GL Compilation Commands

C Compiler c4gl command

RDS fglpc and cfglgo commands

When compiling a C program that calls a 4GL function, you must specify the
-api option of the compilation command. Do not specify the fgiusr.c file on
the command line unless you are calling external C functions from 4GL.

Calling a 4GL Function from a C Program

C-20 HCL Informix 4GL Reference Guide

The following examples illustrate the compilation and execution, using two
source code files and one executable:

■ The file mymain.c contains the C program.
■ The file my4gl.4gl contains the 4GL function.
■ The file myprog.exe is the resulting executable.

Compiling a C Program That Calls C Compiler Functions
To compile a C program that calls a C Compiler function, use the c4gl
command as shown in the following example:

c4gl mymain.c my4gl.4gl -o mymain.exe
./mymain.exe

For complete information on the c4gl command, see “Compiling a 4GL
Module” on page 1-35.

Compiling a C Program That Calls 4GL RDS Functions
To compile a C program that calls a compiled 4GL Rapid Development System
function, use the fglpc and cfglgo commands as shown in the following
example:

fglpc my4gl
cfglgo -api mymain.c -o mymain.exe
./mymain.exe my4gl

For complete information on the fglpc command, see “Compiling an RDS
Source File” on page 1-77. For complete information on the cfglgo command,
see “Creating a Customized Runner” on page 1-87.

Macros for Calling 4GL Functions

Using C with INFORMIX-4GL C-21

Macros for Calling 4GL Functions
Four macros are provided with 4GL for you to use in C programs that call 4GL
functions:

■ fgl_start()
■ fgl_call()
■ fgl_exitfm()
■ fgl_end()

These macros are described in the sections that follow.

fgl_start()
The fgl_start() macro initializes the 4GL argument stack, prepares for signal
handling, and, if you are using the 4GL Rapid Development System, specifies
the path of the file that contains the 4GL functions.

fgl_start(filename)
int1 *filename;

You can specify filename by using either a quoted string or a character
variable. The file extension, .4go or .4gi, is optional.

The following list describes the return codes of fgl_start() and the conditions
that evoke them.

0 The macro executed successfully.

< 0 The macro failed.

You must specify the fgl_start() macro before using any of the following
items:

■ The fgl_call() macro
■ The 4GL pushing or popping functions

filename is the filename (and the directory path) of the file that contains the 4GL
functions to call.

Macros for Calling 4GL Functions

C-22 HCL Informix 4GL Reference Guide

Important: To avoid confusion, you might want to make fgl_start() the first
function call in a C program that calls 4GL functions.

If you are using the 4GL Rapid Development System, you must specify
filename. If you are using the C Compiler, filename is optional. For compati-
bility, however, you might want to specify an empty string, such as " ", as a
placeholder for filename. Specifying an empty string makes it easier to convert
a C Compiler program to an RDS program.

This code example specifies test as the file that contains the 4GL functions:

#include <fglapi.h>

o4Main()
{

...
fgl_start("test");
...

}

Once a 4GL function begins execution through use of the fgl_call() macro,
the function has access to the arguments passed to it by fgl_call() and the
command line arguments passed to the calling C function itself. The
arguments passed by fgl_call() are accessed by the 4GL function in the
normal manner—through its argument list. The command-line arguments
passed to the calling C function, however, are accessed by the 4GL function
through use of the 4GL functions ARG_VAL() and NUM_ARGS(). These latter
two functions operate in the normal way, as though the command-line
arguments passed to the C function had been instead used as command-line
arguments to execute the 4GL MAIN function block.

Macros for Calling 4GL Functions

Using C with INFORMIX-4GL C-23

fgl_call()
The fgl_call() macro calls the 4GL function to execute. This macro passes the
following arguments to the 4GL function:

■ The name of the function
■ The number of arguments being passed

The fgl_call() macro returns the number of arguments being passed back to
the program from the function.

fgl_call(funcname, nparams)
int1* funcname;
mint nparams;

You must push onto the argument stack any values to be passed to the 4GL
function before executing the fgl_call() macro. For more information on
using the push functions, see “The Push Library Functions” on page C-10.

To read any arguments passed back to the C program from the 4GL function,
use the pop functions. For more information on using the pop functions, see
“Receiving Values from 4GL” on page C-5.

The following C source code pushes three arguments onto the argument
stack, and then calls the out_rep1() function:

#include <fglapi.h>
#include <fglsys.h>
...

o4Main()
{

...
{

...

}

fgl_start()
...
ibm_lib4gl_pushQuotedStr(p->pw_name, strlen(p->pw_name));
ibm_lib4gl_pushQuotedStr(p->pw_dir, strlen(p->pw_dir));
ibm_lib4gl_pushMInt(p->pw_uid);
fgl_call(out_rep1, 3);
...
}

funcname is the name of the function to call.
nparams is the number of arguments you are passing to the function.

Macros for Calling 4GL Functions

C-24 HCL Informix 4GL Reference Guide

fgl_exitfm()
The fgl_exitfm() macro resets the terminal for character mode. Use this
macro after calling a 4GL function that displays a form.

fgl_exitfm()

Place this function after any fgl_call() macro that causes 4GL to display one
or more forms. This macro resets the terminal for character mode. If you do
not execute this macro, the terminal might behave unusually, and the end
user might be unable to enter any input.

The following example pushes a value onto the argument stack, calls the 4GL
function, pops the returned value, and then executes the fgl_exitfm() macro
to reset the terminal to character mode:

#include <fglapi.h>
#include <fglsys.h>
#include <stdio.h>

o4Main()
{

fgl_start()
...
ibm_lib4gl_pushQuotedStr(str, strlen(str));
fgl_call(get_customer, 1);
ibm_lib4gl_popQuotedStr(str, 80);
fgl_exitfm();
...

}

fgl_end()
The fgl_end() macro frees resources resulting from the execution of a
C program that calls a 4GL function.

fgl_end()

The fgl_end() macro performs the following actions:

■ Deletes any temp files created by TEXT or BYTE objects
■ Closes any files opened by the 4GL function
■ Frees the allocated memory

Call this macro at the end of a C program that calls a 4GL function.

Macros for Calling 4GL Functions

Using C with INFORMIX-4GL C-25

The following example demonstrates popping the value returned from 4GL,
printing this value, and then freeing resources:

#include <fglapi.h>
#include <fglsys.h>
#include <stdio.h>

o4Main()
{

fgl_start()
...
ibm_lib4gl_popQuotedStr(str, 80);
printf("name entered: %s\n", str);
fgl_end()

}

Macros for Calling 4GL Functions

C-26 HCL Informix 4GL Reference Guide

Decimal Functions for C
The data type DECIMAL is a machine-independent method for representing
numbers of up to 32 significant digits, with or without a decimal point, and
with exponents in the range -128 to +126. 4GL provides routines that facilitate
the conversion of DECIMAL-type numbers to and from every data type
allowed in the C language.

DECIMAL-type numbers consist of an exponent and a mantissa (or fractional
part) in base 100. In normalized form, the first digit of the mantissa must be
greater than zero.

When used within a C program, DECIMAL-type numbers are stored in a
C structure of the following type:

#define DECSIZE 16

struct decimal
{
int2 dec_exp;
int2 dec_pos;
int2 dec_ndgts;
int1 dec_dgts[DECSIZE];
};

typedef struct decimal dec_t;

The decimal structure and the type definition dec_t can be found in the
header file decimal.h. Include this file in all C source files that use any of the
4GL decimal functions.

The decimal structure has four parts:

■ dec_exp. Holds the exponent of the normalized DECIMAL-type
number. This exponent represents a power of 100.

■ dec_pos. Holds the sign of the DECIMAL-type number (1 when the
number is zero or greater; 0 when less than zero).

■ dec_ndgts. Contains the number of base-100 significant digits of the
DECIMAL-type number.

■ dec_dgts. A character array that holds the significant digits of the
normalized DECIMAL-type number (dec_dgts[0] != 0). Each
character in the array is a one-byte binary number in base 100. The
number of significant digits in dec_dgts is stored in dec_ndgts.

Macros for Calling 4GL Functions

Using C with INFORMIX-4GL C-27

All operations on DECIMAL-type numbers should take place through the
functions provided in the 4GL library, as described in the following pages.
Any other operations, modifications, or analysis of DECIMAL-type numbers
can produce unpredictable results.

The following C function calls are available in 4GL to process DECIMAL-type
numbers.

Function Effect Page

deccvasc() Convert C int1 type to DECIMAL type C-28

dectoasc() Convert DECIMAL type to C int1 type C-30

deccvint() Convert C int type to DECIMAL type C-32

dectoint() Convert DECIMAL type to C int type C-33

deccvlong() Convert C int4 type to DECIMAL type C-34

dectolong() Convert DECIMAL type to C int4 type C-35

deccvflt() Convert C float type to DECIMAL type C-36

dectoflt() Convert DECIMAL type to C float type C-37

deccvdbl() Convert C double type to DECIMAL type C-38

dectodbl() Convert DECIMAL type to C double type C-39

decadd() Add two DECIMAL numbers C-40

decsub() Subtract two DECIMAL numbers C-40

decmul() Multiply two DECIMAL numbers C-40

decdiv() Divide two DECIMAL numbers C-40

deccmp() Compare two DECIMAL numbers C-41

deccopy() Copy a DECIMAL number C-42

dececvt() Convert DECIMAL value to ASCII string C-43

decfcvt() Convert DECIMAL value to ASCII string C-43

Macros for Calling 4GL Functions

C-28 HCL Informix 4GL Reference Guide

deccvasc()
Use deccvasc() to convert a value stored as a printable character in a C int1
type into a DECIMAL-type number.

deccvasc(cp, len, np)
int1 *cp;
mint len;
dec_t *np;

These are the return codes of deccvasc() and the conditions that evoke them:

0 Function was successful.

-1200 Number is too large to fit into a DECIMAL-type (overflow).

-1201 Number is too small to fit into a DECIMAL-type (underflow).

-1213 String has non-numeric characters.

-1216 String has bad exponent.

cp

len
np

points to a string that holds the value to be converted.
Leading blank spaces in the character string are ignored.
The character string can have a leading plus (+) or minus (-) sign, a
decimal point (.), and numbers to the right of the decimal point.
The character string can contain an exponent preceded by either e or E.
The exponent value can also be preceded by a plus or minus sign.
is the length of the string.
is a pointer to a dec_t structure that receives the result of the conversion.

Macros for Calling 4GL Functions

Using C with INFORMIX-4GL C-29

Example
The following segment of code gets the character string input from the
terminal, and converts it to number, a DECIMAL-type number:

#include <decimal.h>

int1 input[80];
dec_t number;

. . .
/* get input from terminal */
getline(input);

/* convert input into decimal number */
deccvasc(input, 32, &number);

Macros for Calling 4GL Functions

C-30 HCL Informix 4GL Reference Guide

dectoasc()
Use dectoasc() to convert a DECIMAL-type number to an ASCII string.

dectoasc(np, cp, len, right)
dec_t *np;
int1 *cp;
mint len;
mint right;

Because the ASCII string returned by dectoasc() is not null-terminated, your
program must add a null character to the string before printing it.

The following list describes the return codes of dectoasc() and the conditions
that evoke them:

0 Conversion was successful.

-1 Conversion was not successful.

np is a pointer to the decimal structure whose associated decimal value is to be
converted to an ASCII string.

cp is a pointer to the beginning of the character buffer to hold the ASCII string.
len is the maximum length (in bytes) of the string buffer.

If the number does not fit into a character string of length len, dectoasc()
converts the number to exponential notation. If the number still does not fit,
dectoasc() fills the string with asterisks.
If the number is shorter than the string, it is left-aligned and padded on the
right with blank characters.

right is an integer that indicates the number of decimal places to the right of the
decimal point.
If right equals -1, the number of decimal places is determined by the decimal
value of *np.

Macros for Calling 4GL Functions

Using C with INFORMIX-4GL C-31

Example
The following segment of code accepts the character string input from the
terminal and converts it to number, a DECIMAL-type number. The number
value is then converted to the character string output, a null character is
appended, and the string is printed.

#include <decimal.h>

int1 input[80];
int1 output[16];
dec_t number;

. . .
/* get input from terminal */
getline(input);

/* convert input into decimal number */
deccvasc(input, 32, &number);

/* convert number to ASCII string */
dectoasc(&number, output, 15, 1);

/* add null character to end of string prior to printing */
output[15] = ’ ’;

/* print the value just entered */
printf("You just entered %s", output);

Macros for Calling 4GL Functions

C-32 HCL Informix 4GL Reference Guide

deccvint()
Use deccvint() to convert a C type int to a DECIMAL-type number.

deccvint(integer, np)
mint integer;
dec_t *np;

The following list describes the return codes of deccvint() and the conditions
that evoke them:

0 Conversion was successful.

-1 Conversion was not successful.

Example

#include <decimal.h>

dec_t decnum;

/* convert the integer value -999
* into a DECIMAL-type number
*/
deccvint(-999, &decnum);

integer is the integer that is to be converted.
np is a pointer to a dec_t structure that receives the result of the conversion.

Macros for Calling 4GL Functions

Using C with INFORMIX-4GL C-33

dectoint()
Use dectoint() to convert a DECIMAL-type number to a C type int.

dectoint(np, ip)
dec_t *np;
mint *ip;

The following list describes the return codes of dectoint() and the conditions
that evoke them:

0 Conversion was successful.

-1200 The magnitude of the DECIMAL-type number is greater than 32,767.

Example

#include <decimal.h>

dec_t mydecimal;
mint myinteger;

/* convert the value in
* mydecimal into an integer
* and place the results in
* the variable myinteger.
*/
dectoint(&mydecimal, &myinteger);

np
ip

is a pointer to a decimal structure whose value is converted to an integer.
is a pointer to the integer that receives the result of the conversion.

Macros for Calling 4GL Functions

C-34 HCL Informix 4GL Reference Guide

deccvlong()
Use deccvlong() to convert a C type int4 value to a DECIMAL-type number.

deccvlong(lng, np)
int4 lng;
dec_t *np;

Example
#include <decimal.h>

dec_t mydecimal;
int4 mylong;

/* Set the decimal structure
* mydecimal to 37.
*/
deccvlong(37L, &mydecimal);

. . .
mylong = 123456L;
/* Convert the variable mylong into
* a DECIMAL-type number held in
* mydecimal.
*/
deccvlong(mylong, &mydecimal);

lng
np

is a pointer to a long integer.
is a pointer to a dec_t structure that receives the result of the conversion.

Macros for Calling 4GL Functions

Using C with INFORMIX-4GL C-35

dectolong()
Use dectolong() to convert a DECIMAL-type number to a C type int4.

dectolong(np, lngp)
dec_t *np;
int4 *lngp;

These are the return codes of dectolong() and the conditions that evoke
them:

0 Conversion was successful.

-1200 Magnitude of the DECIMAL-type number exceeds 2,147,483,647.

Example

#include <decimal.h>

dec_t mydecimal;
int4 mylong;

/* convert the DECIMAL-type value
* held in the decimal structure
* mydecimal to a long pointed to
* by mylong.
*/
dectolong(&mydecimal, &mylong);

np
lngp

is a pointer to a decimal structure.
is a pointer to a long type that receives the result of the conversion.

Macros for Calling 4GL Functions

C-36 HCL Informix 4GL Reference Guide

deccvflt()
Use deccvflt() to convert a C type float to a DECIMAL-type number.

deccvflt(flt, np)
float flt;
dec_t *np;

Example
#include <decimal.h>

dec_t mydecimal;
float myfloat;

/* Set the decimal structure
* myfloat to 3.14159.
*/
deccvflt(3.14159, &mydecimal);

myfloat = 123456.78;

/* Convert the variable myfloat into
* a DECIMAL-type number held in
* mydecimal.
*/
deccvflt(myfloat, &mydecimal);

flt is a floating-point number.
np is a pointer to a dec_t structure that receives the result of the

conversion.

Macros for Calling 4GL Functions

Using C with INFORMIX-4GL C-37

dectoflt()
Use dectoflt() to convert a DECIMAL-type number to a C type float.

dectoflt(np, fltp)
dec_t *np;
float *fltp;

On most implementations of C, the resulting floating-point number has eight
significant digits.

Example

#include <decimal.h>

dec_t mydecimal;
float myfloat;

/* convert the DECIMAL-type value
* held in the decimal structure
* mydecimal to a floating point number pointed to
* by myfloat.
*/
dectoflt(&mydecimal, &myfloat);

np is a pointer to a decimal structure.
fltp is a pointer to a floating-point number that receives the result of the

conversion.

Macros for Calling 4GL Functions

C-38 HCL Informix 4GL Reference Guide

deccvdbl()
Use deccvdbl() to convert a C type double to a DECIMAL-type number.

deccvdbl(dbl, np)
double dbl;
dec_t *np;

Example
#include <decimal.h>

dec_t mydecimal;
double mydouble;

/* Set the decimal structure
* mydecimal to 3.14159.
*/
deccvdbl(3.14159, &mydecimal);

mydouble = 123456.78;

/* Convert the variable mydouble into
* a DECIMAL-type number held in
* mydecimal.
*/
deccvdbl(mydouble, &mydecimal);

dbl is a double-precision floating-point number.
np is a pointer to a dec_t structure that receives the result of the

conversion.

Macros for Calling 4GL Functions

Using C with INFORMIX-4GL C-39

dectodbl()
Use dectodbl() to convert a DECIMAL-type number to a C type double.

dectodbl(np, dblp)
dec_t *np;
double *dblp;

The resulting double-precision value receives a total of 16 significant digits
on most implementations of the C language.

Example

#include <decimal.h>

dec_t mydecimal;
double mydouble;

/* convert the DECIMAL-type value
* held in the decimal structure
* mydecimal to a double pointed to
* by mydouble.
*/
dectodbl(&mydecimal, &mydouble);

np is a pointer to a decimal structure.
dblp is a pointer to a double-precision, floating-point number that receives the

result of the conversion.

Macros for Calling 4GL Functions

C-40 HCL Informix 4GL Reference Guide

decadd(), decsub(), decmul(), and decdiv()
The decimal arithmetic routines take pointers to three decimal structures as
parameters. The first two decimal structures hold the operands of the arith-
metic function. The third decimal structure holds the result.

decadd(n1, n2, result)
dec_t *n1;
dec_t *n2;
dec_t *result; /* result = n1 + n2 */

decsub(n1, n2, result)
dec_t *n1;
dec_t *n2;
dec_t *result; /* result = n1 - n2 */

decmul(n1, n2, result)
dec_t *n1;
dec_t *n2;
dec_t *result; /* result = n1 * n2 */

decdiv(n1, n2, result)
dec_t *n1;
dec_t *n2;
dec_t *result; /* result = n1 / n2 */

The following list describes the return codes of the decimal arithmetic
routines and the conditions that evoke them:

0 Operation was successful.

-1200 Operation resulted in overflow.

-1201 Operation resulted in underflow.

-1202 Operation attempts to divide by zero.

n1 is a pointer to the decimal structure of the first operand.
n2 is a pointer to the decimal structure of the second operand.
result is a pointer to the decimal structure of the result of the operation.

The result value can use the same pointer as either n1 or n2.

Macros for Calling 4GL Functions

Using C with INFORMIX-4GL C-41

deccmp()
Use deccmp() to compare two DECIMAL-type numbers.

mint deccmp(n1, n2)
dec_t *n1;
dec_t *n2;

The following list describes the return codes of deccmp() and the conditions
that evoke them:

0 The two values are the same.

-1 The first value is less than the second.

+1 The first value is greater than the second.

n1 is a pointer to the decimal structure of the first number.
n2 is a pointer to the decimal structure of the second number.

Macros for Calling 4GL Functions

C-42 HCL Informix 4GL Reference Guide

deccopy()
Use deccopy() to copy the value of one dec_t structure to another.

deccopy(n1, n2)
dec_t *n1;
dec_t *n2;

n1 is a pointer to the source dec_t structure.
n2 is a pointer to the destination dec_t structure.

Macros for Calling 4GL Functions

Using C with INFORMIX-4GL C-43

dececvt() and decfcvt()
These functions convert a DECIMAL value to an ASCII string.

int1 *dececvt(np, ndigit, decpt, sign)
dec_t *np;
mint ndigit;
mint *decpt;
mint *sign;

int1 *decfcvt(np, ndigit, decpt, sign)
dec_t *np;
mint ndigit;
mint *decpt;
mint *sign;

The dececvt() function converts the decimal value pointed to by np into a
null-terminated string of ndigit ASCII digits and returns a pointer to the
string.

The low-order digit of the DECIMAL number is rounded.

The decfcvt() function is identical to dececvt() except that ndigit specifies the
number of digits to the right of the decimal point instead of the total number
of digits.

np is a pointer to a dec_t structure that contains the value of the number that
is to be converted to a string.

ndigit is, for dececvt(), the length of the ASCII string; for decfcvt(), it is the
number of digits to the right of the decimal point.

decpt points to an integer that is the position of the decimal point relative to the
beginning of the string. A negative value for *decpt means to the left of the
returned digits.

sign is a pointer to the sign of the result. If the sign of the result is negative, *sign
is nonzero; otherwise, the value is zero.

Macros for Calling 4GL Functions

C-44 HCL Informix 4GL Reference Guide

Examples
In the following example, np points to a dec_t structure that contains
12345.67, and *decpt points to an integer that contains a 5:

ptr = dececvt (np,4,&decpt,&sign); = 1235
ptr = dececvt (np,10,&decpt,&sign); = 1234567000
ptr = decfcvt (np,1,&decpt,&sign); = 123457
ptr = decfcvt (np,3,&decpt,&sign); = 12345670

In this example, np points to a dec_t structure that contains a 0.001234
value, and *decpt points to an integer that contains a -2 value:

ptr = dececvt (np,4,&decpt,&sign); = 1234
ptr = dececvt (np,10,&decpt,&sign); = 1234000000
ptr = decfcvt (np,1,&decpt,&sign); =
ptr = decfcvt (np,3,&decpt,&sign); = 1

Environment Variables

Various environment variables can affect the functionality of your
INFORMIX-4GL program. These environment variables can
describe your terminal, specify search paths for files, or define
other parameters.

This appendix describes environment variables that affect 4GL
and shows how to set them. It is divided into three main sections:

■ Informix environment variables
This section describes some Informix-defined environ-
ment variables that are used with 4GL. Many of these
variables are not for frequent use but are included in
case they are necessary for correct operation of 4GL.

■ GLS environment variables
You must set some or all of these variables to benefit
from GLS (global language support) if you are develop-
ing or running a 4GL application for a locale other than
U.S. English. GLS is described in Appendix E, “Develop-
ing Applications with Global Language Support.” ♦

■ UNIX environment variables that your Informix
database server recognizes
This section describes some standard UNIX environment
variables that are recognized by Informix products.

Appendix

D

GLS

Where to Set Environment Variables

D-2 HCL Informix 4GL Reference Guide

Some environment variables are required; others are optional. For example,
you must set several UNIX environment variables (or else accept their default
settings). This appendix also identifies some environment variables that this
version of 4GL ignores although earlier 4GL versions recognized them. (See
also the Informix Guide to SQL: Reference for information about other
environment variables that can affect Informix database servers.)

Where to Set Environment Variables
You can set Informix, GLS, and UNIX environment variables in three ways:

■ At the system prompt on the command line
If you set an environment variable at the system prompt, you must
reassign it the next time that you log in to the system.

■ In a special shell file, depending on your UNIX shell as follows:
❑ For the C shell, .login or .cshrc
❑ For the Bourne shell or the Korn shell, .profile
An environment variable that is set in your .login, .cshrc, or .profile
file is assigned automatically whenever you log in to the system.

Warning: Make sure that you do not inadvertently set an environment variable
differently in your .login and .cshrc C shell files.

■ In an environment-configuration file
You can define all the environment variables that are used by
Informix products in this common or private file. Using a
configuration file reduces the number of environment variables that
you must set at the command line or in a shell file.

Where to Set Environment Variables

Environment Variables D-3

An environment-configuration file can contain comment lines
(preceded by #) and variable lines and their values (separated by
blanks and tabs), as in the following example:

This is an example of an environment-configuration file

These are Informix-defined variable settings

DBDATE DMY4-
DBFORMAT *:.:,:DM
DBLANG german

Use the ENVIGNORE environment variable to later override one or
more entries in this file. Use the following Informix chkenv utility to
check the contents of an environment-configuration file and return
an error message if there is a bad environment variable entry in the
file or if the file is too large:

chkenv filename

The chkenv utility is described in the Informix Guide to SQL: Reference,
in the chapter about SQL utilities.
The common (shared) environment-configuration file resides in
$INFORMIXDIR/etc/informix.rc. The permission for this shared file
must be set to 644. A private environment-configuration file must be
stored in the user’s home directory as .informix and must be read-
able by the user.

Important: The first time that you set an environment variable in a shell or configu-
ration file, before you begin work with 4GL, first log out and log back in, and then
“source” the file (with C shell), or use “.” to execute an environment-configuration
file (with a Bourne or Korn shell). This action allows the process to read your new
setting. Resetting environment variables during a 4GL session generally has no effect
on any 4GL program that is running because 4GL uses the settings that were in effect
when you logged in rather than when program execution commenced.

How to Set Environment Variables

D-4 HCL Informix 4GL Reference Guide

How to Set Environment Variables
You can change default settings and add new ones by setting one or more of
the environment variables recognized by your Informix product. If you are
already using an Informix product, some or all the appropriate environment
variables might already be set.

After one or more Informix products have been installed, enter the following
command at the system prompt to view your current environment settings.

System Command

BSD UNIX env

UNIX System V printenv

Use standard UNIX commands to set environment variables. Depending on
the type of shell that you use, the following table shows how you set the
(fictional) ABCD environment variable to value.

Shell Command

C setenv ABCD value

Bourne or Korn ABCD=value
export ABCD

Korn export ABCD=value

When Bourne shell settings are shown in this appendix, the Korn shell (a
superset of the Bourne shell) is always implied as well. Korn shell syntax
allows for a shortcut, as shown in the preceding table.

Important: The environment variables are case sensitive. For example, if you specify
a lowercase letter where uppercase is required, your setting might result in the default
value being used, rather than what you set, or other unexpected behavior.

Default Environment Variable Settings

Environment Variables D-5

The following diagram shows how the syntax for setting an environment
variable is represented in this appendix. These diagrams always indicate the
setting for the C shell; for the Bourne or Korn shell, follow the syntax in the
preceding table.

For more information on how to read syntax diagrams, see “How to Read a
Syntax Diagram” on page 15 in the Introduction to this Guide.

To unset most of the environment variables shown in this appendix, enter the
following command.

Shell Command

C unsetenv ABCD

Bourne or Korn unset ABCD

Default Environment Variable Settings
The following are default assumptions that Informix products make about
your environment. Environment variables that can change specific default
values are shown in parentheses. Other product-specific default values are
described where appropriate in this appendix:

■ The program, preprocessor, and any associated files and libraries of
your product have been installed in the /usr/informix directory.

■ The default database server for explicit or implicit connections is
indicated by an entry in the $INFORMIXDIR/etc/sqlhosts file.
(INFORMIXSERVER)

■ The default directory for message files is $INFORMIXDIR/msg.
(DBLANG unset; the LANG variable is no longer used by 4GL)

■ If you are using INFORMIX-SE, the default or current database is in
the current directory. (DBPATH)

setenv ABCD value

List of Environment Variables

D-6 HCL Informix 4GL Reference Guide

■ Temporary files for INFORMIX-SE are stored in the /tmp directory.
(DBTEMP)

■ The default terminal-dependent keyboard and screen capabilities are
defined in the termcap file in the $INFORMIXDIR/etc directory.
(INFORMIXTERM)

■ For products that use an editor, the default editor is the predominant
editor for the operating system, usually vi. (DBEDIT)

■ The UNIX utility that sends files to a printer:
❑ For UNIX System V, use lp.
❑ For BSD and other UNIX systems (DBPRINT), use lpr.

■ In the default locale (U.S. English), the default format for money
values is $000.00. (DBMONEY set to $.)

■ In the default locale (U.S. English), the default format for date values
is MM/DD/YYYY. (DBDATE set to MDY4/)

■ The default field separator for data files of LOAD and UNLOAD state-
ments is the pipe symbol (|=ASCII 124). (DBDELIMITER set to |)

List of Environment Variables
The following tables list Informix, GLS, and UNIX environment variables that
can be set (or should not be set) for an Informix database server or for 4GL.

Informix Environment Variable Restrictions Page

C4GLFLAGS D-10

C4GLNOPARAMCHK D-11

CC For code compiled to C only D-12

COLUMNS D-12

DBANSIWARN D-14

DBCENTURY D-15

DBDATE D-17

(1 of 3)

List of Environment Variables

Environment Variables D-7

Informix Environment Variable Restrictions Page

DBDELIMITER D-19

DBEDIT D-20

DBESCWT D-21

DBFORM D-23

DBFORMAT D-25

DBLANG D-28

DBMONEY D-30

DBPATH D-32

DBPRINT D-35

DBREMOTECMD Dynamic Server only D-36

DBSPACETEMP Dynamic Server only D-37

DBSRC Interactive Debugger only D-38

DBTEMP INFORMIX-SE only D-39

DBTIME Not used by 4GL D-39

DBUPSPACE D-40

ENVIGNORE D-41

FET_BUF_SIZE D-42

FGLPCFLAGS D-43

FGLSKIPNXTPG D-43

INFORMIXC For code compiled to C only D-44

INFORMIXCONRETRY D-44

INFORMIXCONTIME D-45

INFORMIXDIR D-47

INFORMIXSERVER D-48

(2 of 3)

List of Environment Variables

D-8 HCL Informix 4GL Reference Guide

Informix Environment Variable Restrictions Page

INFORMIXSHMBASE Dynamic Server only D-49

INFORMIXSTACKSIZE Dynamic Server only D-50

INFORMIXTERM D-51

IXOLDFLDSCOPE D-53

LINES D-55

ONCONFIG Dynamic Server only D-56

PDQPRIORITY D-57

PROGRAM_DESIGN_DBS D-58

PSORT_DBTEMP Dynamic Server only D-60

PSORT_NPROCS Dynamic Server only D-61

SQLEXEC No longer used D-62

SQLRM Must be unset D-64

SQLRMDIR Must be unset D-65

SUPOUTPIPEMSG D-63

The following table lists the GLS environment variables.

(3 of 3)

GLS Environment Variable Restrictions

CLIENT_LOCALE

COLLCHAR No longer used

DBAPICODE

DB_LOCALE

DBNLS

GL_DATE

(1 of 2)

GLS

List of Environment Variables

Environment Variables D-9

GLS Environment Variable Restrictions

GL_DATETIME

LANG No longer used

SERVER_LOCALE

(2 of 2)

For information about these GLS environment variables, see the Informix
Guide to GLS Functionality and the Informix GLS Programmer’s Guide. ♦

The following table lists the UNIX environment variables.

UNIX Environment Variable Page

PATH D-67

TERM D-69

TERMCAP D-70

TERMINFO D-71

For additional information, see the Informix Guide to SQL: Reference.

Informix Environment Variables

D-10 HCL Informix 4GL Reference Guide

Informix Environment Variables
This section lists alphabetically the environment variables that you can set
when you use 4GL and identifies some that should not be set.

C4GLFLAGS
The environment variables C4GLFLAGS allows you to set certain compiler
options as defaults so that they need not appear in the command line, simpli-
fying many compilations. Typical values follow:

-a Checks array bounds at runtime.

-ansi Issues warnings for Informix extensions to SQL syntax.

-anyerr Resets status when 4GL expressions are evaluated.

-keep Retains intermediate files during compilation.

-shared Uses shared 4GL program libraries.

-z Supports functions with a variable number of arguments.

Informix recommends compiling all 4GL programs with -anyerr. If you use
compiled 4GL and your port supports shared libraries, you can improve
system performance and reduce program size by using the -shared option.

Do not specify -phase, -e, or -c (or, for the C compiler, -P, -E, or -S) in this
environment variable because these options prevent compilation from
completing. For example, if you specify -e in the C4GLFLAGS variable, the
system always stops compiling after producing a .c file, without producing
object files or executable files. (See also FGLPCFLAGS later in this appendix.)

C4GLNOPARAMCHK

Environment Variables D-11

C4GLNOPARAMCHK
C4GLNOPARAMCHK is an environment variable that, if set, turns off the
error checking on the number of arguments passed into a function and on the
number of values returned from it. By default, these items are now checked
as stringently in 4GL that is compiled to C as they are in the p-code system
(RDS).

Compiled 4GL has always been different from RDS in how it checks the
number of arguments passed to a function and the number of values
returned from a function. RDS requires the number of arguments passed and
the number of values returned to be correct. By default, 4GL now checks the
number of arguments and number of return values, and generates a fatal
error if the numbers are incorrect. Code that worked under RDS also works
with the new compiled code; only code that did not work in p-code fails.

You can disable this checking mechanism by setting C4GLNOPARAMCHK at
compile time. The variable C4GLNOPARAMCHK must be set and exported in
the user environment at compile time. It can have any value or no value.

The ability to turn off parameter-count checking via C4GLNOPARAMCHK is
provided as a migration aid only; it helps 4GL developers locate and correct
parameter mismatches over time.

The following behavior regarding parameter-count checking depends on
C4GLNOPARAMCHK and on the error scope:

■ If the C4GLNOPARAMCHK environment variable is not set, all
function calls and returned values are checked; an error is issued if
there is a mismatch in the number of parameters passed or returned.

■ If C4GLNOPARAMCHK is set and AnyError error scope is not in
effect, parameter count checking code is not generated.

■ If C4GLNOPARAMCHK is set and AnyError handling is in effect, if
the WHENEVER ERROR action is CONTINUE, no parameter-count
checking is generated; for any other error actions (such as STOP,
GOTO, CALL), code for parameter-count checking is generated.

CC

D-12 HCL Informix 4GL Reference Guide

CC
The c4gl command uses the INFORMIXC and CC environment variables
(defaulting to cc on most computers) in the final stage of compilation.
Setting one of these environment variables lets you substitute any C
compiler. Because CC is recognized by many versions of make, this
environment variable is also compatible with other UNIX programs.
You can use the following Bourne shell code to determine the compiler:

${INFORMIXC:=${CC:-cc}}

The C compiler used is the value of the INFORMIXC environment variable
if it is not empty. If INFORMIXC is empty, the (non-empty) value of the CC
environment variable is used. If both CC and INFORMIXC are empty, the
default is cc.

Important: If you use gcc, be aware that 4GL assumes that strings are writable, so
you need to compile using the -fwritable-strings flag. Failure to specify this option
can cause unpredictable results, possibly including core dumps.

COLUMNS
UNIX platforms support various ways to control the sizes of screens and
windows in terms of lines (or rows) and columns. Depending on the method
that your platform uses, two environment variables, COLUMNS and LINES,
might be useful in controlling the character dimensions of your screen.

One common way to control the dimensions of screens is the use of input/
output control (ioctl()) calls. To see if your platform uses this method, enter
the command stty -a. If the response includes explicit values for rows and
columns, ioctl() control is in effect, as in the following example:

% stty -a
speed 9600 baud;
rows = 24; columns = 80;
intr = ^c; quit = ^|; erase = ^h; kill = ^u;

If your platform uses ioctl() calls, the operating system or windowing facility
probably provides a way to resize the screen using the mouse or trackball.

COLUMNS

Environment Variables D-13

If your platform does not use ioctl() calls to control screen dimensions, you
can use the LINES and COLUMNS environment variables to specify the
screen dimensions. Use the following syntax for setting COLUMNS.

On such platforms, if LINES or COLUMNS is not set, the corresponding value
is taken from the rows or columns field in the terminfo or termcap entry in
use, as indicated by the TERM environment variable.

The following example sets COLUMNS to 80 and LINES to 24.

C shell Bourne or Korn shell

setenv COLUMNS 80
setenv LINES 24

COLUMNS=80
LINES=24
export COLUMNS LINES

If either LINES or COLUMNS is set to an invalid value (that is, to a value that
is not a positive integer), the invalid value is ignored, and the required value
is read from the termcap or terminfo entry as applicable.

setenv COLUMNS number

number is a literal integer, specifying the horizontal width of the screen in
columns (sometimes called character positions) in the screen display.

Element Description

DBANSIWARN

D-14 HCL Informix 4GL Reference Guide

DBANSIWARN
The DBANSIWARN environment variable indicates that you want to check
for Informix extensions to the ANSI standard for SQL syntax. Unlike most
environment variables, you do not need to set DBANSIWARN to a value.
Setting it to any value or to no value, as follows, is sufficient.

Setting DBANSIWARN before you compile a 4GL program is functionally
equivalent to including the -ansi flag in the command line. When the 4GL
preprocessor recognizes Informix extensions to the ANSI standard for SQL
syntax in your source code during compilation, warning messages are
written to the screen. (Only SQL statements can cause such warnings; 4GL
statements that are not SQL statements are not affected.)

Similarly, setting the DBANSIWARN environment variable before executing a
4GL program is functionally equivalent to including the -ansi flag at the
command line. If you set DBANSIWARN, a warning is displayed on the
screen at runtime if 4GL detects an SQL statement that includes an Informix
syntax extension to the ANSI standard for SQL.

At runtime, DBANSIWARN causes the SQL Communication Area (SQLCA)
variable SQLCA.SQLWARN.SQLAWARN[6] to be set to W when 4GL detects
that an SQL statement that is not ANSI compliant is executed. (For more
information on the SQLCA global record, see “Error Handling with SQLCA”
on page 2-45 or refer to the Informix Guide to SQL: Reference.)

Once you set DBANSIWARN, Informix extension checking is automatic until
you log out or unset DBANSIWARN. To turn off checking for Informix syntax
extensions, you can disable DBANSIWARN with the following command.

Shell Command

C unsetenv DBANSIWARN

Bourne unset DBANSIWARN

setenv DBANSIWARN

DBCENTURY

Environment Variables D-15

DBCENTURY
The DBCENTURY environment variable specifies how to expand abbreviated
one- and two-digit year specifications within DATE and DATETIME values.
Expansion is based on this setting (and on the system clock at runtime).

In most versions prior to 4GL 7.2, if only the two trailing digits of a year were
entered for literal DATE or DATETIME values, these digits were prefixed with
19; thus, 12/31/01 was always expanded to 12/31/1901. DBCENTURY
supports four new algorithms to expand abbreviated years into four-digit
year values that end with the same digits (or digit) that the user entered.

Element Description
C Use the past, future, or current year closest to the current date.
F Use the nearest year in the future to expand the entered value.
P Use the nearest year in the past to expand the entered value.
R Prefix the entered value with the first two digits of the current year.

Here past, current, and future are all relative to the system clock.

Values are case sensitive; only these four uppercase letters are valid. If you
specify anything else (for example, a lowercase letter), or if DBCENTURY is
not set, R is used as the default.

Three-digit years are not expanded. If a year is entered as a single digit, it is
first expanded to two digits by prefixing it with a zero; DBCENTURY then
expands this value to four digits. Years before 99 AD (or CE) require leading
zeros (to avoid expansion).

setenv DBCENTURY = R

C

F

P

DBCENTURY

D-16 HCL Informix 4GL Reference Guide

Important: If the database server and the client system have different settings for
DBCENTURY, the client system setting takes precedence for abbreviations of years in
dates entered through the 4GL application. Expansion is sensitive to the time of
execution and to the accuracy of the system clock-calendar. You can avoid the need to
rely on DBCENTURY by requiring the user to enter four-digit years or by setting the
CENTURY attribute in the form specification of DATE and DATETIME fields.

The following examples illustrate the effect of various DBCENTURY settings
on expanding DATE and DATETIME values that include abbreviated years.

Runtime Date 11/11/1999

Abbreviated Value 1/1/10

DBCENTURY Setting R C F P

Resulting Value 01/01/1910 01/01/2010 01/01/2010 01/01/1910

Runtime Date 11/11/1999

Abbreviated Value 1/1/0

DBCENTURY Setting R C F P

Resulting Value 01/01/1900 01/01/2000 01/01/2000 01/01/1900

Runtime Date 04/06/2010

Abbreviated Value 1/1/50

DBCENTURY Setting R C F P

Resulting Value 01/01/2050 01/01/2050 01/01/2050 01/01/1950

Runtime Date 4/6/1999

Abbreviated Value DATETIME (1-1) YEAR TO MONTH

DBCENTURY Setting
Resulting Value

R C F

1901-1 2001-1 2001-1

P

1901-1

Runtime Date 11/11/1999
Abbreviated Value DATETIME (1-12) YEAR TO MONTH
DBCENTURY Setting

Resulting Value
R C F

1901-12 2001-12 2001-12

P

1901-12

(1 of 2)

DBDATE

Environment Variables D-17

Runtime Date 04/06/2010

Abbreviated Value DATETIME (50-1) YEAR TO MONTH

DBCENTURY Setting R C F P

Resulting Value 2050-1 2050-1 2050-1 1950-1

(2 of 2)

A limitation of DBCENTURY is that it specifies a single global algorithm for
all abbreviated years and applies that throughout the 4GL program. (For a
more flexible feature, see the CENTURY field attribute in Chapter 6, “Screen
Forms.” CENTURY can apply different expansion algorithms to abbreviated
years at the individual field level.)

DBDATE
DBDATE specifies the default display format for DATE values by indicating
the following items:

■ The order of the month, day, and year time units within a date
■ Whether the year is printed with two digits (Y2) or four digits (Y4)
■ The time-unit separator between the month, day, and year

setenv DBDATE MD Y4

DM Y2

Y4 MD

//

-
.

Y2 DM 0

are characters that are valid as time-unit separators.
is the default time-unit separator for the default locale.
is a zero that indicates no time-unit separator.
is a character representing the day of the month.
is a character representing the month.
are characters that abbreviate the year as its last two digits.
are characters that represent the year as four digits.

-, .
/
0
D
M
Y2
Y4

Element Description

DBDATE

D-18 HCL Informix 4GL Reference Guide

Blank spaces are not valid between elements of the DBDATE setting. In the
default locale, the default setting is MDY4/, where M represents the month,
D represents the day, Y4 represents a four-digit year, and the slash (/) is a
time-unit separator (for example, 9/22/1999 for September 22, 1999).

Any printable character of your locale is valid as the time-unit separator
except the digits one through nine. The zero (0) specifies that there is no
separator.

The slash (/) appears as the default separator if you attempt to specify any
numeric character other than zero as the separator, or if you do not include
any separator character in the DBDATE specification. The hyphen appears as
the default separator in some non-English locales.

You must always specify the separator character last. The number of digits
that you specify for the year must always follow the Y.

Date formatting specified in a USING clause or FORMAT attribute overrides
the formatting specified in DBDATE.

To make the date appear as mmddyy, set DBDATE as follows.

Shell Command

C setenv DBDATE MDY20

Bourne DBDATE=MDY20
export DBDATE

MDY represents the order of month, day, and year; 2 indicates two digits for
the year; and 0 specifies no separator. As a result, the date is displayed as
122599.

To make the date appear in European format (dd-mm-yyyy), set the DBDATE
environment variable as follows.

Shell Command

C setenv DBDATE DMY4-

Bourne DBDATE=DMY4-
export DBDATE

DBDELIMITER

Environment Variables D-19

DMY represents the order of day, month, and year; 4 indicates four digits for
the year; and - specifies a hyphen separator. As a result, the date is displayed
as 25-12-1999.

DBDELIMITER
The DBDELIMITER environment variable specifies the field delimiter used
by the dbexport utility in unloaded data files or with the LOAD and UNLOAD
statements in 4GL.

Any single character that is valid in the codeset of your locale is allowed, but
do not specify any of the following characters:

■ Hexadecimal numbers (0 through 9, a through f, A through F)
■ Newline character or CONTROL-J

■ The backslash (\) symbol
■ The minus or hyphen (-) symbol (ASCII 45)
■ The period (.) symbol (ASCII 46)
■ Any character that your locale (or the DBFORMAT or DBMONEY

environment variable) identifies as the decimal separator.

Warning: No error message is issued if you specify any of these “forbidden”
characters, but doing so can result in files of unloaded data that cannot be reloaded.
The utilities that unload and load data do not automatically insert escape characters
before the sign or before the decimal separator of number values.

setenv DBDELIMITER 'delimiter'

delimiter is the default field delimiter for unloaded data files.

Description Element

DBEDIT

D-20 HCL Informix 4GL Reference Guide

The pipe (|) symbol (ASCII 124) is the default. To change the field delimiter
to a plus sign, set the DBDELIMITER environment variable as follows.

Shell Command

C setenv DBDELIMITER '+'

Bourne DBDELIMITER='+'
export DBDELIMITER

DBEDIT
The DBEDIT environment variable specifies the default text editor. If DBEDIT
is set, the specified editor is called directly. If DBEDIT is not set, you are
prompted to specify an editor as the default for the rest of the 4GL session.

For most systems, the default editor is vi. If you use another editor, be sure
that it creates ASCII files. Some word processors in document mode introduce
printer control characters that can interfere with operation of 4GL.

To specify the emacs text editor, set the DBEDIT environment variable as
follows.

Shell Command

C setenv DBEDIT emacs

Bourne DBEDIT=emacs
export DBEDIT

setenv DBEDIT editor

is the name of the text editor that you want as the default. editor

Element Description

DBESCWT

Environment Variables D-21

DBESCWT
The DBESCWT environment variable controls the way that 4GL programs
interpret the sequence of characters that the function keys and arrow keys
send on some types of terminals. When a user presses one of these keys,
many terminal types send a sequence of characters that starts with the ESC
character. 4GL uses the ESC character as the default ACCEPT key, so that after
reading an ESC character, the software must read the next character to see
whether it is one of those that make up a function key or arrow key sequence.

If the computer or network is slow, the runtime software might interpret a
function key keystroke as a distinct ESC character, later followed by one or
more characters echoed to the screen. DBESCWT enables the programmer to
distinguish such sequences by specifying the maximum delay between an
ESC character and any subsequent character of the same escape sequence.

The syntax for setting the DBESCWT environment variable follows.

You can set DBESCWT to a value between 1 and 60, indicating the number of
seconds that the software waits after it receives the ESC character from the
keyboard before it decides that you have hit ESC rather than a function or
arrow key. If DBESCWT is not set, the default wait time is one second.

The following examples instruct 4GL to wait up to 2 seconds at runtime
before interpreting an ESC character received from the keyboard as a distinct
ESC character (rather than as the beginning of the escape sequence for an
arrow key or function key).

C shell Bourne or Korn shell

setenv DBESCWT 2 DBESCWT=2
export DBESCWT

setenv DBESCWT seconds

seconds is a value for the delay, in seconds, where 1 ≤ seconds ≤ 60.

Element Description

DBESCWT

D-22 HCL Informix 4GL Reference Guide

Function and arrow keys normally generate escape sequences faster than a
typist can type, so the 4GL application usually can make the distinction
between the escape sequences of special keys and users typing the ESCAPE
key. Only use DBESCWT on systems with poor response times or where the
software is misinterpreting arrow and function key sequences. Setting
DBESCWT slows the performance of your 4GL application.

DBFORM

Environment Variables D-23

DBFORM
The DBFORM environment variable specifies the subdirectory of
$INFORMIXDIR (or full pathname) in which the menu form files for the
currently active language reside. ($INFORMIXDIR stands for the name of the
directory referenced by the environment variable INFORMIXDIR.)

Menu form files provide a set of language-translated menus to replace the
standard 4GL menus. Menu form files have the suffix .frm. Menu form files
are included in language supplements, which contain instructions specifying
where the files should be installed and what DBFORM settings to specify .

If DBFORM is not set, the default directory for menu form files is
$INFORMIXDIR/forms/english. The files should be installed in a subdi-
rectory under the forms subdirectory under $INFORMIXDIR. For example,
French menu files could be installed in $INFORMIXDIR/forms/french or in
$INFORMIXDIR/forms/fr.88591. The English language version will normally
be installed in $INFORMIXDIR/forms or $INFORMIXDIR/forms/english.
Non-English menu form files should not be installed in either of the locations
where English files are normally found.

setenv DBFORM pathname

pathname specifies the subdirectory of $INFORMIXDIR or the full pathname of
the directory that contains the message files.

Description Element

DBFORM

D-24 HCL Informix 4GL Reference Guide

Figure D-1 illustrates the search method employed for locating message files
for a specific language (where the value set in the DBFORM environment
variable is indicated as $DBFORM).

Figure D-1
Directory Search
Order, Depending

on $DBFORM

To specify a menu form directory

1. Use the mkdir command to create the appropriate subdirectory in
$INFORMIXDIR/forms.

2. Set the owner and group of the subdirectory to informix and the
access permission for this directory to 755.

3. Set the DBFORM environment variable to the new subdirectory,
specifying only the subdirectory name and not the full pathname.

4. Copy the .frm files to the new menu form directory specified by
$INFORMIXDIR/forms/$DBFORM.
All files in the menu form directory should have the owner and
group informix and access permission 644.

5. Run your program, or otherwise continue using 4GL.

For example, you can store the set of menu form files for the French language
in $INFORMIXDIR/forms/french as follows:

setenv DBFORM french

$INFORMIXDIR/forms/$DBFORM/

se
ar

ch

or
de

r

$INFORMIXDIR/$DBFORM/

$INFORMIXDIR/forms/

$INFORMIXDIR/forms/english/

DBFORMAT

Environment Variables D-25

DBFORMAT
The DBFORMAT environment variable specifies the format in which values
are entered, displayed, or passed to the database for number data types:

DECIMAL INTEGER SMALLFLOAT
FLOAT MONEY SMALLINT

The default format specified in DBFORMAT affects numeric and monetary
values in display, input, and output operations.

DBFORMAT can specify the leading and trailing currency symbols (but not
their default positions within a monetary value) and the decimal and
thousands separators. The decimal and thousands separators defined by
DBFORMAT apply to both monetary and other numeric data.

Features of 4GL affected by the setting in DBFORMAT include (but are not
restricted to) the following items:

■ USING operator or FORMAT attribute
■ DISPLAY or PRINT statement
■ LET statement, where a CHAR or VARCHAR variable is assigned a

monetary or number value
■ LOAD and UNLOAD statements that use ASCII files (or whatever the

locale regards as a flat file) to pass data to or from the database
■ PREPARE statements that process number values

The syntax for setting DBFORMAT is as follows

Element Description
back is the trailing currency symbol.
decimal is a characters that you specify as a valid decimal separator.
front is the leading currency symbol.
thousands is a characters that you specify as a valid thousands separator.

setenv DBFORMAT ' * : * : decimal : * '

front thousands back

DBFORMAT

D-26 HCL Informix 4GL Reference Guide

The asterisk (*) specifies that a symbol or separator is not applicable; it is the
default for any front, thousands, or back term that you do not define.

If you specify more than one character for decimal or thousands, the values in
the decimal or thousands list cannot be separated by spaces (nor by any other
symbols). 4GL uses the first value specified as the thousands or decimal sep-
arator when displaying the number or currency value in output. The user can
include any of the decimal or thousands separators when entering values.

Any printable character that your locale supports is valid for the thousands
separator or for the decimal separator, except:

■ Digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
■ <, >, |, ?, !, =, [,]

The same character cannot be both the thousands and decimal separator. A
blank space (ASCII 32) can be the thousands separator (and is conventionally
used for this purpose in some locales). The asterisk (*) symbol is valid as the
decimal separator, but is not valid as the thousands separator.

In versions of 4GL prior to 6.0, the colon (:) was not allowed as the thousands
separator. The colon symbol is supported in this version, but must be pre-
ceded by a backslash (\), as in the specification :\::.:DM.

The colon (:) symbol is supportd as a decimal separator but must be pre-
ceded by a backslash (\) symbol in the DBFORMAT specification.

You must include all three colons. Enclosing the DBFORMAT specification in
a pair of single quotation marks is recommended to prevent the shell from
attempting to interpret (or execute) any of the DBFORMAT characters.

The setting in DBFORMAT also affects how formatting masks of the FORMAT
attribute and of the USING operator are interpreted. In formatting masks of
FORMAT and USING, the following symbols are not literal characters but are
placeholders for what DBFORMAT specifies:

■ The dollar ($) sign is a placeholder for the front currency symbol.
■ The comma is a placeholder for the thousands separator.
■ The period is a placeholder for the decimal separator.

In formatting masks of the FORMAT attribute, the at (@) sign is a placeholder
for the back currency symbol. (The @ symbol has no special significance in
formatting masks for the USING operator.)

DBFORMAT

Environment Variables D-27

The following table illustrates the results of different combinations of
DBFORMAT setting and format string on the same value.

Value Format String DBFORMAT Setting Displayed Result

1234.56 $$#,###.## $:,:.: $1,234.56

1234.56 $$#,###.## :.:,:DM 1.234,56

1234.56 #,###.##@ $:,:.: 1,234.56

1234.56 #,###.##@ :.:,:DM 1.234,56DM

When the user enters number or currency values, 4GL behaves as follows:

■ It disregards any front (leading) or back (trailing) currency symbol
and any thousands separators that the user enters.

■ If a symbol is entered that was defined as a decimal separator in
DBFORMAT, it is interpreted as the decimal separator.

When 4GL displays or prints values:

■ The DBFORMAT-defined leading or trailing currency symbol is
displayed for MONEY values.

■ If a leading or trailing currency symbol is specified by the FORMAT
attribute for non-MONEY data types, the symbol is displayed.

■ The thousands separator is not displayed unless it is included in a
formatting mask of the FORMAT attribute or of the USING operator.

When MONEY values are converted to character strings by the LET statement,
both automatic data type conversion and explicit conversion with a USING
clause insert the DBFORMAT-defined separators and currency symbol into
the converted strings.

For example, suppose DBFORMAT is set as follows:

*:.:,:DM

The value 1234.56 will print or display as follows:

1234,56DM

DBLANG

D-28 HCL Informix 4GL Reference Guide

Here DM stands for deutsche marks. Values input by the user into a screen
form are expected to contain commas, not periods, as their decimal separator
because DBFORMAT has *:.:,:DM as its setting in this example.

Restrictions on the Decimal Separator in SQL Operations
When number values appear in an SQL statement, they must use the format
of the C language, with a period (.) as the decimal separator. Use of a comma
as the decimal separator, which is the default for some locales, can produce
errors or unexpected results.

For example, suppose that you specify ":.:,:" as the DBFORMAT setting,
and the name of any non-integer numeric 4GL variable appears in an
expression within the SELECT clause of a prepared SELECT statement.

When the query is executed, the comma (,) used as a decimal separator is
treated by the database server as a separator within the list of columns (as if
the digits to the left and the right of the decimal separator were the names or
aliases of two different columns). Any subsequent terms of the expression
after the variable will seem to have been ignored, but they are applied only
to the digits to the right of the decimal point. Similarly, if the variable appears
in the WHERE clause, a syntax error will result.

DBLANG
The DBLANG variable specifies the subdirectory of $INFORMIXDIR (or the
full pathname) in which the message files for the currently active language
reside. (Here $INFORMIXDIR stands for the name of the directory referenced
by the environment variable INFORMIXDIR.) Message files provide a set of
error messages for the database server and tools that have been translated
into a national language. Compiled message files have the suffix .iem.

A language supplement contains the following items:

■ Message files
■ Instructions that specify where the files should be installed and what

DBLANG settings to specify

DBLANG

Environment Variables D-29

The syntax for setting DBLANG is as follows.

If DBLANG is not set, the default directory in which message files are stored
is $INFORMIXDIR/release/en_us/0333. For nondefault locales, some other
file system must replace /en_us. For the directory structure of Informix GLS
products, see Figure E-1 on page E-7.

Figure D-2 illustrates the search method employed for locating message files
for a particular language (where value of the variable DBLANG is designated
as $DBLANG).

Figure D-2
Directory Search
Order, Depending

on $DBLANG

$INFORMIXDIR/msg/english/

$INFORMIXDIR/msg/

$INFORMIXDIR/$DBLANG/

$INFORMIXDIR/msg/$DBLANG/

pathname specifies the subdirectory of $INFORMIXDIR or the full pathname of
the directory that contains the message files.

Description Element

setenv DBLANG pathname

se
ar

ch

or
de

r

DBMONEY

D-30 HCL Informix 4GL Reference Guide

To specify a message directory

1. Use the mkdir command to create the appropriate subdirectory in
$INFORMIXDIR/msg.

2. Set the owner and group of the subdirectory to informix and the
access permission for this directory to 755.

3. Set the DBLANG environment variable to the new subdirectory,
specifying only the subdirectory name and not the full pathname.

4. Copy the .iem files to the directory $INFORMIXDIR/msg/$DBLANG.
All files in the new message directory should have the owner and
group informix and should have UNIX access permission 644.

Now you can run your 4GL program or otherwise continue your work.

For example, you can store the set of message files for the French language in
$INFORMIXDIR/msg/french as follows:

setenv DBLANG french

DBMONEY
The DBMONEY environment variable specifies the default display format for
MONEY values and the default thousands separator and decimal separator
for displaying DECIMAL values. The syntax for setting DBMONEY is as
follows.

The term that follows front is a literal decimal separator symbol that separates
the integral part from the fractional part of the MONEY value.

setenv DBMONEY $
front

.

, back

is a character string representing a leading currency symbol that
precedes the MONEY value. This string can be up to seven characters
long and can contain any character except a comma or a period.
is a character string representing a trailing currency symbol that
follows the MONEY value. This string can be up to seven characters long
and can contain any character except a comma or a period.

front

back

Element Description

DBMONEY

Environment Variables D-31

Because only its position within a DBMONEY setting indicates whether a
symbol is the front or back currency symbol, the first two terms are required.
If you use DBMONEY to specify a back symbol, for example, you must also
supply a front currency symbol and a decimal separator (a comma or period).
Similarly, if you use DBMONEY to change the decimal separator from a
period to a comma, you must also supply a front symbol.

To avoid ambiguity in displayed numbers and currency values, do not use
the thousands separator of DBFORMAT as the decimal separator of
DBMONEY. For example, specifying comma as the DBFORMAT thousands
separator dictates using the period as the DBMONEY decimal separator.

In the default (U.S. English) locale, the default setting for DBMONEY is:

$.

Here a dollar sign ($) is the default front currency symbol that precedes the
MONEY value, a period (.) separates the integral part from any fractional part
of the MONEY value, and no trailing currency symbol is used.

For example, in the default locale, 100.50 is formatted as $100.50.

In some other locales, however, comma is the default decimal separator, and
the conventions of some locales require a back trailing currency symbol. In
some East Asian locales, currency symbols can be multibyte characters.

Suppose that you want to represent MONEY values in deutsche marks, which
conventionally use DM as the currency symbol and a comma as the decimal
separator. You can set the DBMONEY environment variable as follows.

Shell Command

C setenv DBMONEY DM,

Bourne DBMONEY=DM,

export DBMONEY

Here, DM is the currency symbol preceding the MONEY value, and a comma
separates the integral part from the fractional part of the MONEY value. As a
result, the MONEY data value 100.50 is displayed as DM100,50. ♦

GLS

DBPATH

D-32 HCL Informix 4GL Reference Guide

DBPATH
Use DBPATH to identify the database servers that contain databases (if you
are using Dynamic Server) or the directories and database servers that
contain databases (if you are using INFORMIX-SE). The DBPATH
environment variable also specifies a list of directories (in addition to the
current directory) in which 4GL looks for command scripts (.sql files).

The CONNECT, DATABASE, START DATABASE, and DROP DATABASE
statements use DBPATH to locate the database under two conditions:

■ If the location of a database is not explicitly stated and if the database
cannot be located in the default database server

■ For INFORMIX-SE, to find the default directory

The CREATE DATABASE statement does not use DBPATH.

You can add a new DBPATH entry to existing entries. To do so, use the
$ format described for the UNIX environment variable PATH.

DBPATH can contain up to 16 entries. Each entry (pathname, or servername, or
servername and full_pathname) must be less than 128 characters long. In
addition, the maximum length of DBPATH also depends on the hardware and
operating system platform on which you are setting DBPATH.

:

setenv DBPATH 166 pathname

// servername / full_pathname

// servername

full_pathname is a full pathname, from root, for a directory in which .sql files are
stored or in which INFORMIX-SE databases are stored.

pathname is a valid relative pathname for a directory in which .sql files are
stored or in which INFORMIX-SE databases are stored.

servername is the name of a Dynamic Server or INFORMIX-SE database server
on which databases are stored. You cannot, however, reference
database files by using a servername qualifier.

Description Element

DBPATH

Environment Variables D-33

When you access a database using the CONNECT, DATABASE, START
DATABASE, or DROP DATABASE statement, the search for the database is
done first in the directory or database server specified in the statement. If no
database server is specified, the default database server as set in the
INFORMIXSERVER environment variable is used.

For INFORMIX-SE, if no directory is specified in the statement, the default
directory is searched for the database. (The default directory is the current
working directory if the database server is on the local computer, or your
login directory if the database server is on a remote computer.) If a directory
is specified but is not a full path, the directory is considered to be relative to
the default directory.

If the database is not located during the initial search, and if DBPATH is set,
the database servers or directories in DBPATH are searched for the indicated
database. The entries to DBPATH are considered in order.

Searching Local Directories
Use a pathname without a database server name to have the database server
search for databases or .sql scripts on your local computer. If you are using
4GL with INFORMIX-SE, you can search for a database and .sql scripts; with
Dynamic Server, you can look only for .sql scripts.

For example, the following DBPATH setting causes 4GL to search for the
database files in your current directory and then in Joachim’s and Sonja’s
directories on the local computer:

setenv DBPATH /usr/joachim:/usr/sonja

As shown in the previous example, if the pathname specifies a directory
name but not a database server name, the directory is sought on the computer
running the default database server as specified by the INFORMIXSERVER
environment variable. For instance, with this example, if INFORMIXSERVER
is set to quality, the DBPATH value is interpreted as follows, where the
double slash precedes the database server name:

setenv DBPATH //quality/usr/joachim://quality/usr/sonja

DBPATH

D-34 HCL Informix 4GL Reference Guide

Searching Networked Computers for Databases
If you are using more than one database server, you can set DBPATH to
explicitly contain the database server and directory names that you want to
be searched for databases. For example, if INFORMIXSERVER is set to quality
but you also want to search the marketing database server for /usr/joachim,
set DBPATH as follows:

setenv DBPATH //marketing/usr/joachim:/usr/sonja

Specifying a Server Name
You can set DBPATH to contain only database server names. This action
allows you to locate only databases and not locate command files.

The Dynamic Server administrator must include each database server
mentioned by DBPATH in the $INFORMIXDIR/etc/sqlhosts file. For infor-
mation on communication-configuration files and database server names,
see your Administrator’s Guide.

For example, if INFORMIXSERVER is set to quality, you can search for a
Dynamic Server database first on the quality database server and then on the
marketing database server by setting DBPATH as follows:

setenv DBPATH //marketing

For Dynamic Server, keep the following considerations in mind:

■ If you specify a local database server, the current working directory
is searched for databases.

■ If you specify a remote database server, the search for databases is
done in the login directory of the user on the computer where the
database server is running.

For INFORMIX-SE, you can set DBPATH to contain just the database server
names (and no directory names) to locate only databases and not command
scripts.

DBPRINT

Environment Variables D-35

DBPRINT
The DBPRINT environment variable specifies the print program that you
want to use in producing output from your 4GL program to a list device.

The default program is as follows:

■ For most BSD UNIX systems, the default program is usually lpr.
■ For UNIX System V, the default program is usually lp.

Set the DBPRINT environment variable as follows to specify the myprint
print program.

Shell Command

C setenv DBPRINT myprint

Bourne or Korn DBPRINT=myprint
export DBPRINT

setenv DBPRINT program

is the name of a command, shell script, or UNIX utility that supports
standard ASCII input.

program
Description Element

DBREMOTECMD

D-36 HCL Informix 4GL Reference Guide

DBREMOTECMD
You can set the DBREMOTECMD environment variable to override the
default remote shell used when you perform remote tape operations with
Dynamic Server. Set it by using either a simple command or the full
pathname. If you use the full pathname, the database server searches your
PATH for the specified command.

Informix highly recommends using the full pathname syntax on the inter-
active UNIX platform to avoid problems with like-named programs in other
directories and possible confusion with the restricted shell (/usr/bin/rsh).

Set the DBREMOTECMD environment variable as follows for a simple
command name.

Shell Command

C setenv DBREMOTECMD rcmd

Bourne DBREMOTECMD=rcmd
export DBREMOTECMD

Set the DBREMOTECMD environment variable as follows to specify the full
pathname.

Shell Command

C setenv DBREMOTECMD /usr/bin/remsh

Bourne DBREMOTECMD=/usr/bin/remsh
export DBREMOTECMD

setenv DBREMOTECMD command

pathname

command is the command to override the default remote shell.
pathname is the pathname to override the default remote shell.

Description Element

DBSPACETEMP

Environment Variables D-37

For more information on DBREMOTECMD, see the Archive and Backup Guide.
It discusses using remote tape devices for archives, restores, and logical log
backups.

DBSPACETEMP
You can set the DBSPACETEMP environment variable to specify the dbspace
to be used for building all temporary tables and for holding temporary files
used for sorting. This arrangement spreads temporary space across any
number of disk drives.

You can set the DBSPACETEMP environment variable to override the default
dbspaces used for temporary tables and sorting space specified in the
DBSPACETEMP configuration parameter in the configuration file. For
example, you might set DBSPACETEMP as follows.

Shell Command

C setenv DBSPACETEMP sorttmp1: sorttmp2: sorttmp3

Bourne DBSPACETEMP=sorttmp1:sorttmp2:sorttmp3
export DBSPACETEMP

Separate the dbspace entries with either colons or commas. The number of
dbspaces is limited by the maximum size of the environment variable, as
defined by the UNIX shell. The default, if left unspecified, is the root dbspace.
The database server does not create the specified dbspace if it does not exist.

separator

setenv DBSPACETEMP temp_dbspace

separator can be either colon or a comma.
temp-dbspace is a list of valid existing temporary dbspaces.

Description Element

DBSRC

D-38 HCL Informix 4GL Reference Guide

For the creation of temporary tables, if neither DBSPACETEMP nor the
DBSPACETEMP parameter in the onconfig file is set, the database server
creates the temporary tables in the dbspace where the database was created.
For sorting, the database server uses the following disk space for writing
temporary information, in the following order of precedence:

1. The operating system directory (or directories) that are specified by
PSORT_DBTEMP, if this environment variable is set

2. The dbspace (or dbspaces) specified by DBSPACETEMP, if it is set
3. The dbspace (or dbspaces) specified by the onconfig parameter

DBSPACETEMP
4. The operating system file space in /tmp

DBSRC
The DBSRC environment variable specifies directories for .4gl source files.

The directories specified by DBSRC are part of the search path only during
debugging session. (The Interactive Debugger must be purchased separately
from 4GL.) You are not required to specify DBSRC.

For example, the Debugger will search for files in the programs and krystl
directories (outside its default search path) if you set DBSRC as follows.

Shell Command

C setenv DBSRC /b/junet/programs:/b/krystl

Bourne DBSRC=/b/junet/programs:/b/krystl
export DBSRC

setenv DBSRC

;
pathname

pathname is the full pathname of a directory for .4gl source files.

Description Element

DBTEMP

Environment Variables D-39

DBTEMP
The DBTEMP environment variable specifies the full pathname of the
directory into which you want INFORMIX-SE to place its temporary files.
You need not set DBTEMP if the default value, /tmp, is satisfactory.

Set the DBTEMP environment variable as follows to specify the pathname
usr/magda/mytemp.

Shell Command

C setenv DBTEMP usr/magda/mytemp

Bourne DBTEMP=usr/magda/mytemp
export DBTEMP

For the creation of temporary tables, if DBTEMP is not set, the temporary
tables are created in the directory of the database (that is, the .dbs directory).

DBTIME
The DBTIME environment variable has no effect on 4GL programs. (For some
Informix products, DBTIME can set a default format for DATETIME values.)

setenv DBTEMP pathname

pathname is the full pathname of the directory for temporary files.

Description Element

setenv DBTIME 'mask '

is a quoted string, specifying a formatting mask. mask

Description Element

DBUPSPACE

D-40 HCL Informix 4GL Reference Guide

DBUPSPACE
The DBUPSPACE environment variable lets you specify and thus constrain
the amount of system disk space that the UPDATE STATISTICS statement can
use when trying to simultaneously construct multiple column distributions.

For example, if DBUPSPACE is set to 2500 (kilobytes) by the following
command, no more than 2.5 megabytes of disk space is to be used to accom-
plish sorting during the execution of an UPDATE STATISTICS statement.

Shell Command

C setenv DBUPSPACE 2500

Bourne DBUPSPACE=2500
export DBUPSPACE

If a table requires 5 megabytes of disk space for sorting, UPDATE STATISTICS
accomplishes the task in two passes; the distributions for one half of the
columns are constructed with each pass.

If you try to set DBUPSPACE to any value less than 1024 kilobytes, it is
automatically set to 1024 kilobytes, but no error message is returned. If this
value is not large enough to allow more than one distribution to be
constructed at a time, at least one distribution is done, even if the amount of
disk space required for the one is greater than specified in DBUPSPACE.

setenv DBUPSPACE value

represents a disk space amount in kilobytes. value

Element Description

ENVIGNORE

Environment Variables D-41

ENVIGNORE
Use the ENVIGNORE environment variable to deactivate specified
environment variable entries in the common (shared) and private
environment-configuration files.

For example, to ignore the DBPATH and DBMONEY entries in the
environment-configuration files, specify the following command.

Shell Command

C setenv ENVIGNORE DBPATH:DBMONEY

Bourne ENVIGNORE=DBPATH:DBMONEY
export ENVIGNORE

Directory $INFORMIXDIR/etc/informix.rc stores the common environment-
configuration file. The private environment-configuration file is stored in
the user’s home directory as .informix. See “Where to Set Environment
Variables” on page D-2 for more information on creating or modifying an
environment-configuration file.

ENVIGNORE itself cannot be set in an environment-configuration file.

setenv ENVIGNORE

:
variable

variable is the list of environment variables that you want to deactivate.

Element Description

FET_BUF_SIZE

D-42 HCL Informix 4GL Reference Guide

FET_BUF_SIZE
The fetch buffer is the buffer that the database server uses to send data (except
for BYTE or TEXT data) to client applications. The buffer resides in the client
process.

You can set the size of the fetch buffer by setting the FET_BUF_SIZE
environment variable to the desired value prior to runtime. This action sets
the fetch buffer size for the duration of running the 4GL application.

The bigger the buffer, the more data the database server can send to the appli-
cation before returning control to the application. The greater the size of this
buffer, the more rows can be returned, and the less often the application must
wait while the database server retrieves rows. A large buffer can improve
performance by reducing the overhead of refilling the client-side buffer.

For example, the following command sets this environment variable to
20,000 bytes (20 kilobytes).

Shell Command

C setenv FET_BUF_SIZE 20000

Bourne FET_BUF_SIZE=20000
export FET_BUF_SIZE

Specify the size value in bytes, up to a maximum value for a SMALLINT (or of
a C language short) on your system. For most 32-bit systems, this value is
32,767 bytes. If the parameter is not set externally, a default is used. (As in
most environment settings, a thousands separator is not valid in size.)

setenv FET_BUF_SIZE size

is a literal integer that specifies the size of the fetch buffer (in bytes). size

Element Description

FGLPCFLAGS

Environment Variables D-43

FGLPCFLAGS
The environment variable FGLPCFLAGS allows you to set certain compiler
options as defaults for 4GL programs that are compiled to p-code. These
options simplify many compilations. Typical values are these:

-ansi Issues warnings for Informix extensions to SQL syntax.

-anyerr Resets status when 4GL expressions are evaluated.

-z Supports functions with a variable number of arguments.

Informix recommends compiling all 4GL programs with -anyerr specified.

FGLSKIPNXTPG
The SKIP TO TOP OF PAGE command has no effect when a report is already at
the top of the page (that is, when no data value has yet been sent to a new
page). Programs that rely on the older behavior of SKIP TO TOP OF PAGE can
override this effect if the environment variable FGLSKIPNXTPG is set at
runtime to any non-blank value, using the following syntax.

If you set FGLSKIPNXTPG to any value at report execution time, SKIP TO TOP
OF PAGE forces a page change even if no data value has yet been printed in
the body of the current page. The following examples set it to 1.

C shell Bourne or Korn shell

setenv FGLSKIPNXTPG 1 FGLSKIPNXTPG=1
export FGLSKIPNXTPG

setenv FGLSKIPNXTPG value

is any nonblank character. value

Element Description

INFORMIXC

D-44 HCL Informix 4GL Reference Guide

INFORMIXC
The c4gl command uses the INFORMIXC and CC environment variables
(defaulting to cc on most computers) in the final stage of compilation. Setting
one of these environment variables lets you substitute any C compiler.
Because CC is acknowledged by many versions of make, this environment
variable is compatible with other programs also. Use the following Bourne
shell code to determine the compiler:

${INFORMIXC:=${CC:-cc}}

For the compiler, 4GL uses an INFORMIXC value that is not empty. If no non-
empty INFORMIXC value is specified, 4GL uses the (non-empty) value of the
CC environment variable. If neither of those exist, the compiler defaults to cc.

Important: For users of gcc, Informix assumes that strings are writable, so you need
to compile using the -fwritable-strings option. Failure to do so can produce unpre-
dictable results, possibly including core dumps.

INFORMIXCONRETRY
The INFORMIXCONRETRY environment variable enables you to specify the
maximum number of additional connection attempts that should be made to
each database server by the client. For example, if you set this environment
variable to 4, no more than 5 attempts to connect will be made during the
time limit specified by the INFORMIXCONTIME environment variable.

Set the INFORMIXCONRETRY environment variable as follows.

setenv INFORMIXCONRETRY count

is the number of additional attempts to connect to each database server. count

Element Description

INFORMIXCONTIME

Environment Variables D-45

For example, you can set INFORMIXCONRETRY to three additional
connection attempts (after the initial attempt) as follows.

Shell Command

Bourne setenv INFORMIXCONRETRY 3

C INFORMIXCONRETRY=3
export INFORMIXCONRETRY

The default value for INFORMIXCONRETRY is one retry after the initial
connection attempt.

The INFORMIXCONTIME setting, described in the next section, takes prece-
dence over the INFORMIXCONRETRY setting. That is, if time expires after the
third retry, no further attempts are made, even if INFORMIXCONRETRY was
set to 10.

INFORMIXCONTIME
The INFORMIXCONTIME environment variable enables you to specify the
minimum time limit, in seconds, for the SQL statement CONNECT to attempt
to connect to a database server before it returns an error.

You might encounter connection difficulties related to system or network
load problems. For instance, if the database server is busy establishing new
SQL client threads, some of the clients might fail because the database server
cannot issue a network function call fast enough. The INFORMIXCONTIME
and INFORMIXCONRETRY environment variables let you configure your
client-side connection capability to retry to connect instead of returning an
error.

Set the INFORMIXCONTIME environment variable as follows.

setenv INFORMIXCONTIME value

represents the minimum number of seconds spent in attempts to
connect to each database server.

value

Element Description

INFORMIXCONTIME

D-46 HCL Informix 4GL Reference Guide

For example, set INFORMIXCONTIME to 60 seconds as follows.

Shell Command

C setenv INFORMIXCONTIME 60

Bourne INFORMIXCONTIME=60
export INFORMIXCONTIME

If INFORMIXCONTIME is set to 60 and INFORMIXCONRETRY is set to 3, as
shown in this appendix, attempts to connect to the database server (after the
initial attempt at 0 seconds) will be made at 20, 40, and 60 seconds, if
necessary, before aborting. This 20-second interval is the result of INFORMIX-
CONTIME divided by INFORMIXCONRETRY.

If execution of the CONNECT statement involves searching DBPATH, the
following rules apply:

■ All appropriate servers in the DBPATH setting are accessed at least
once even though the INFORMIXCONTIME value might be
exceeded. Thus, the CONNECT statement might take longer than the
INFORMIXCONTIME time limit to return an error indicating
connection failure or that the database was not found.

■ INFORMIXCONRETRY specifies how many additional attempted
connections should be made for each database server entry in
DBPATH.

■ The INFORMIXCONTIME value is initially divided among the
number of database server entries specified in DBPATH. Thus, if
DBPATH contains numerous database servers, increase the
INFORMIXCONTIME value accordingly to allow for multiple
connection attempts.

The default value for INFORMIXCONTIME is 15 seconds after the initial
connection attempt. The INFORMIXCONTIME setting takes precedence
over the INFORMIXCONRETRY setting; retry efforts could end after
the INFORMIXCONTIME value has been exceeded, but before the
INFORMIXCONRETRY value has been reached.

INFORMIXDIR

Environment Variables D-47

INFORMIXDIR
The INFORMIXDIR environment variable specifies the directory that
contains the subdirectories in which your product files are installed.
INFORMIXDIR must be set. If you have multiple versions of a database
server, set INFORMIXDIR to the appropriate directory name for the version
that you want to access. For more information about when to set the INFOR-
MIXDIR environment variable, see the Installation Guide for your database
server.

Do not set pathname to a path whose character-string value requires more
than 64 bytes of storage.

The following examples set the INFORMIXDIR environment variable to the
recommended installation directory.

Shell Command

C setenv INFORMIXDIR /usr/informix

Bourne INFORMIXDIR=/usr/informix
export INFORMIXDIR

setenv INFORMIXDIR pathname

pathname is the directory path where the product files are installed.

Description Element

INFORMIXSERVER

D-48 HCL Informix 4GL Reference Guide

INFORMIXSERVER
The INFORMIXSERVER environment variable specifies the default database
server to which an explicit or implicit connection is made by 4GL. The
database server can be either local or remote.

The value of INFORMIXSERVER must correspond to a valid dbservername
entry in the $INFORMIXDIR/etc/sqlhosts file on the computer running the
application. It must be specified using lowercase characters and cannot
exceed 18 characters for Dynamic Server and cannot exceed 10 characters for
INFORMIX-SE. For example, to specify the coral database server as the default
for connection, enter the following command.

Shell Command

C setenv INFORMIXSERVER coral

Bourne INFORMIXSERVER=coral
export INFORMIXSERVER

INFORMIXSERVER specifies the database server to which an application
connects if the CONNECT DEFAULT statement is executed. It also defines the
database server to which an initial implicit connection is established if the
first statement in an application is not a CONNECT statement.

Important: INFORMIXSERVER must be set even if the application or 4GL does not
use implicit or explicit default connections.

setenv INFORMIXSERVER dbservername

dbservername is the name of the default database server.

Description Element

INFORMIXSHMBASE

Environment Variables D-49

INFORMIXSHMBASE
The INFORMIXSHMBASE environment variable affects only client applica-
tions connected to the database server using the IPC shared-memory
(ipcshm) communication protocol.

Use INFORMIXSHMBASE to specify where shared-memory communication
segments are attached to the client process so that client applications can
avoid collisions with other memory segments used by the application. If you
do not set INFORMIXSHMBASE, the memory address of the communication
segments defaults to an implementation-specific value such as 0x800000.

The database server calculates the memory address where segments are
attached by multiplying the value of INFORMIXSHMBASE by 1024. For
example, to set the memory address to the value 0x800000, set the
environment variable INFORMIXSHMBASE as follows.

Shell Command

C setenv INFORMIXSHMBASE 8192

Bourne INFORMIXSHMBASE=8192
export INFORMIXSHMBASE

Resetting INFORMIXSHMBASE requires a thorough understanding of how
the application uses memory. Usually you do not reset INFORMIXSHMBASE.
For more information, see your Administrator’s Guide.

setenv INFORMIXSHMBASE value

is used to calculate the memory address. value

Element Description

INFORMIXSTACKSIZE

D-50 HCL Informix 4GL Reference Guide

INFORMIXSTACKSIZE
The INFORMIXSTACKSIZE environment variable affects only client
applications connected to Dynamic Server.

The database administrator can set INFORMIXSTACKSIZE to specify the
stack size (in kilobytes) that the database server will use for a particular client
session. Use INFORMIXSTACKSIZE to override the value of the onconfig
configuration parameter STACKSIZE for a particular application or user.

For example, to decrease the INFORMIXSTACKSIZE to 20 kilobytes, enter the
following command.

Shell Command

C setenv INFORMIXSTACKSIZE 20

Bourne INFORMIXSTACKSIZE=20
exportINFORMIXSTACKSIZE

Important: If INFORMIXSTACKSIZE is not set, the stack size is taken from the
database server configuration parameter STACKSIZE, or it defaults to an implemen-
tation-specific value. The default stack size value for the primary thread for an SQL
client is 32 kilobytes for nonrecursive database activity.

Warning: For specific instructions for setting this value, see the “Administrator’s
Guide” for your database server. If you incorrectly set the value of
INFORMIXSTACKSIZE, it can cause the database server to fail.

setenv INFORMIXSTACKSIZE value

is the stack size for SQL client threads in kilobytes. value

Element Description

INFORMIXTERM

Environment Variables D-51

INFORMIXTERM
On platforms that support terminfo capability, the INFORMIXTERM variable
specifies whether 4GL should use the information in the termcap file or the
terminfo directory. INFORMIXTERM determines terminal-dependent
keyboard and screen capabilities such as the operation of function keys, color
and intensity attributes in screen displays, and the definition of window
border and graphics characters.

If INFORMIXTERM is not set, the default setting is termcap. When 4GL is
installed on your system, a termcap file is placed in the etc subdirectory of
$INFORMIXDIR. This file is a superset of an operating system termcap file.

To use terminfo, your system must fully support the UNIX System V
terminfo library interface. Not all UNIX platforms provide proper terminfo
support. To determine whether your platform supports terminfo to Informix
requirements (and therefore, whether setting INFORMIXDIR will have an
effect), use the following command:

nm $INFORMIXDIR/bin/upscol | grep tigetstr

If the nm command yields no output, your platform does not have terminfo
support, and setting INFORMIXTERM has no effect.

If the command produces a reference line for the tigetstr function,
your platform supports terminfo and you can use the INFORMIXTERM
environment variable to select terminfo functionality. Here is an example
of a reference line:

[3810] | 1281040| 80|FUNC |GLOB |0 |9 |tigetstr

You can use the termcap file supplied by Informix, the system termcap file,
or a termcap file that you created yourself. You must set the TERMCAP
environment variable if you do not use the default termcap file.

The terminfo directory contains a file for each terminal name that has been
defined. It is supported only on computers that provide full support for the
UNIX System V terminfo library. For details, see the machine notes for your
computer. (See also Appendix F, “Modifying termcap and terminfo.”)

setenv INFORMIXTERM termcap

terminfo

INFORMIXTERM

D-52 HCL Informix 4GL Reference Guide

You can set the INFORMIXTERM environment variable to termcap as follows.

Shell Command

C setenv INFORMIXTERM termcap

Bourne INFORMIXTERM=termcap
export INFORMIXTERM

Alternatively, you can set INFORMIXTERM to terminfo as follows.

Shell Command

C setenv INFORMIXTERM terminfo

Bourne INFORMIXTERM=terminfo
export INFORMIXTERM

If INFORMIXTERM is set to termcap, you must set the UNIX environment
variable TERMCAP. Similarly, if INFORMIXTERM is set to terminfo, you must
set the UNIX environment variable TERMINFO.

IXOLDFLDSCOPE

Environment Variables D-53

IXOLDFLDSCOPE
The IXOLDFLDSCOPE environment variable is recognized by Version 6.04
and later of 4GL. It allows programs that were written for Version 6.00 and
earlier that have incorrect field qualifiers to avoid the field qualifier checking
mechanism that was introduced with Version 6.01. To accomplish this task,
you can use the following syntax for setting IXOLDFLDSCOPE.

Prior to Version 6.01, the following syntax ran successfully even if the qualifier
name did not match the name of the field qualifier in the form (table name,
screen record name) or the literal FORMONLY:

{BEFORE|AFTER} FIELD qualifier.fieldname

Starting with Version 6.01, the qualifiers for field names and the qualifiers on
the form must match. As a result, some 4GL programs that ran prior to
Version 6.01 now terminate with error -1129 at runtime because the qualifier
names, although stated explicitly, do not match.

For example, the following fragment of a form specification declares a screen
record called f_scrn_rec:

ATTRIBUTES
a = FORMONLY.myfield1;
...
INSTRUCTIONS
SCREEN RECORD f_scrn_rec (FORMONLY.myfield1 THRU
FORMONLY.myfieldn)

Suppose that a 4GL program referenced the same f_scrn_rec screen record in
the following source code:

DEFINE progrec RECORD ... END RECORD
...
INPUT progrec.* WITHOUT DEFAULTS FROM f_scrn_rec.*
...

AFTER FIELD FORMONLY.myfield1
LET mykeyval = fgl_lastkey()

END INPUT

setenv IXOLDFLDSCOPE value

is any non-blank character. value

Element Description

IXOLDFLDSCOPE

D-54 HCL Informix 4GL Reference Guide

In the 4GL example, the INPUT statement uses the f_scrn_rec screen record
name as the qualifier, but the AFTER FIELD clause references the inherent
qualifier, FORMONLY. (If the fields were based on database columns, a table
identifier would replace FORMONLY.) The field-matching code for
CONSTRUCT and INPUT considers the proper qualifier to be the one given in
the FROM clause. A mismatch results, and a runtime error is issued:

-1129, Field in BEFORE/AFTER clause not found in form,

If you encounter this error, correct these references. If doing so presents a
significant barrier, however, to upgrading a 4GL program earlier than Version
6.01, you can use IXOLDFLDSCOPE as a backward-compatible mechanism to
disable the qualifier test.

To activate this backward-compatible (no checking) mode, you must set and
export the variable IXOLDFLDSCOPE in your environment at runtime (not at
compile time). You can set IXOLDFLDSCOPE to any nonblank value, as in the
following example, where the value is set to Y.

C shell Bourne or Korn shell

setenv IXOLDFLDSCOPE Y IXOLDFLDSCOPE= Y
export IXOLDFLDSCOPE

Including IXOLDFLDSCOPE in the client environment disables checking field
qualifiers. When it is set, however, you lose the benefits of (for example)
being able to use fields from multiple records in an INPUT statement even if
a given field name occurs in more than one participating record.

LINES

Environment Variables D-55

LINES
UNIX platforms support various ways to control the sizes of screens and
windows in terms of lines (or rows) and columns. Depending on the method
that your platform uses, two environment variables, LINES and COLUMNS,
might be useful in controlling the character dimensions of your screen.

One common way to control the character dimensions of screens is the use of
input/output control (ioctl()) calls. To see if your platform uses this method,
enter the command stty -a. If the system response includes explicit values
for rows and columns, ioctl() control is in effect. The following example illus-
trates this command:

% stty -a
speed 9600 baud;
rows = 24; columns = 80;
intr = ^c; quit = ^|; erase = ^h; kill = ^u;

If your platform uses ioctl() calls to control screen dimensions, the operating
system or windowing facility probably provides a way to resize the screen
using a pointing device, such as the mouse or trackball.

If your platform does not use ioctl() calls to control screen dimensions, you
can use the LINES and COLUMNS environment variables to specify the
screen dimensions. Use the following syntax for setting LINES.

On such platforms, if LINES or COLUMNS is not set, the corresponding value
is taken from the rows or columns field in the terminfo or termcap entry in
use, as indicated by the TERM environment variable.

setenv LINES number

is a literal integer, specifying the vertical height of the screen as a
number of lines (sometimes called rows) in the screen display.

number

Element Description

ONCONFIG

D-56 HCL Informix 4GL Reference Guide

The following example sets LINES to 24 and COLUMNS to 80.

C shell Bourne or Korn shell

setenv COLUMNS 80
setenv LINES 24

COLUMNS=80
LINES=24
export COLUMNS LINES

If either LINES or COLUMNS is set to an invalid value (that is, to a value that
is not a positive integer), the invalid value is ignored, and the required value
is read from the termcap or terminfo entry as applicable.

ONCONFIG
The database administrator can set the ONCONFIG environment variable
(previously known as TBCONFIG), which contains the name of the UNIX file
that holds the configuration parameters for the database server. This file is
read as input to either the disk-space or shared-memory initialization
procedure.

If you are not the database administrator, you need to set ONCONFIG only
if more than one database server is initialized in your $INFORMIXDIR
directory, and you want to maintain multiple configuration files with
different values. If ONCONFIG is not set, the default is onconfig.

setenv ONCONFIG filename

filename is the name of the file in $INFORMIXDIR/etc that contains the database
server configuration parameters.

Element Description

PDQPRIORITY

Environment Variables D-57

Each database server has its own onconfig file that must be stored in the
$INFORMIXDIR/etc directory. You might prefer to name onconfig so that it
can easily be related to a specific database server. For example, when the
desired filename is onconfig3, you can set the ONCONFIG environment
variable as follows.

Shell Command

C setenv ONCONFIG onconfig3

Bourne ONCONFIG=onconfig3
export ONCONFIG

For more information, see the Administrator’s Guide for your database server.

PDQPRIORITY
The PDQPRIORITY environment variable determines the amount of
resources that the database server allocates to process a query in parallel.

The following diagram shows the syntax for setting this variable.

The keyword settings of PDQPRIORITY have the following meanings:

■ HIGH: The database server determines the operators and respective
degree of parallelism.

■ LOW: Data values are fetched from fragmented tables in parallel.
■ OFF: Parallel data query is not enabled.

setenv PDQPRIORITY LOW

HIGH

OFF

percent-of-resources

percentage-of-resources is an integer between 0 and 100, indicating a query
priority level.

Description Element

PROGRAM_DESIGN_DBS

D-58 HCL Informix 4GL Reference Guide

For example, if the desired setting is 25 percent, you can set the
PDQPRIORITY environment variable as follows.

Shell Command

C setenv PDQPRIORITY 25

Bourne or Korn PDQPRIORITY=25
export PDQPRIORITY

For more information, see the Informix Guide to SQL: Reference.

PROGRAM_DESIGN_DBS
The 4GL and RDS Programmer’s Environments (i4gl and r4gl) use a relational
database to store the names of the objects that are used to create programs
and their build dependencies. This database is an Informix database.

The default name for this database is syspgm4gl.

In Versions 6.01 and later, both Programmer’s Environments let the user
declare another name for the Programmer’s Environment database. This
capability is particularly useful when you are using Dynamic Server because
only one database can be named syspgm4gl at any given time.

To specify a different name for the Programmer’s Environment database, set
the PROGRAM_DESIGN_DBS environment variable to the desired name.

Important: The dbname value must obey the rules for database names for your
database server. That is, the name can contain only digits, letters, and underscores,
and it can be no more than 10 bytes long (or 18 bytes for Dynamic Server).

setenv PROGRAM_DESIGN_DBS db_name

db_name is the nondefault name that you declare here for the Programmer’s
Environment database.

Description Element

PROGRAM_DESIGN_DBS

Environment Variables D-59

For example, to use the name jane_syspg for your Programmer’s
Environment database, set PROGRAM_DESIGN_DBS to jane_syspg in your
client environment before you run i4gl or r4gl.

Shell Command

C setenv PROGRAM_DESIGN_DBS jane_syspg

Bourne or Korn PROGRAM_DESIGN_DBS=jane_syspg
export PROGRAM_DESIGN_DBS

PSORT_DBTEMP

D-60 HCL Informix 4GL Reference Guide

PSORT_DBTEMP
The PSORT_DBTEMP environment variable affects only client applications
connected to the database server.

PSORT_DBTEMP specifies a directory or directories where the Informix
database server writes the temporary files that it uses when sorting data. For
more information on other places where the database server can write infor-
mation during a sort, see “DBSPACETEMP” on page D-37.

This variable is used even if the variable PSORT_NPROCS is not set.

Set the PSORT_DBTEMP environment variable as follows to specify the
directory; for example, /usr/leif/tempsort.

Shell Command

C setenv PSORT_DBTEMP /usr/leif/tempsort

Bourne PSORT_DBTEMP=/usr/leif/tempsort
export PSORT_DBTEMP

For maximum performance, specify directories that reside in file systems on
different disks.

setenv PSORT_DBTEMP

:
pathname

pathname is the name of the UNIX directory used for intermediate writes during
a sort.

Description Element

PSORT_NPROCS

Environment Variables D-61

PSORT_NPROCS
The PSORT_NPROCS environment variable affects only client applications
connected to the database server.

PSORT_NPROCS enables the Psort parallel-process sorting package to
improve performance. The setting defines the upper limit for the number
of threads used to sort a query.

Set the PSORT_NPROCS environment variable as follows to specify the
maximum value.

Shell Command

C setenv PSORT_NPROCS 4

Bourne PSORT_NPROCS=4
export PSORT_NPROCS

To maximize the effectiveness of Psort, set PSORT_NPROCS to the number of
available processors in the hardware. If PSORT_NPROCS is set to zero, Psort
uses three (3) as the default number of threads.

Use the following command to disable Psort.

Shell Command

C unsetenv PSORT_NPROCS

Bourne unset PSORT_NPROCS

For additional information about the PSORT_NPROCS environment variable,
see your Administrator’s Guide.

setenv PSORT_NPROCS value

specifies the maximum number of threads to be used to sort a query. value

Description Element

SQLEXEC

D-62 HCL Informix 4GL Reference Guide

SQLEXEC
This variable is not used in versions of 4GL later than 6.x.

The SQLEXEC environment variable specifies the location of the Version 6.0
relay module executable that allows a Version 4.1 or earlier client to commu-
nicate indirectly with a local Version 6.0 Informix database server. You must,
therefore, set SQLEXEC only to establish communications between a
Version 4.1 or earlier client and a Version 6.0 database server.

Set SQLEXEC as follows to specify the full pathname of the relay module,
which is in the lib subdirectory of your $INFORMIXDIR directory.

Shell Command

C setenv SQLEXEC $INFORMIXDIR/lib/sqlrm

Bourne SQLEXEC=$INFORMIXDIR/lib/sqlrm
export SQLEXEC

If you set the SQLEXEC environment variable on the C shell command line
instead of in your .login or .cshrc file, you must include braces ({ })symbols
around the existing INFORMIXDIR, as follows.

Shell Command

C setenv SQLEXEC ${INFORMIXDIR}/lib/sqlrm

For information on the relay module, see the 6.0 version for the Adminis-
trator’s Guide for your database server.

If you were previously using a 6.0 or later database server with 4GL 4.1, you
were using either INFORMIX-NET or the INFORMIX Relay Module (sqlrm)
to provide a compatible interface to the newer database servers.

setenv SQLEXEC pathname

specifies the pathname for the relay module. pathname

Description Element

SUPOUTPIPEMSG

Environment Variables D-63

The SQLEXEC environment variable was set to a full or relative pathname
ending in sqlexec (if using INFORMIX-NET) or sqlrm (if using the relay
module), and the INFORMIXSERVER variable was set to the desired database
server name. Additionally, if you were using the database server locally, the
ONCONFIG environment variable might have been set to the name of the
configuration file that belongs to the desired database server.

After you install the new version of 4GL with your database servers, you need
to change your environment variable settings as follows:

■ The SQLEXEC environment variable no longer applies. Unset it in
your environments (including any login and shell configuration
scripts).

■ The INFORMIXSERVER (and ONCONFIG, if applicable) environment
variable does not change as a direct result of the 4GL upgrade. For
more about INFORMIXSERVER and ONCONFIG, see the Informix
Guide to SQL: Reference.

Important: The specified database server must be on-line and accepting connections
for 4GL to create or access a databases.

SUPOUTPIPEMSG
In a 4GL report, you can direct the output to a pipe either by appending
TO PIPE to the START REPORT statement or by including the REPORT TO PIPE
clause in the OUTPUT section of the report definition. A program that further
processes the output, such as a shell script or printer routine, usually receives
the output of the report through the pipe.

In 4GL Versions 6.02 and earlier, if the program at the end of the pipe termi-
nated while receiving data from the pipe, the 4GL application would exit
silently without any indication of a problem.

In 4GL Versions 6.03 and higher, when the receiving program at the reading
end of the pipe dies, the next PRINT or SKIP statement will, by default, result
in error -1324, A report output file cannot be written to. This
situation cannot be handled by the 4GL program by using the WHENEVER
ERROR statement.

SQLRM

D-64 HCL Informix 4GL Reference Guide

If you prefer the old behavior (where the 4GL program is silently terminated),
you can retain that behavior using the SUPOUTPIPEMSG environment
variable. Setting it to any value or to no value, as follows, is sufficient.

If SUPOUTPIPEMSG is set in the user environment at program execution time
and a report output pipe dies prematurely, the 4GL program terminates
without any error message.

SQLRM
This variable is not used in versions of 4GL later than 6.x.

If the system administrator is configuring a client/server environment in
which a Version 4.1 4GL client accesses a local Version 6.0 database server, the
SQLRM environment variable must be unset before SQLEXEC can be used to
spawn a Version 6.0 relay module.

Unset SQLRM as follows.

Shell Command

C unsetenv SQLRM

Bourne unset SQLRM

For information on the relay module, see the 6.0 version of your Adminis-
trator’s Guide.

setenv DBANSIWARN

SQLRMDIR

Environment Variables D-65

SQLRMDIR
This variable is not used in versions of 4GL later than 6.x.

If the database administrator is configuring a client/server environment in
which a Version 4.1 4GL client accesses a local Informix 6.0 database server,
the SQLRM environment variable must be unset.

Unset SQLRMDIR as follows.

Shell Command

C unsetenv SQLRMDIR

Bourne unset SQLRMDIR

GLS Environment Variables
These variables affect global language support (GLS) or else are no longer
recognized by 4GL; some of these variables are described in Appendix E.

GLS Environment Variable Restrictions

CLIENT_LOCALE

COLLCHAR Not used by 4GL

DBAPICODE

DB_LOCALE

DBNLS

GL_DATE

GL_DATETIME

LANG Not used by 4GL

SERVER_LOCALE

GLS

Default Values of CLIENT_LOCALE and DB_LOCALE

D-66 HCL Informix 4GL Reference Guide

For details, see the descriptions of these environment variables in the Informix
Guide to GLS Functionality. These environment variables typically do not need
to be set for applications that run only in the default (U.S. English) locale.

If DBNLS is set to 1, 4GL looks in the locale files for a nondefault collation
sequence. If a collation order is defined, 4GL uses it, rather than the code-set
order, in all sort operations that it performs on character values. If DBNLS is
not set, or if the locale files define no collation sequence, 4GL sorts string
values in code-set order.

Default Values of CLIENT_LOCALE and DB_LOCALE
The following table shows the values assumed by INFORMIX-4GL and
INFORMIX-SQL when you define only some of the required values of locales.

(A value of ja-jp.ujis is assumed in the following table, where CL stands
for CLIENT_LOCALE and DL stands for DB_LOCALE.)

User Defined Values in 4GL

CL Defined CL Value DL Defined DL Value CL Value DL Value

No -- No -- en_us.8859 en_us.8859

Yes ja_jp.ujis No -- ja_jp.ujis ja_jp.ujis

Yes ja_jp.ujis Yes ja_jp.ujis ja_jp.ujis ja_jp.ujis

No -- Yes ja_jp.ujis en_us.8859 ja_jp.ujis

Default Value of DBLANG
If you do not set the DBLANG environment variable, by default it is set to the
value of CLIENT_LOCALE.

Environment Configuration Files for Asian Locales

Environment Variables D-67

Environment Configuration Files for Asian Locales
Earlier 4GL versions supported an equal sign (=), blank space (ASCII 32), or
tab separator between the variable and its value in the $HOME/.informix file;
or the $INFORMIXDIR/etc/informix.rc file; for example:

variable1 = value2

In versions of 4GL later than 6.x, however, only tabs or blank spaces are valid
in these files as the separator:

variable1 value2

If you are upgrading to this version from a 6.x version of 4GL for deployment
in East Asian locales, you might need to edit these configuration files to
replace any equal sign that was used as a separator in this context.

UNIX Environment Variables
Informix products also rely on the correct setting of certain standard UNIX
system environment variables. The LD_LIBRARY_PATH, PATH, and TERM
environment variables must always be set. (Some platforms use a different
name, such as LPATH or SHLIB_PATH, for LD_LIBRARY_PATH; see the
section “Runtime Requirements” on page 1-45.) You also might need to set
the TERMCAP or TERMINFO environment variable to use 4GL effectively.

PATH
The PATH environment variable specifies the order in which the UNIX shell
searches directories for executable programs. You must include the directory
that contains 4GL in your PATH setting before you can use 4GL.

setenv PATH

:
pathname

specifies the search path for executables. pathname

Description Element

PATH

D-68 HCL Informix 4GL Reference Guide

You can specify the correct search path in various ways. Be sure to include a
colon (:) asa separator between UNIX directories. (On Windows NT systems,
however, a semicolon (;) is the pathname separator.)

The following example uses the explicit path /usr/informix. This path must
correspond to the INFORMIXDIR setting. The C shell example is valid for
.login or .cshrc files.

Shell Command

C setenv PATH $PATH:/usr/informix/bin

Bourne PATH=$PATH:/usr/informix/bin
export PATH

The next example specifies $INFORMIXDIR instead of /usr/informix. It tells
the shell to search the directories that were specified when INFORMIXDIR
was set. The C shell example is valid for .login or .cshrc files.

Shell Command

C setenv PATH $PATH:$INFORMIXDIR/bin

Bourne or Korn PATH=$PATH:$INFORMIXDIR/bin
export PATH

You might prefer to use this version to ensure that your PATH entry does not
conflict with the path that was set in INFORMIXDIR and so that you do not
need to reset PATH whenever you reset INFORMIXDIR.

If you set PATH on the C shell command line instead of in your .login or .cshrc
file, you must enclose the INFORMIXDIR and PATH settings within braces
({ }), like this.

Shell Command

C setenv PATH ${INFORMIXDIR}/bin:${PATH }

TERM

Environment Variables D-69

TERM
The TERM environment variable is used for terminal handling. It enables 4GL
to recognize and communicate with the terminal that you are using.

The terminal type specified in the TERM setting must correspond to an entry
in the termcap file or terminfo directory. Before you can set the TERM
environment variable, you must obtain the code for your terminal from
the system administrator or database administrator.

For example, to specify the terminal whose code is vt100, set the TERM
environment variable as follows.

Shell Command

C setenv TERM vt100

Bourne TERM=vt100
export TERM

setenv TERM type

specifies the terminal type. type

Element Description

TERMCAP

D-70 HCL Informix 4GL Reference Guide

TERMCAP
The TERMCAP environment variable is used for terminal handling. It tells
4GL to communicate with the termcap file instead of the terminfo directory.

The termcap file contains a list of various types of terminals and their
characteristics. Set TERMCAP as follows.

Shell Command

C setenv TERMCAP /usr/informix/etc/termcap

Bourne or
Korn

TERMCAP=/usr/informix/etc/termcap
export TERMCAP

If you set the TERMCAP environment variable, be sure that the
INFORMIXTERM environment variable is set to the default, termcap.

setenv TERMCAP pathname

specifies the location of the termcap file. pathname
Description Element

TERMINFO

Environment Variables D-71

TERMINFO
The TERMINFO environment variable is used for terminal handling. It is
supported only on computers that provide full support for the UNIX System
V terminfo library.

TERMINFO tells 4GL to communicate with the terminfo directory instead of
the termcap file. The terminfo directory has subdirectories that contain files
pertaining to terminals and their characteristics.

Set TERMINFO as follows.

Shell Command

C setenv TERMINFO /usr/lib/terminfo

Bourne TERMINFO=/usr/lib/terminfo
export TERMINFO

If you set the TERMINFO environment variable, you also must set the
INFORMIXTERM environment variable to terminfo.

See also Appendix F, “Modifying termcap and terminfo.”

setenv TERMINFO /usr/lib/terminfo

Developing Applications
with Global Language
Support
The emerging global economy creates both opportunities and
challenges for software application developers. Increasingly,
applications are targeted toward multinational corporations or
for customers in different countries. These applications typically
require such international features as translatable user messages,
menus, and reports, as well as date, time, and currency formats
that can be easily changed to fit local cultural standards.

This appendix identifies fundamental terms and concepts that
are involved in the localization of 4GL applications. Most of these
terms are discussed in greater detail in the chapter on GLS
fundamentals in the Informix Guide to GLS Functionality,
primarily in relation to the database server.

Appendix

E

Internationalization and Localization

E-2 HCL Informix 4GL Reference Guide

Internationalization and Localization
The terms internationalization and localization are near antonyms, but they
both describe activities that are critical for applications that will be deployed
in more than one locale. The first term, internationalization, refers to the work
of analysts and developers who must design and write code that is gener-
alized for different cultural contexts. The second term, localization, refers to
the work of developers and translators, who must adapt an internationalized
application to the specific needs of a given linguistic or cultural setting.

Internationalization is the process of making software applications easily
adaptable to different cultural and language environments.

Internationalization features support non-ASCII characters in character string
values, and adaptable number, time, and currency formats. International-
ization also implies the ability to switch runtime environments from one
language to another. Internationalization removes the need to recompile
source code for a specific natural language or cultural environment.

A fully internationalized application can run in different cultural
environments with minimal adjustments, in some instances by simply
exchanging language-specific files and setting up the operating environment.

An internationalized application must support the use of extended ASCII
code sets. The default environment for 4GL is based on the ASCII code set of
128 characters, as listed in Appendix A, “The ASCII Character Set.” Each of
these encoded values (or code points) requires seven bits of a byte to store each
of the values 0 through 127, representing the letters, digits, punctuation, and
other logical characters of ASCII. Because each ASCII character can be stored
within a single byte, ASCII is called a single-byte character set. All other
character sets that 4GL can support must include ASCII as a subset.

An internationalized application should, at a minimum, be 8-bit clean. A
program, GUI, or operating system is referred to as 8-bit clean if it allows the
high-order bit of a character code to take on a value of 1. 4GL applications are
8-bit clean, and therefore support the use of extended ASCII character sets.

Localization is the process of translating and adapting an internationalized
product to specific language and cultural environments.

Global Language Support Terms

Developing Applications with Global Language Support E-3

Localization usually involves setting the appropriate number, time, and
currency formats for the intended country, as well as creating a translation of
the runtime user interface (including help and error messages, prompts,
menus, and reports).

You can reduce the cost and effort of localization if the application is
designed with international requirements in mind. This version of 4GL
supports localization in several areas:

■ Entry, display, and editing of non-English characters
■ References to SQL identifiers containing non-English characters
■ Collation of strings containing non-English symbols
■ Non-English formats for number, currency, and time values

For basic GLS concepts and for details of how Informix database servers and
the Client SDK products implement GLS, see the Guide to GLS Functionality.

Localization efforts are significantly easier when internationalization is built
into the application from the start. “General Guidelines” on page E-18
provides guidelines for writing 4GL programs that can be easily localized.

Global Language Support Terms
Global language support (GLS) refers to the set of features that makes it possible
to develop user interfaces and other parts of an application so that they can
use non-Roman alphabets, diacritical marks, and so on. To understand the
requirements of GLS, you will need to become familiar with the terms
described in this section.

Code Sets and Logical Characters
For a given language, the code set specifies a one-to-one correspondence
between each logical element (called a logical character, or a code point) of the
character set, and the bit patterns that uniquely encode that character. In U.S.
English, for example, the ASCII characters constitute a code set.

Collation Order

E-4 HCL Informix 4GL Reference Guide

Code sets are based on logical characters, independent of the font that a
display device uses to represent a given character. The size or font in which
4GL displays a given character is determined by factors independent of the
code set. (For example, if you select a font that includes no representation of
the Chinese character for star, only white space is displayed for that character
until you specify a font that supports it.)

Collation Order
Collation order is the sequence in which character strings are sorted. Database
servers can support collation in either code-set order (the sequence of code
points) or localized order (some other predefined sequence). See the chapter on
GLS fundamentals in the Guide to GLS Functionality for details of localized
collation.

4GL sorts strings in code-set order, unless the COLLATION category of the
locale files specifies a localized order (and DBNLS is set to 1). Informix
databases can use localized collation for NCHAR or NVARCHAR columns of
the database but sort CHAR and VARCHAR values in code-set order.

Single-Byte and Multibyte Characters
Most alphabet-based languages, such as English, Greek, and Tagalog, require
no more than the 256 different code points that a single byte can represent.
This simplifies aspects of processing character data in those languages;
for example, the number of bytes of storage that an ASCII character string
requires has a linear relationship to the number of characters in the string.

In non-alphabetic languages, however, the number of different characters can
be much greater than 256. Languages like Chinese, Japanese, and Korean
include thousands of different characters, and typically require more than
one byte to store a given logical character. Characters that occupy two or
more bytes of storage are called multibyte characters.

Locales

Developing Applications with Global Language Support E-5

Locales
For 4GL (and for Informix database servers and connectivity products), a
locale is a set of files that specify the linguistic and cultural conventions that
the user expects to see when the application runs. A locale can specify these:

■ The name of the code set
■ The collation order for character-string data
■ Culture-specific display formats for other data types
■ The correspondence between uppercase and lowercase letters
■ Determination of which characters are printable and which are

nonprintable

The chapter on GLS fundamentals in the Guide to GLS Functionality provides
details of formats for number, currency, and time values. If no locale is
specified, default values are for United States English, which is the
en_us.8859-1 locale on UNIX systems or Windows code page 1252. For
deployment, 4GL is also delivered with the locale en_us.1252@dict, which
corresponds to that Windows code page.

The locale en_us.1252@dict allows you to compile and run programs that
contain non-English characters from any single-byte language, but the
default data formats are those of U.S. English. Alternatively, you can use the
Setnet32 utility to specify some nondefault locale, such as one of those listed
in “Locales Supported by 4GL” on page E-9.

Global Language Support

E-6 HCL Informix 4GL Reference Guide

Global Language Support
GLS is a set of features that enable you to create localized applications for
languages other than U.S. English and for country-specific cultural issues,
including the localized representation of dates, currency values, and
numbers. 4GL supports the entry, retrieval, and display of multibyte
characters in some East Asian languages, such as Japanese and Chinese.

The following built-in functions or operators have been modified since
version 6.0 of 4GL to provide support for non-English locales. Some can
accept multibyte characters as arguments or operands, or can return values
that include multibyte characters.

GLS-Enabled Built-In Function or Operator

CLIPPED operator
DOWNSHIFT()
FGL_GETENV()
FGL_KEYVAL()
LENGTH()
Substring ([]) operator
UPSHIFT()

 WORDWRAP operator

See Chapter 5, “Built-In Functions and Operators,” for the syntax and
semantics of these built-in functions and operators. (In addition, certain other
built-in functions and operators of 4GL can also process or return multibyte
values.)

Installation in Non-English Locales

Developing Applications with Global Language Support E-7

Installation in Non-English Locales
This section identifies the general requirements for installation of 4GL in non-
English locales. Because non-English refers to all locales other than
en_us.8859-1 (for UNIX) or en-us.1252@dict (for Windows), most locales of
the English-speaking world are non-English in this context, as are the locales
of most of the rest of the world.

The directory structure of Informix GLS products is shown in Figure E-1.

Figure E-1
*.cv

cv9
Directory Structure

of GLS Products

*.cvo

*.cm

gls cm3
*.cmo

*.lc

lc11
en_us

*.lco

msg

en_us 0333 *.iem

$INFORMIXDIR

etc (similar to msg subdirectory)

forms (similar to msg subdirectory)

release (similar to msg subdirectory)

en_us 0333 *

demo
sql

Requirements for International Application Development

E-8 HCL Informix 4GL Reference Guide

Requirements for International Application Development
The following requirements must be met to develop a 4GL application that is
fully adapted to a language or to a country:

■ The targeted hardware platform and operating system need to
support the desired language and country combination.
The operating system environment on both the client platform and
the database server platform might require special versions to sup-
port the entry, manipulation, and display of non-English data.

■ The Informix products need to support the language. Informix
products are 8-bit clean and allow entry, manipulation, and display
of most European and Asian language data.

■ Error messages generated by 4GL and the database server should be
available in a localized version, so that only local languages appear
in the runtime environment.

■ All parts of the user interface created by the application developer
(such as menus, prompts, error messages, and help) should be trans-
lated into the target language.

In many cases, the last three of these four requirements can be met by using
an Informix language supplement. Your Informix sales representative can
advise you regarding the availability of language supplements, of localized
versions of Windows, and of database servers that are compatible with 4GL.

Language Supplements
Use of 4GL with some non-English languages might require an Informix
language supplement specific to the conventions of the country or language.
Language supplements are currently required, for example, for Informix
database servers to support each of the following East Asian languages.

Country or Language Informix Language Supplement
People’s Republic of China Language Supplement ZHCN 7.20

Taiwanese Language Supplement ZHTW 7.20

Japanese Language Supplement JA 7.20
Korean Language Supplement KO 7.20
Thai (simplified) Language Supplement TH 7.20

Locales Supported by 4GL

Developing Applications with Global Language Support E-9

Language supplements for these East Asian languages include locale files,
translated message files, and translated menu files. Localized versions of 4GL
for East Asian locales (for example, Japanese 4GL) will include the relevant
files. See the release notes for additional information.

A corresponding International Language Supplement includes locale files
and code-set conversion files for most European languages. Because most of
these files are included with the ESQL/C software that is provided with 4GL,
this supplement need not be purchased by 4GL customers unless the required
locale is not included with 4GL.

When the Informix database server is installed in locales based on non-
English European languages, both the default (English) database server and
the International Language Supplement must be installed.

When 4GL is installed, the locale files must also be installed. Contact your
Informix sales office for information regarding current support for specific
locales.

Locales Supported by 4GL
A locale is the part of the processing environment that defines conventions for
a given language or culture, such as formatting time and money values, and
classifying, converting, and collating characters. The Informix GLS locale
definition is similar to the X/Open CAE Specification.

Code sets that 4GL supports include those listed in the following table.

Country or Language
People’s Republic of China

Taiwanese

Japanese
Korean
Eastern European (Latin)
Eastern European (Cyrillic)
Western European (Latin)
Greek

Turkish

Requirements for All Locales

E-10 HCL Informix 4GL Reference Guide

4GL provides limited support for the Thai language through code set
th_th.thai620, with Language Supplement TH 7.20, for non-composite Thai
characters. (4GL does not support composite Thai characters.)

Client Locales and Database Server Locales
The locale of the system on which the 4GL application is running is called the
client locale. The locale of the database server is called the server locale.
“Handling Code-Set Conversion” on page E-34 describes special procedures
that might be required if the client locale and the server locale are not
identical.

Setting Environment Variables for Specific Locales
4GL requires that environment variables be set correctly on UNIX systems
that support the database server or 4GL applications that support application
server and display server partitions. For details about setting environment
variables on UNIX systems for global language support, see the Informix Guide
to GLS Functionality. See also “Configuring the Language Environment” on
page E-24 for additional information about setting environment variables.

See the information on managing GLS files in the Informix Guide to GLS
Functionality for an example of non-English locale files.

Requirements for All Locales
This section outlines the steps that are needed to create localized 4GL
applications:

1. Set up the development environment.
The system administration tools that you use must belong to the
database server. You can use a UNIX terminal (if it supports the local
code set).

2. Write the code.
Filenames (source and compiled) must contain only English
characters.

The 4GL Compilers

Developing Applications with Global Language Support E-11

3. Compile and debug the code.

The 4GL compiler can compile and link the components of the
application.
The Message Compiler can compile non-English text, so that runtime
messages can be displayed in the local language. The user interface
of the Message Compiler is in English.
The INFORMIX-4GL Interactive Debugger is not GLS enabled.
(The Dynamic 4GL Debugger has sufficient GLS capability to display
non-English characters from the client locale.)

4. Deploy the code.
Deployment is relatively unrestricted. Applications that can be cre-
ated through the steps outlined here are localized applications for a
specific locale and therefore are not internationalized. (That is, they
should not be used in another locale that requires, for example, a dif-
ferent code set from that of the message files.)

The 4GL Compilers
The compilers have GLS capability, as sections that follow describe.

The 4GL Character Set
4GL keywords, identifiers, delimiters, and special symbols in source code are
restricted to the same ASCII characters described in Chapter 2, “The
INFORMIX-4GL Language.” Additional printable characters from the client
locale, however, are valid within source code files in the following contexts:

■ Within comments

■ Within 4GL identifiers

■ Within certain SQL identifiers (as listed in the table in “SQL and 4GL

Identifiers” on page E-13)
■ Within expressions where character-string literals are valid

The 4GL Compilers

E-12 HCL Informix 4GL Reference Guide

In non-English locales, 4GL identifiers can include non-ASCII characters in
identifiers if those characters are defined in the code set of the locale that
CLIENT_LOCALE specifies. In multibyte East Asian locales that support
languages whose written form is not alphabet-based, a 4GL identifier need
not begin with a letter, but the storage length cannot exceed 128 bytes. (A
Chinese identifier, for example, that contains 128 logical characters would
exceed this limit if any logical character in the identifier required more than
one byte of storage.)

Non-English characters in other contexts, or characters that the client locale
does not support, will generally cause compilation errors.

At runtime, the user can enter, edit, and display valid characters from the
code set of the client locale. Whether a given character from a non-English
code set is printable or nonprintable depends on the client locale.

Values that include non-English characters can be passed between a 4GL
application and the database server, if the client and server systems have the
same locale. If the locales are different, data can still be transferred between
the 4GL client and the database server, provided that the client locale includes
appropriate code-set conversion tables. See “Configuring the Language
Environment” on page E-24, or GLS fundamentals in the Informix Guide to GLS
Functionality, for information about establishing a locale and about code-set
conversion between locales. See also “Handling Code-Set Conversion” on
page E-34.

Non-English Characters
The following features of the 4GL compiler are GLS-enabled to support non-
English characters that are valid in the client locale:

■ Names of identifiers
■ Values of CHAR and VARCHAR variables and formal arguments
■ Characters within TEXT data
■ Message text, quoted strings, and values returned by functions
■ Text within comments, forms, menus, and output from reports

Named 4GL program entities include variables, functions, cursors, formal
arguments, labels, reports, and prepared objects. 4GL has a limit of 128 bytes
on the lengths of these names, but C compiler or linker restrictions might
impose lower limits.

The 4GL Compilers

Developing Applications with Global Language Support E-13

SQL and 4GL Identifiers
SQL identifiers are the names of database entities, such as table and column
names, indexes, and constraints. The first character must be an alphabetic
character, as defined by the locale, or an underscore (= ASCII 95) symbol. You
can use alphanumeric characters and underscores (_) for the rest of the SQL
identifier. Most SQL identifiers can be up to 18 bytes in length, if the
IFX_LONGID environment variable is not set, or if it is set to 0 on the database
server. (If IFX_LONGID is set to 1, however, then SQL identifiers can be up to
128 bytes in length.)

What characters are valid in SQL identifiers depends on the locale of the
database server; see “Client Locales and Database Server Locales” on
page E-10. Neither single-byte nor multibyte white space characters can
appear in SQL identifiers.

For INFORMIX-SE database servers, whether non-English characters are
permitted in the names of databases, tables, or log files depends on whether
the operating system permits such characters in filenames. ♦

The user interface of the 4GL compiler is in English. If edit fields contain
multibyte characters, there is no checking, and the results might be unpre-
dictable. Embedded SQL statements can include valid non-English identifiers
for some database entities. The following tables summarize the instances
where non-English characters are valid as identifiers within 4GL source code
modules. The first table lists SQL identifiers.

SQL Identifier Allow Non-English Characters?
Column name Yes
Constraint name Yes
Database name Yes (Operating system limitations on INFORMIX-SE)
Index name Yes
Log filename Yes (Operating system limitations on INFORMIX-SE)
Stored procedure name Yes
Synonym Yes
Table name Yes (Operating system limitations on INFORMIX-SE)
View name Yes

SE

The 4GL Compilers

E-14 HCL Informix 4GL Reference Guide

The following 4GL identifiers allow non-English characters.

4GL Identifier Allow Non-English Characters?
Variable name Yes
Cursor name Yes
Filename or pathname No
Formal argument name Yes
Function or report name Yes
Prepared statement name Yes
Statement label Yes

Input and output filenames for the 4GL compiler cannot be localized. Only
ASCII characters are valid in input and output pathnames or filenames. (If
support for uppercase ASCII letters is required, specify en_us.1252@dict as
the locale at compile time. Uppercase letters are not defined in en_us.1252.)

Collation Sequence
The default collation (sorting) sequence in 4GL statements is implied by
the code-set order in the files that define the client locale. If the DBNLS
environment variable is set to 1, 4GL looks in the locale files for the
COLLATION category. If this category defines a nondefault collation order,
4GL uses this order, rather than the code-set order, for all sort operations that
it performs on character values. (Here the COLLATION category functionally
replaces the LC_COLLATE environment variable, which specified the nonde-
fault sort order in earlier versions.)

If the locale files define a nondefault collation, this order is applied to all
strings that the 4GL application sorts. In contrast, the database server applies
localized collation (if any is defined) only to values from NCHAR and
NVARCHAR database columns, but not to values from CHAR or VARCHAR
columns (which it sorts in code-set order).

The 4GL application and the database server can use a different collation
sequence, or a 4GL application can connect to two or more database servers
that use different collation sequences in SQL operations. The collation
sequence can affect the value of Boolean expressions that use relational
operators as well as the sorted order of rows in queries and in reports.

East Asian Language Support

Developing Applications with Global Language Support E-15

Locale Restrictions
The compiler requires the en_us.0333 locale. It accepts as input any source
file containing data values in the format of the client locale. The compiler can
generate binaries or p-code files with client-locale text strings. The runtime
locale of a 4GL program must be the same as its compile-time locale.

The Forms Compiler
The fglform forms compiler can process form specifications that include non-
English characters that are valid in the client locale. It can also produce
compiled forms that can display characters from the client locale and that can
accept such characters in input from the user.

The Message Compiler
The mkmessage message compiler has a user interface in English but can
compile non-English text into runtime messages in the local language.

East Asian Language Support
4GL can create applications for Asian languages that use multibyte code sets.
The following features are supported by 4GL in multibyte locales:

■ Menu items, identifiers, and text labels in the native language
■ Features to avoid the creation of partial characters
■ Non-English data within 4GL applications
■ Cultural conventions, including the representation of date, time,

currency, and numeric values, and localized collation
■ Kinsoku processing for Japanese language text with WORDWRAP

■ Icon modification without changing the 4GL application binary
■ Text geometry that adjusts automatically to meet localization needs
■ Application comparisons that adopt the comparison rules and

collating sequence that the locale defines implicitly (SQL comparison
and collation depend on the database server.)

This version of 4GL does not support composite characters, such as are
required in some code sets that support the Thai language.

East Asian Language Support

E-16 HCL Informix 4GL Reference Guide

4GL comments and character string values can include multibyte characters
that are supported by the client locale in contexts like these:

■ Character expressions and multiple-value character expressions
■ Literal values within quoted strings
■ Variables, formal arguments, and returned values of CHAR,

VARCHAR, and TEXT data types

Multibyte characters can also appear in 4GL source code (or in user-defined
query criteria) that specifies the SQL identifier of any of the database objects
listed in the table on “SQL and 4GL Identifiers” on page E-13. 4GL does not,
however, support multibyte characters as currency symbols or as separators
in display formats that DBDATE or DBFORMAT specifies.

Logical Characters
Within a single-byte locale, every character of data within character-string
values requires only a single byte of memory storage, and a single character
position for display by a character-mode device.

This simple one-to-one relationship in character-string operations between
data characters, display width, and storage requirements does not exist in
East Asian locales that support multibyte characters. In such locales, a single
logical character might correspond to a single byte or to two or more bytes.
In such locales, it becomes necessary to distinguish among the logical
characters within a string, the display width that the corresponding glyph
occupies in a display or in report output, and the number of bytes of memory
storage that must be allocated to hold the string.

In locales that support multibyte characters, some built-in functions and
operators that process string values operate on logical characters, rather than
on bytes. For code sets that use multibyte characters, this modifies the byte-
based behavior of several features in 4GL 6.x (and earlier versions). A single
logical character can occupy one or more character positions in a screen
display or in output of a report, and requires at least one byte of storage, and
possibly more than one.

Declaring the CHAR or VARCHAR data types of variables, formal arguments,
and returned values is byte based. Runtime processing of some character
strings, however, is done on a logical character basis in multibyte locales.

East Asian Language Support

Developing Applications with Global Language Support E-17

Partial Characters
The most important motivation for distinguishing between logical characters
and their component bytes is the need to avoid partial characters. These are
fragments of multibyte characters. Entering partial characters into the
database implies corruption of the database, and risks malfunction of the
database server.

Partial characters are created when a multibyte character is truncated or split
up in such a manner that the original sequence of bytes is not retained. Partial
characters can be created during operations like the following ones:

■ Substring operations
■ INSERT and UPDATE operations of SQL

■ Word wrapping in reports and screen displays
■ Buffer to buffer copy

4GL does not allow partial characters and handles them as follows:

■ Replaces truncated multibyte characters by single-byte white spaces
■ Wraps words in a way that ensures that no partial characters are

created in reports and screen displays
■ Performs code-set conversion in a way that ensures that no partial

characters are created

For example, suppose that the following SELECT statement of SQL:

SELECT col1[3,5] FROM tab1

retrieved three data values from col1 (where col1 is a CHAR, NCHAR,
NVARCHAR, or VARCHAR column); here the first line is not a data value but
indicates the alignment of bytes within the substrings:

AA2BB2AA becomes "s1Bs1"

ABA2C2AA becomes "A2s1"

A2B2CABC becomes "B2C"

General Guidelines

E-18 HCL Informix 4GL Reference Guide

Here the notation s1 denotes a single-byte white space. Any uppercase letter
followed by a superscript (2) means an East Asian character with multibyte
storage width; for simplicity, this example assumes a 2-byte storage
requirement for the multibyte characters. In the first example, the A2 would
become a partial character in the substring, so it is replaced by a single-byte
white space. In the same substring, the B2 would lose its trailing byte, so a
similar replacement takes place.

General Guidelines
This section lists the issues that you need to consider when writing and
translating applications.

Internationalization Guidelines
To make a 4GL application world-ready, keep the following guidelines in
mind:

■ Do not assume that application users are English speaking or will
accept any pre-set business rules or formats.

■ Use code libraries wherever possible. This centralizes common code
and makes changes and maintenance easier when developing for
international markets.
Specific programming areas that might require special attention (and
that are treated in detail in the chapter on GLS fundamentals in the
Informix Guide to GLS Functionality) include:
❑ Character-string display, entry, storage, retrieval, and processing
❑ Formats for literal date, time, currency, and numeric values
❑ Code-set conversion between client and server

■ In all windows that will appear in more than one language, consider
differences in word length among languages when you are
designing the window and its graphical objects.

■ Allow space for the expansion of user message strings. Brief English
strings such as Popup can double in size as a result of translation. On
average, you can expect a 30% increase in the size of messages.

Internationalization Guidelines

Developing Applications with Global Language Support E-19

■ When designing windows, remember that names, addresses, dates,
times, and telephone numbers have different formats in different
countries.

■ When possible, use picture buttons instead of buttons with titles.
■ Consider that measurement systems can also differ. Most countries

outside the U.S. express quantities using the metric system. For
example, liters, centimeters, and kilometers instead of quarts, inches,
and miles.

■ Make sure that all screens, menus, user messages, reports, help
facilities, and application parameters (such as holidays, bank years,
formulas) that were developed with Informix tools for the appli-
cation are either table-driven or are controlled by text files or
environment variables that are easy to modify. This issue is
discussed later in this appendix.

■ Avoid embedding any messages, prompts, or elements of the user
interface into the source code of the program. Ideally, all user
interface elements can be switched dynamically by referencing a
different set of translated files.

■ Consider different keyboard layouts. A character (such as “/”) that
is easily accessible on an ASCII keyboard might require several
keystrokes in the standard keyboard of some other country.

■ Consider creating a configuration utility to deal with different font
types. Some applications that will be deployed in several different
countries might need to load different fonts to accommodate specific
national characters.
Because these fonts are often supplied by third parties, you might not
be able to predict the font names when you develop the application.
In this case, you can use the default font names and provide a config-
uration utility that allows the user to specify the font name before
running the application.

■ Consider differences in paper size when designing reports. Most
countries outside the U.S. use the ISO Standard A4 paper size, which
is 21 by 29.7 centimeters, slightly longer and narrower than the
American standard 8.5 by 11 inches.

Localization Guidelines

E-20 HCL Informix 4GL Reference Guide

■ Avoid fragmentation of messages or potentially ambiguous key or
command words. Avoid determining variable portions of a message
at runtime; for example, the differing syntax of other languages can
make the order in which your functions return parameters an
obstacle to correct translation.

■ Wherever possible, avoid abbreviations, acronyms, contractions,
and slang.

■ Place comments around any string pertaining to the user interface to
facilitate localization.

■ Use localized error messages and help files. The message compiler
utility that is provided with 4GL enables you to create customized
help files as well as a localized version of the 4GL runtime message
file (the 4gluser.msg file in the msg directory). Internationalizing
messages is further discussed in “Localizing Prompts and Messages”
on page E-32.

■ You can handle reports (which are 4GL programs) in the same way
that you internationalize the rest of your 4GL source code.

Localization Guidelines
As noted previously, localization refers to the actual process of adapting the
application to the cultural environment of end users. This process often
involves translation of the user interface and user documentation and can be
time consuming and costly. Here are some guidelines to follow:

■ Consult the native operating system internationalization guide.
Most platforms provide documentation on internationalization. This
material might help you to determine which date, time, and money
formats are appropriate for the target language and culture.
For more information about internationalizing Informix products,
see the Informix Guide to SQL: Reference.
For information about the terms and constructs of Informix global
language support (GLS) technology, see the Informix Guide to GLS
Functionality.

■ Make sure the targeted hardware, operating system environments,
and Informix product versions of your applications can support the
desired language and culture.

Localization Guidelines

Developing Applications with Global Language Support E-21

■ Find out if the runtime environment of 4GL and of the database
server is currently available in the target language.
For example, the 4GL runtime environment (and the Informix
Dynamic Server administrator’s environment) is usually
translated into several languages, including French, German,
Spanish, Russian, and Japanese.

■ Keep a glossary of all strings and keywords in a database or text file.
This glossary will make it easier to see which messages are dupli-
cated throughout the source code. The glossary will also increase the
consistency of terms and language in the user interface throughout
the application. Once the glossary is created for one language, it can
be used for product updates and additional localizations.

■ Create a mechanism that allows a glossary to drive the definition of
the user interface.
This can be particularly useful if you expect to localize the
application often. A translator can edit the glossary without having
to understand the source code of the application. Your tool can then
create the user interface from the translated glossary, and the trans-
lator can focus on making cosmetic enhancements to the translation
(such as positioning the messages appropriately) and correcting
minor errors.

■ Consider creating a checklist of those user interface elements in your
application that should be externalized into text files from the source
code, and therefore from the compiled portion of the program. These
text files can then be modified even after the program is compiled.
Externalize the following elements:
❑ Menus
❑ Forms
❑ Messages
❑ Labels
❑ Help (.msg) text
❑ Numeric, date, time, and money formats
❑ Report names

Localization Methodology Overview

E-22 HCL Informix 4GL Reference Guide

■ Consider retaining a professional translator for some or all of this
process.
A faulty translation is very costly. You can spend a great deal of time
and money correcting errors in your localized product. And if you do
not correct the problems, your users will be dissatisfied with your
application.

Localization Methodology Overview
This section lists the elements of an application and indicates some ways in
which each can be localized. This overview, while not comprehensive, illus-
trates how to approach a project of this nature. The rest of this appendix
expands on the approaches listed here.

For many of the application elements discussed in this section, the two
methods of localization are the table-based approach and the file-based
approach. The table-based approach involves obtaining translation infor-
mation from a database using SQL queries. The file-based approach involves
retrieving the values of the variables from a text file.

Application Help and Error Messages
Two methods are available for localizing application help and error
messages.

Table-Based Localization of Messages

To use this method, you need to verify the availability of tables. It often also
requires the hard coding of defaults in case the database cannot be accessed.

File-Based Localization of Messages

This method uses the mkmessage message compiler utility to create help and
error message files. For more information, see “Localizing Prompts and
Messages” on page E-32.

Localization Methodology Overview

Developing Applications with Global Language Support E-23

Date, Time, and Currency Formats
To localize formats for date, time, and money values, set the Informix
environment variables DBFORMAT, DBMONEY, and DBDATE. Formatting
conventions of some East Asian locales require that the GL_DATE or
GL_DATETIME environment variable be set. For more information about
these and other environment variables, see Appendix D, “Environment
Variables.”

Informix System Error Messages
The following methods are available for localizing Informix system messages
and error messages.

Informix Translation

Informix provides error message translation for a variety of languages. You
can use the DBLANG environment variable to point to a message directory
containing translated messages. Contact your local Informix sales office for a
list of available language translations.

Customized System Error Message Files

If no Informix translation of the error messages is available, and if the source
code of error message files is delivered with the product, you can localize the
message source files using the mkmessage utility. For more information, see
“Localizing Prompts and Messages” on page E-32.

Code-Set Conversion
For details, see “Handling Code-Set Conversion” on page E-34.

Configuring the Language Environment

E-24 HCL Informix 4GL Reference Guide

Configuring the Language Environment
Environment settings that affect the language environment exist both in your
4GL environment and in your system environment. Using the GLS features of
4GL with Informix database servers involves several compatibility issues:

■ The English database servers create English databases with ASCII
data. For these, the 4GL program must access the database servers
with DB_LOCALE set to en_us.8859-1.

■ The 5.x ALS versions of Informix database servers can use variables
such as DBCODESET and DBCSOVERRIDE as substitutes for
DB_LOCALE and DBCONNECT, respectively. These environment
variables need to be set by using Setnet32.

■ The 5.x ALS versions use DBASCIIBC to emulate the 4.x ASCII
database servers. This environment variable should be set in the
registry if such behavior is desired.

■ The SERVER_LOCALE environment variable is set on the database
server, not on the 4GL client. This variable specifies the locale that the
database server uses to read or write operating system files. If it is
not set, the default is U.S. English (en_us.8859-1).

If no setting is specified, the 4GL application uses an English locale. But the
registry sets everything to the local language, code set, or locale, so the
practical default is for applications to use the local locale.

The non-internationalized portions of the product are initialized with
the default (U.S. English) locale. That is, both CLIENT_LOCALE (en_us.1252)
and DB_LOCALE (en_us.8859-1) are set to English. This initialization is
necessary because many common functions are shared between the interna-
tionalized and non-internationalized components.

Important: Except for DBFORMAT, all of the environment variables that are
described in the sections that follow apply to Informix database servers.

Environment Variables That Support GLS

Developing Applications with Global Language Support E-25

Please note also the following considerations:

■ The application cannot support connections to different databases
with different locales concurrently; for example, in extended joins.

■ The environment variables discussed here deal with the
environment DB_LOCALE that is passed to the database server.

■ CLIENT_LOCALE cannot be changed dynamically during execution.
■ The previous point has one exception: the CLIENT_LOCALE can

always be set to English (because English is a subset of all locales).

The DB_LOCALE code set should match the DB_LOCALE code set of the
database. Otherwise, data corruption can occur because no validation of
code-set compatibility is performed by the database server.

Environment Variables That Support GLS
This section examines the environment variables that support the GLS
capabilities of 4GL, including the following 4GL environment variables:

■ DBDATE defines date display formats.
■ DBMONEY defines monetary display formats.
■ DBFORMAT defines numeric and monetary display formats and has

more options than DBMONEY.

INFORMIX-4GL also supports the following GLS environment variables:

■ DB_APICODE specifies a code set that has a mapping file.
■ DB_LOCALE is the locale of the database to which the application

is connected.
■ CLIENT_LOCALE is the locale of the system that is executing the 4GL

application.
■ DBLANG points to the directory for Informix error messages.
■ DBNLS supports localized collation and other GLS features.
■ GL_DATE defines date displays, including East Asian formats.
■ GL_DATETIME defines date and time displays, including East Asian

formats.
■ SERVER_LOCALE is the locale of the database server for file I/O.

Environment Variables That Support GLS

E-26 HCL Informix 4GL Reference Guide

4GL does not use DB_LOCALE directly; this variable, as well as DBLANG, is
used by ESQL/C. See the Informix Guide to GLS Functionality for details of
DBLANG, DB_LOCALE, GL_DATE, GL_DATETIME, and other GLS
environment variables. See also Appendix D, “Environment Variables.”

DBAPICODE
This environment variable specifies the name of a mapping file for peripheral
devices (for example, a keyboard, a display terminal, or a printer) whose
character set is different from that of the database server.

DB_LOCALE
This environment variable specifies the locale of the database to which the
4GL component or application is connected. The only Informix databases that
currently support non-English languages exist in UNIX. Therefore, when the
locales are non-English, the localized 4GL application can only connect to
these databases. The format for setting DB_LOCALE is DB_LOCALE=<locale>.

The following points should be noted regarding DB_LOCALE:

■ If the application uses this value to access a database, the locale of
that database must match the value specified in DB_LOCALE. If it
does not match, the database connection might be refused (unless
DBCSOVERRIDE is set to 1), depending on the database server
version.

■ If a database is created, this new database has the value specified by
DB_LOCALE.

■ If DB_LOCALE is invalid, either because of wrong formatting or
specifying a locale that does not exist, an error is issued.

■ If the code set implied by DB_LOCALE cannot be converted to what
CLIENT_LOCALE implies, or vice versa, an error is issued.

■ If DB_LOCALE is not specified, there is no default value; in this case,
ESQL/C behaves as if code-set conversion were not needed.

Environment Variables That Support GLS

Developing Applications with Global Language Support E-27

Default Values of GLS Environment Settings
The following table shows the values assumed by 4GL when you define only
some of the required values of locales.

(A value of ja-jp.ujis is assumed in the following example, CL stands for
CLIENT_LOCALE, and DL stands for DB_LOCALE.)

User Defined Values in Product

CL Defined CL Value DL Defined DL Value CL Value DL Value

No -- No -- en_us.8859 en_us.8859

Yes ja_jp.ujis No -- ja_jp.ujis ja_jp.ujis

Yes ja_jp.ujis Yes ja_jp.ujis ja_jp.ujis ja_jp.ujis

No -- Yes ja_jp.ujis en_us.8859 ja_jp.ujis

If you do not set the DBLANG environment variable, it is set to the value of
CLIENT_LOCALE.

CLIENT_LOCALE
This environment variable specifies the locale of the (input) source code and
the compiled code (to be generated). This is also the locale of the error files (if
any) and the intermediate files. The format of CLIENT_LOCALE is the same
as that of DB_LOCALE:

■ The characters that reach the user interface (the non-ASCII
characters) must be in the CLIENT_LOCALE.

■ If DB_LOCALE is invalid, either because of wrong formatting
or specifying a locale that does not exist, an error is issued.

■ The DB_LOCALE and CLIENT_LOCALE settings need to be
compatible, meaning there should be proper code-set conversion
tables between them. Otherwise, an error is issued.

■ If CLIENT_LOCALE is not set, Windows code page 1252 is the default.

Environment Variables That Support GLS

E-28 HCL Informix 4GL Reference Guide

■ The CLIENT_LOCALE must match the environment of the user
interface (meaning that it should be compatible with the local
version of Windows). Otherwise, an error is issued.

■ By default, collation by the 4GL application follows the code-set
order of CLIENT_LOCALE, except in SQL statements (where the
database server uses its own collation sequence). Any LC_COLLATE
specification is ignored. If DBNLS is set to 1, however, and the
COLLATION category of the locale file defines a nondefault order for
sorting strings, 4GL uses the order that COLLATION specifies.

DBLANG
The value of DBLANG is used to complete the pathname to the directories
that contain the required message, help, and demo files. The format of
DBLANG is the same as that of DB_LOCALE:

■ If DBLANG is not set, the value defaults to that of CLIENT_LOCALE.
■ If DBLANG is invalid, en_us.1252 is the default value. This case

occurs if DBLANG is improperly formatted, or if it points to a locale
that does not exist, or points to a locale that is incompatible with the
version of Windows on which the 4GL application is running.

See also the description of DBLANG in the Informix Guide to GLS Functionality.

DBDATE
The DBDATE environment variable has been modified to support era-based
dates (Japanese and Taiwanese). The days of the week and months of the year
(in local form) are stored in the locale files. If this environment variable is set,
it might override other means of specifying date formats.

DBNLS
The DBNLS environment variable must be set to 1 if the 4GL application
needs to pass values between CHAR or VARCHAR program variables and
database columns of the NCHAR or NVARCHAR data type. The same setting
is also required if you want character strings to be sorted in a nondefault
collation sequence rather than in code-set order. (In this case, your locale files
must also include a COLLATION category to define the nondefault sorting.)

Environment Variables That Support GLS

Developing Applications with Global Language Support E-29

DBMONEY
This environment variable has been modified to accept multibyte currency
symbols. 4GL components that read the value of DBMONEY (or DBFORMAT)
must be able to correctly process multibyte characters as currency symbols.
If DBMONEY is set, its value might override other means of specifying
currency formats.

DBFORMAT
This environment variable has been modified to accept multibyte currency
symbols. Unlike the version of DBFORMAT for English products, display of
the decimal point is optional, rather than mandatory, in 4GL. (Use of a comma
as the DBFORMAT decimal separator can produce errors or unpredictable
results in SQL statements in which 4GL variables are expanded to number
values that are formatted with comma as the decimal separator.)

If DBFORMAT is set, its value can override other means of specifying number
or monetary formats.

See also the descriptions of DBDATE, DBFORMAT, and DBMONEY in
Appendix D.

The glfiles utility is described in the Informix Guide to GLS Functionality and is
packaged with INFORMIX-4GL and INFORMIX-SQL products. This utility
allows you to generate lists of the following files:

■ GLS locales available in the system
■ Informix code-set conversion files available
■ Informix code-set files available

Storing Localization Information

E-30 HCL Informix 4GL Reference Guide

Storing Localization Information
This section describes the process involved in creating an application so that
it can read translation information either from a file or from a database table
at runtime.

File-Based Localization
You can store the translations of localized information in disk files and access
them at runtime as needed.

You can use subdirectories to store language-sensitive files, so they can easily
be switched to create a new runtime environment. In the following example,
the filename is composed by reading the value of an environment variable
(created by the programmer) that specifies a language subdirectory:

LET file001 = FGL_GETENV("LANGUAGE"), "/", "trans.4gl"
Evaluates to "eng/trans.4gl" if LANGUAGE is "eng"
Program reads the eng directory for copy of translation

Evaluates to "ger/trans.4gl" if LANGUAGE is "ger"
Program reads the ger directory for copy of translation

LET tranfile = file001

Table-Based Localization

Developing Applications with Global Language Support E-31

Table-Based Localization
As noted earlier, localization information can also be stored in database
tables. This information can be used when you initialize or run the appli-
cation to change the value of variables that define titles, menus, and other
language or culturally sensitive elements of the user interface. An advantage
of the table-based approach is that it is highly portable between systems.

Setting Up a Table
The following example shows one way that you might set up a table to store
menu options:

CREATE TABLE menu_elements(
option_language CHAR(3), #language ID code
option_number SMALLINT, # identifying number
option_text CHAR(80), # text
option_maxlen SMALLINT # maximum length of string
)

CREATE UNIQUE INDEX ix_menustr
ON menu_elements(option_language, option_number)

Example data:

ENG150Cold Beer
FRE150Bière froide
GER150Kaltes Bier
SPA150Cerveza fría
ENG151Iced Tea
...

Querying the Table
A global variable that contains the language code of the application, which
corresponds to the value in the option_language column, can be set in the
program at startup. Each time a character string is needed, a function could
be called that uses the language and identifying number to query the table
for the appropriate string:

LET lang = getLanguage()# returns 3 letter code
from option_language column

Localizing Prompts and Messages

E-32 HCL Informix 4GL Reference Guide

Localizing Prompts and Messages
You can use the 4GL message compiler utility to create translated message
files for your application messages. These files, which usually have the
extension .iem, run very quickly.

Creating Message Files
For any natural language, follow these steps to create new language versions
of the messages and prompts that your application displays.

To create new message files

1. With a text editor that can create flat files, create a source (.msg) file
with the following format:

.message-number
message-text
.message-number
message-text

For example:
.1000
Part not found.
.1001
Price must be a positive number.
.1002
Invalid format for phone number.

To translate the messages into another language, simply provide
translated versions for the message text, using the same format.

2. At the system prompt, invoke the message compiler utility
(mkmesssage) by using a command of the following form:

mkmsg filename

The message compiler processes filename.msg and produces a com-
piled message file that has the name filename.iem.
If you want the compiled message file to have a different name from
the source file, specify that filename as a final argument:

mkmsg source output

The syntax of mkmesssage is described in Appendix B, “INFOR-
MIX-4GL Utility Programs.”

Localizing Prompts and Messages

Developing Applications with Global Language Support E-33

Accessing Message Files
To access the compiled message file from your application, you can write a
function that reads the messages from the compiled (.iem) file. For example,
the calling program includes logic to display a Part not found message in
the following pseudo-code:

DEFINE OK, noPart INT, msg CHAR(79)
LET noPart = 1000

...
IF (status == NOTFOUND) THEN

CALL getMsg(noPart)
END IF

Function getMsg() reads the compiled message file and finds the message
that corresponds to the integer value of the variable noPart.

To supply new versions of the messages, you need only provide a new source
file and compile it with the message compiler. The function calls in your
application remain the same.

Handling Code-Set Conversion

E-34 HCL Informix 4GL Reference Guide

Handling Code-Set Conversion
The process of converting characters at the locale of the 4GL application to
characters at the locale of the database server (or vice versa) is called code-set
conversion. If your application needs to run on computers that encode
different character sets, it might be necessary to enable code-set conversion.
This section provides some background and details.

Code-set conversion is performed by ESQL/C; no explicit code-set conversion
is done by 4GL. Figure E-2 shows the relationship between 4GL, ESQL/C, and
the database.

Figure E-2
Processes and Their Locales

CLIENT_LOCALE DB_LOCALE

INFORMIX-4GL INFORMIX-ESQL/C Database

The code sets in the CLIENT_LOCALE can differ from those in DB_LOCALE.
In the CLIENT_LOCALE, the code sets (which are specified in locales) use
code points that are pre-defined by Microsoft standards. Code sets that are
used in the DB_LOCALE tend to use characters that are based on UNIX
conventions, if the application is designed to access legacy data.

Code-set conversion is done by way of a code-set conversion file. Files for
code-set conversion between CLIENT_LOCALE and DB_LOCALE need to be
present on the client. For conversion to take place, conversion files need to be
present in the %informixdir%\gls\cv directory.

For details of converting between client and server code sets, see the sections
that follow. See also GLS fundamentals in the Informix Guide to GLS
Functionality.

What Is Code-Set Conversion?

Developing Applications with Global Language Support E-35

What Is Code-Set Conversion?
Different operating systems sometimes encode the same characters in
different ways. For example, the character a-circumflex is encoded:

■ in Windows code page 1252 as hexadecimal 0xE2.
■ in HCL CCSID 437 as hexadecimal 0x83.

If the encoding for a-circumflex on the Windows system is sent unchanged to
the HCL system, it will be printed as the Greek character gamma. This
happens because, on the HCL system, gamma is encoded as 0xE2.

This means character data strings that are passed between two computers
using different character set encodings must be converted between the two
different encodings. Otherwise, character data originating from one
computer will not be correctly displayed or processed on the other computer.

This appendix uses the term code set in the same way that the Windows
documentation uses the terms character set and code page.

Converting character data from one encoding schema to another is called
code-set conversion. If a code-set conversion is required from computer A to
computer B, it is also required from computer B to computer A. You must
explicitly enable code-set conversion; no conversion is done by default.

What Code-Set Conversion Is Not
Code-set conversion is not a semantic translation; that is, it does not convert
words between different languages. For example, it does not convert between
English yes and French oui. It only ensures that each character is processed
and printed the same, regardless of how the characters are encoded.

Code-set conversion does not create a character in the target code set if the
character exists only in the source code set. For example, if the character
a-circumflex is being passed to a computer whose code set does not contain an
a-circumflex character, the target computer will never be able to exactly
process or print the a-circumflex character. This situation is described in more
detail in “Mismatch Processing” on page E-37.

What Data Values Are Converted

E-36 HCL Informix 4GL Reference Guide

When You Do Not Need Code-Set Conversion
You do not need code-set conversion in any of the following situations:

■ The client and the server are on the same computer.
■ The code set of your client and of all the databases to which you are

connecting are the same.
■ The subset of characters that you will be sending between the client

and the server are encoded identically. For example, if you are
sending only English characters between a client and a server, and
each English character has the same encoding on both computers, no
code-set conversion is required. In this case, the non-English
characters can have different encodings.

■ The character-string data values are passed from the client to the
server for storage only and are neither processed nor printed by the
server. For example, no code-set conversion is required if a client:
❑ Passes character-string data to the server
❑ Does not process or print the data on the server computer
❑ Retrieves the same data for processing or printing on computers

that use the same code set as the client that populated the
database

Sorting data by using the ORDER BY statement or retrieving data by using a
LIKE or MATCHES clause, however, will probably produce erroneous results
if the data strings are not converted before they are stored.

What Data Values Are Converted
If you enable code-set conversion, data values are converted by ESQL/C from
the 4GL client to the database server and from the database server to the
client. The CHAR, VARCHAR, and TEXT data types are converted, as are
column names, table names, database names, and SQL command text.

Mismatch Processing

Developing Applications with Global Language Support E-37

Mismatch Processing
If both code sets encode exactly the same characters, mismatch handling is
unnecessary. If the source code set contains any characters that are not
contained in the target code set, however, the conversion must define how
the mismatched characters are to be mapped to the target code set.

Four ways that code-set conversions handle mismatch processing are as
follows:

■ Round-trip conversion. This method maps each mismatched
character in the source code set to a unique character in the target
code set. On the return, the original character is mapped back to
itself. This guarantees that a two-way conversion will result in no
loss of information; however, data converted in only one direction
might confuse the processing or printing on the target computer.

■ Substitution conversion. This method maps all mismatched
characters in the source code set to a single specific character in the
target code set that serves to highlight mismatched characters. This
guarantees that a one-way conversion will clearly show the
mismatched characters; however, a two-way conversion will result
in information loss if mismatched characters are transferred.

■ Graphical replacement conversion. This method maps each
mismatched character in the source code set to a character in the
target code set that resembles the source character (this includes
mapping one-character ligatures to their two-character equivalents).
This might confuse printing on the target computer. Round-trip
conversions should contain as many graphical replacement conver-
sions as possible.

■ Substitution plus graphical replacement. This method maps as
many mismatched characters as possible to their graphical replace-
ments, and maps the remaining mismatched characters to the
substitution character.

Informix-supplied code-set conversion source files have header comments
that indicate which method was used.

Enabling Code-Set Conversion

E-38 HCL Informix 4GL Reference Guide

Enabling Code-Set Conversion
Code-set conversion is handled by UNIX environment variables.

To establish code-set conversion

1. Determine the code set used by the client.
2. Determine the code set used by all the databases to which this client

will be connecting in a single connection.
3. Specify the conversion filenames.
4. Start the application.

Determining the Code Sets Used by the Client and Database
Because each operating system has its own way of declaring the code set it is
using, consult your UNIX operating system documentation or your system
administrator to determine the code set used by the client computer.

Your system administrator should also know which code set is being used by
the database.

Specifying the Conversion Filenames
Set the DBAPICODE environment variable to specify a code set that has a
mapping file in the message directory $INFORMIXDIR/msg (or a directory
pointed to by the DBLANG value). The Informix crtcmap utility helps you to
create mapping files.

For detailed information about DBAPICODE and the crtcmap utility, see the
Informix Guide to SQL: Reference.

Modifying termcap
and terminfo

INFORMIX-4GL programs can use function keys and can display
color or intensity attributes in screen displays. These and other
keyboard and screen options are terminal-dependent. To
determine terminal-dependent characteristics, 4GL uses the
information in the termcap file or in the terminfo directory. 4GL
uses the INFORMIXTERM environment variable to determine
whether to use termcap or terminfo. For more information about
INFORMIXTERM, see Appendix D, “Environment Variables.”

With 4GL, Informix distributes termcap files that contain
additional capabilities for many common terminals (such as the
Wyse 50 and the Televideo 950). These capabilities include
intensity-change or color-change descriptions or both. This
appendix describes these capabilities, as well as the general
format of termcap and terminfo entries.

Because terminfo does not support color, you can only use 4GL
color functionality with termcap. To use color in 4GL, you must
set the INFORMIXTERM environment variable to termcap.

You can use the information in this appendix, combined with the
information in your terminal Guide, to modify the contents of
your termcap file or terminfo file. This appendix is divided into
two main sections, termcap and terminfo. Depending on which
you are using, read the appropriate section.

Appendix

F

termcap

F-2 HCL Informix 4GL Reference Guide

termcap
When 4GL is installed on your system, a termcap file is placed in $INFOR-
MIXDIR/etc. This file is a superset of an operating system termcap file. The
Informix termcap file contains additional capabilities for many terminals.
You might want to modify this file further in the following instances:

■ To include color-change and intensity-change capabilities
■ To extend function key definitions
■ To specify or alter the graphics characters used for window borders
■ To customize your terminal entry in other ways

Some terminals cannot support color or graphics characters. Read this
appendix and the user guide for your terminal to determine whether or not
the changes described in this appendix are applicable to your terminal.

Format of a termcap Definition
This section describes the general format of termcap entries. For a complete
description of termcap, refer to your operating system documentation.

A termcap entry contains a list of names for the terminal, followed by a list
of the terminal’s capabilities. There are three types of capabilities:

■ Boolean capabilities
■ Numeric capabilities
■ String capabilities

Format of a termcap Definition

Modifying termcap and terminfo F-3

All termcap entries have the following format:

■ The ESCAPE character is specified as a backslash (\) followed by
the letter E, and CONTROL is specified as a caret (^) symbol. Do not
attempt to use the ESCAPE or CONTROL keys to indicate escape
sequences or control characters in a termcap entry.

■ Each capability, including the last one in the entry, is followed by a
colon (:).

■ Entries must be defined on a single logical line; a backslash appears
at the end of each line that wraps to the next line.

The following example shows a basic termcap entry for the Wyse 50 terminal:

Entry for Wyse 50:

w5|wy50|wyse50:
:if=/usr/lib/tabset/std:\
:al=\EE:am:bs:ce=\Et:cm=\E=%+ %+ :cl=\E*:co#80:\
:dc=\EW:dl=\ER:ho=^^:ei=:kh=^^:im=:ic=\EQ:in:li#24:\
:nd=^L:pt:se=\EG0:so=\EG4:sg#1:ug#1:\
:up=^K:ku=^K:kd=^J:kl=^H:kr=^L:kb=:\
:k0=^A@^M:k1=^AA^M:k2=^AB^M:k3=^AC^M:k4=^AD^M:\
:k5=^AE^M:k6=^AF^M:k7=^AG^M:\
:HI=^|:Po=^R:Pe=^T:

Comment lines begin with a pound sign (#).

Terminal Names
A termcap entry starts with one or more names for the terminal, each
separated by a pipe symbol (|). For example, the termcap entry for Wyse 50
terminals starts with the following line:

w5|wy50|wyse50:\

The termcap entry can be accessed by using any one of these names.

Format of a termcap Definition

F-4 HCL Informix 4GL Reference Guide

Boolean Capabilities
A Boolean capability is a two-character code that indicates whether or not a
terminal has a specific feature. If the Boolean capability is present in the
termcap entry, the terminal has that particular feature. The following
example shows some of the Boolean capabilities for the Wyse 50 terminal:

:bs:am:

bs backspace with CTRL-H
am automatic margins

Numeric Capabilities
A numeric capability is a two-character code followed by a pound sign (#)
and a value. The following example shows the numeric capabilities for the
number of columns and the number of lines on a Wyse 50 terminal:

:co#80:li#24:

co number of columns in a line
li number of lines on the screen

Similarly, sg is a numeric capability that indicates the number of character
positions required on the screen for reverse video. The entry:sg#1: indicates
that a terminal requires one additional character position when reverse video
is turned ON or OFF. If you do not include a given numeric capability, 4GL
assumes that the value is zero.

String Capabilities
A string capability specifies a sequence that can be used to perform a terminal
operation. A string capability is a two-character code followed by an equal
sign (=) and a string ending at the next colon (:) delimiter symbol.

Format of a termcap Definition

Modifying termcap and terminfo F-5

Most termcap entries include string capabilities for clearing the screen,
moving the cursor, and using arrow keys, underscore, function keys, and so
on. The following example shows many of the string capabilities for the Wyse
50 terminal:

:ce=\Et:cl=\E*:\
:nd=^L:up=^K:\
:so=\EG4:se=\EG0:\
:ku=^K:kd=^J:kr=^L:kl=^H:\
:k0=^A@^M:k1=^AA^M:k2=^AB^M:k3=^AC^M:

ce=\Et clear to end of line
cl=\E* clear the screen
nd=^L non-destructive cursor right
up=^K up one line

so=\EG4 start stand-out
se=\EG0 end stand-out

ku=^K up arrow key
kd=^J down arrow key
kr=^L right arrow key
kl=^H left arrow key

k0=^A@^M function key F1
k1=^AA^M function key F2
k2=^AB^M function key F3
k3=^AC^M function key F4

Extending Function Key Definitions

F-6 HCL Informix 4GL Reference Guide

Extending Function Key Definitions
4GL recognizes function keys F1 through F36. These keys correspond to the
termcap capabilities k0 through k9, followed by kA through kZ. The
termcap entry for these capabilities is the sequence of ASCII characters your
terminal sends when you press the function keys (or any other keys you
choose to use as function keys). For the Wyse 50 and Televideo 950 terminals,
the first eight function keys send the characters shown in the following table.

Function Key termcap Entry

F1 k0=^A@^M

F2 k1=^AA^M

F3 k2=^AB^M

F4 k3=^AC^M

F5 k4=^AD^M

F6 k5=^AE^M

F7 k6=^AF^M

F8 k7=^AG^M

You can also define keys that correspond to the following capabilities:

■ Insert line (ki)
■ Delete line (kj)
■ Next page (kf)
■ Previous page (kg)

If these keys are defined in your termcap file, 4GL uses them. Otherwise, 4GL
uses CONTROL-J, CONTROL-K, CONTROL-M, and CONTROL-N, respectively.

You can also use the OPTIONS statement to name other function keys or
CONTROL keys for these operations.

Specifying Characters for Window Borders

Modifying termcap and terminfo F-7

Specifying Characters for Window Borders
4GL uses characters defined in the termcap file to draw the border of a
window. If no characters are defined in this file, 4GL uses the hyphen (-) for
horizontal lines, the pipe symbol (|) for vertical lines, and the plus sign (+)
for corners.

The termcap file provided with 4GL contains border character definitions for
many common terminals. You can look at the termcap file to see if the entry
for your terminal has been modified to include these definitions. If your
terminal entry does not contain border character definitions, or to specify
alternative border characters, you or your system administrator can modify
the termcap file.

Specifying Characters for Window Borders

F-8 HCL Informix 4GL Reference Guide

To modify the definition for your terminal type in the termcap file

1. Determine the escape sequences for turning graphics mode on and
off.
This information is located in the Guide that comes with your ter-
minal. For example, on Wyse 50 terminals, the escape sequence for
entering graphics mode is ESC H^B and the escape sequence for leav-
ing graphics mode is ESC H^C.
Terminals without a graphics mode do not have this escape
sequence. The procedure for specifying alternative border characters
on a non-graphics terminal is discussed at the end of this section.

2. Identify the ASCII equivalents for the six graphics characters that 4GL
requires to draw the border.
The ASCII equivalent of a graphics character is the key that you press
in graphics mode to obtain the indicated character.
The following table shows the graphics characters and the ASCII
equivalents for a Wyse 50 terminal.

Window Border Position Graphics Character ASCII Equivalent

Upper-left corner 2

Lower-left corner Î 1

Upper-right corner ̆ 3

Lower-right corner ̊ 5

Horizontal - z

Vertical | 6

This information should be located in the Guide that comes with
your terminal.

3. Edit the termcap entry for your terminal.

You might want to make a copy of your termcap file before you edit it. You
can use the TERMCAP environment variable to point to whichever copy of
the termcap file you want to access.

Specifying Characters for Window Borders

Modifying termcap and terminfo F-9

Use the following format to enter values for the following termcap
capabilities:

termcap-capability=value

The following table describes the codes for termcap capabilities.

Code Description

gs The escape sequence for entering graphics mode. In the termcap file, the
ESCAPE key is represented as a backslash (\) followed by the letter E.
The CONTROL key is represented as a caret (̂). For example, the Wyse 50
escape sequence ESC-H CONTROL-B is represented as \EH^B.

ge The escape sequence for leaving graphics mode. For example, the Wyse 50
escape sequence ESC-H CONTROL-C is represented as \EH^C.

gb The concatenated, ordered list of ASCII equivalents for the six graphics
characters used to draw the border. Use the following order:
Upper-left corner
Lower-left corner
Upper-right corner
Lower-right corner
Horizontal lines
Vertical lines

Follow these guidelines when you insert information in the termcap entry:

1. Delimit entries with a colon (:).
2. End each continuing line with a backslash (\).
3. End the last line in the entry with a colon.

For example, if you are using a Wyse 50 terminal, add the following infor-
mation in the termcap entry for the Wyse 50:

:gs=\EH^B:\ # sets gs to ESC H CTRL B
:ge=\EH^C:\ # sets ge to ESC H CTRL C
:gb=2135z6:\ # sets gb to the ASCII equivalents

of graphics characters for upper
left, lower left, upper right,
lower right, horizontal,
and vertical

Adding Color and Intensity

F-10 HCL Informix 4GL Reference Guide

If you prefer, you can enter this information in a linear sequence.

:gs=\EH^B:ge=\EH^C:gb=2135z6:\

If Your termcap File Contains sg#1 Capabilities
The termcap file for some terminals contains sg#1 capabilities. If sg#1 is
included, 4GL reserves an additional column to the left and right of the
window. If you specify a border around the 4GL window, these two columns
are in addition to the two additional columns required for the border.

Terminals Without Graphics Capabilities
For terminals without graphics capabilities, you must enter a blank value for
the gs and ge capabilities. For gb, enter the characters you want 4GL to use
for the window border.

The following example shows possible values for gs, ge, and gb in an entry
for a terminal without graphics capabilities. In this example, window borders
are drawn using underscores (_) for horizontal lines, pipe symbols (|) for
vertical lines, periods (.) for the top corners, and plus symbols (+) for the
lower corners.

:gs=:ge=:gb=.|.|_|+:

4GL uses the graphics characters in the termcap file when you specify a
window border in an OPEN WINDOW statement.

Adding Color and Intensity
Many of the terminal entries in the Informix termcap file have been modified
to include color or intensity capabilities or both. (The termcap file is located
in the $INFORMIXDIR/etc directory.) You can view the termcap file to
determine if the entry for your terminal type includes these capabilities. If
your terminal entry includes the ZA capability, your terminal is set up for
color or intensity or both. If it does not, you can add color and intensity
capabilities by using the information in this section. The following topics are
outlined in this section:

■ Color and intensity
■ The ZA capability

Adding Color and Intensity

Modifying termcap and terminfo F-11

■ Stack operations
■ Examples

Understand these topics before you modify your terminal entry.

Color and Intensity Attributes
You can write your 4GL program either for a monochrome terminal or for a
color terminal and then run the program on either type of terminal. If you set
up the termcap files as described here, the color attributes and the intensity
attributes are related, as shown in the following table.

Number Color Terminal Monochrome Terminal

0 White Normal

1 Yellow Bold

2 Magenta Bold

3 Red Bold†

4 Cyan Dim

5 Green Dim

6 Blue Dim†

7 Black Dim

† Signifies that if the keyword BOLD is indicated as the attribute, the field will be
RED on a color terminal. If the keyword DIM is indicated as the attribute, the field
will be BLUE on a color terminal.

The background for colors is BLACK in all cases.

In either color or monochrome mode, you can add the REVERSE, BLINK, or
UNDERLINE attribute if your terminal supports them.

Adding Color and Intensity

F-12 HCL Informix 4GL Reference Guide

The ZA String Capability
4GL uses a parameterized string capability ZA in the termcap file to
determine color assignments. Unlike other termcap string capabilities that
you set equal to a literal sequence of ASCII characters, ZA is a function string
that depends upon four parameters.

Parameter Value

Parameter 2 (p2) Color number between 0 and 7

Parameter 2 (p2) 0 = Normal; 1 = Reverse

Parameter 3 (p3) 0 = No-Blink; 1 = Blink

Parameter 4 (p4) 0 = No-Underscore; 1 = Underscore

ZA uses the values of these four parameters and a stack machine to determine
which characters to send to the terminal. The ZA function is called and these
parameters are evaluated when a color or intensity attribute is encountered
in a 4GL program. You can use the information in your terminal Guide to set
the ZA parameters to the correct values for your terminal.

To define the ZA string for your terminal, you use stack operators to push and
pop values onto and off the stack. The next section describes several stack
operators. Use these descriptions and the subsequent examples to under-
stand how to define the string for your terminal.

Stack Operations
The ZA string uses stack operations to either push values onto the stack or
pop values off the stack. Typically, the instructions in the ZA string push a
parameter onto the stack, compare it to one or more constants, and then send
an appropriate sequence of characters to the terminal. More complex opera-
tions are often necessary, and by storing the display attributes in static stack
machine registers (named a through z), you can achieve terminal-specific
optimizations.

A summary follows of the different stack operators you can use to write the
descriptions. For a complete discussion of stack operators, consult your
operating system documentation.

Adding Color and Intensity

Modifying termcap and terminfo F-13

Operators That Send Characters to the Terminal

Use the following operators to send characters to the terminal:

%d pops a numeric value from the stack and sends a maximum of three
digits to the terminal. For example, if the value 145 is at the top of the
stack, %d pops the value off the stack and sends the ASCII
representations of 1, 4, and 5 to the terminal. If the value 2005 is at the
top of the stack, %d pops the value off the stack and sends the ASCII
representation of 5 to the terminal.

%2d pops a numeric value from the stack and sends a maximum of two
digits to the terminal, padding to two places. For example, if the value
145 is at the top of the stack, %2d pops the value off the stack and sends
the ASCII representations of 4 and 5 to the terminal. If the value 5 is at
the top of the stack, %2d pops the value off the stack and sends the
ASCII representations of 0 and 5 to the terminal.

%3d pops a numeric value from the stack and sends a maximum of three
digits to the terminal, padding to three places. For example, if the value
7 is at the top of the stack, %3d pops the value off the stack and sends
the ASCII representations of 0, 0, and 7 to the terminal.

%c pops a single character from the stack and sends it to the terminal.

Operators That Manipulate the Stack

Use the following operators to manipulate the stack:

%p[1-9] pushes the value of the specified parameter on the stack. The
notation for parameters is p1, p2, …p9. For example, if the value
of p1 is 3, %p1 pushes 3 on the stack.

%P[a-z] pops a value from the stack and stores it in the specified variable.
The notation for variables is Pa, Pb, …Pz. For example, if the
value 45 is on the top of the stack, %Pb pops 45 from the stack and
stores it in the variable Pb.

%g[a-z] gets the value stored in the corresponding variable (P[a-z]) and
pushes it on the stack. For example, if the value 45 is stored in the
variable Pb, %gb gets 45 from Pb and pushes it on the stack.

Adding Color and Intensity

F-14 HCL Informix 4GL Reference Guide

%´c´ pushes a single character on the stack. For example, %'k' pushes
k on the stack.

%{n} pushes an integer constant on the stack. The integer can be any
length and can be either positive or negative. For example, %{0}
pushes the value 0 on the stack.

%S[a-z] pops a value from the stack and stores it in the specified static
variable. (Static storage is nonvolatile since the stored value
remains from one attribute evaluation to the next.) The notation
for static variables is Sa, Sb, …Sz. For example, if the value 45 is
on the top of the stack, %Sb pops 45 from the stack and stores it in
the static variable Sb. This value is accessible for the duration of
the 4GL
program.

%G[a-z] gets the value stored in the corresponding static variable (S[a-
z]) and pushes it on the stack. For example, if the value 45 is
stored in the variable Sb, %Gb gets 45 from Sb and pushes it on
the stack.

Arithmetic Operators

Each of these arithmetic operators pops the top two values from the stack,
performs an operation, and pushes the result on the stack:

%+ Addition. For example, %{2}%{3}%+ is equivalent to 2+3.

%- Subtraction. For example, %{7}%{3}%- is equivalent to 7-3.

%* Multiplication. For example, %{6}%{3}%* is equivalent to 6*3.

%/ Integer division. For example, %{7}%{3}%/ is equivalent to 7/3 and
produces a result of 2.

%m Modulus (or remainder). For example, %{7}%{3}%m is equivalent to
(7 mod 3) and produces a result of 1.

Adding Color and Intensity

Modifying termcap and terminfo F-15

Bit Operators

The following bit operators pop the top two values from the stack, perform
an operation, and push the result on the stack:

%& Bit-and. For example, %{12}%{21}%& is equivalent to (12 and 21) and
produces a result of 4.

Binary Decimal

0 1 1 0 0 = 12

1 0 1 0 1 = 21

 and

0 0 1 0 0 = 4

%| Bit-or. For example, %{12}%{21}%| is equivalent to (12 or 21) and pro-
duces a result of 29.

Binary Decimal

0 1 1 0 0 = 12

1 0 1 0 1 = 21

 or

1 1 1 0 1 = 29

%^ Exclusive-or. For example, %{12}%{21}%^ is equivalent to (12 exclusive-
or 21) and produces a result of 25.

Binary Decimal

0 1 1 0 0 = 12

1 0 1 0 1 = 21

exclusive or

1 1 0 0 1 = 25

Adding Color and Intensity

F-16 HCL Informix 4GL Reference Guide

The following unary operator pops the top value from the stack, performs an
operation, and pushes the result on the stack:

%~ Bitwise complement. For example, %{25}%~ results in a value of -26, as
shown in the following display.

Binary Decimal

0 0 0 1 1 0 0 1 = 25

 Complement

1 1 1 0 0 1 1 0 = -26

Logical Operators

The following logical operators pop the top two values from the stack,
perform an operation, and push the logical result (either 0 for FALSE or 1 for
TRUE) on the stack:

%= Equal to. For example, if the parameter p1 has the value 3, the expres-
sion %p1%{2}%= is equivalent to 3=2 and produces a result of 0 (FALSE).

%> Greater than. For example, if the parameter p1 has the value 3, the
expression %p1%{0}%> is equivalent to 3>0 and produces a result of 1
(TRUE).

%< Less than. For example, if the parameter p1 has the value 3, the expres-
sion %p1%{4}%< is equivalent to 3<4 and produces a result of 1 (TRUE).

The following unary operator pops the top value from the stack, performs an
operation, and pushes the logical result (either 0 or 1) on the stack.

%! Logical negation. This operator produces a value of zero for all nonzero
numbers and a value of 1 for zero. For example, %{2}%! results in a
value of 0, and %{0}%! results in a value of 1.

Adding Color and Intensity

Modifying termcap and terminfo F-17

Conditional Statements

The condition statement IF-THEN-ELSE has the following format:

%? expr %t thenpart %e elsepart %;

The %e elsepart is optional. You can nest conditional statements in the thenpart
or the elsepart.

When 4GL evaluates a conditional statement, it pops the top value from the
stack and evaluates it as either true or false. If the value is true, 4GL
performs the operations after the %t; otherwise it performs the operations
after the %e (if any).

For example, the expression:

%?%p1%{3}%=%t;31%;

is equivalent to:

if p1 = 3 then print ";31"

Assuming that p1 has the value 3, 4GL performs the following actions:

■ %? does not perform an operation but is included to make the condi-
tional statement easier to read.

■ %p1 pushes the value of p1 on the stack.
■ %{3} pushes the value 3 on the stack.
■ %= pops the value of p1 and the value 3 from the stack, evaluates the

Boolean expression p1=3, and pushes the resulting value 1 (TRUE) on
the stack.

■ %t pops the value from the stack, evaluates 1 as TRUE, and executes
the operations after %t. (Because ";31" is not a stack machine
operation, 4GL prints ";31" to the terminal.)

■ %; terminates the conditional statement.

Adding Color and Intensity

F-18 HCL Informix 4GL Reference Guide

Summary of Operators

The following table summarizes the allowed operations.

Operation Description

%d Writes pop() in decimal format

%2d Writes pop() in two-place decimal format

%3d Writes pop() in three-place decimal format

%c Writes pop() as a single character

%p[1-9] Pushes ith parameter

%P[a-z] Pops and stores a variable

%g[a-z] Gets a variable and pushes it on the stack

%'c' Pushes a CHAR constant

%{n} Pushes an integer constant

%S[a-z] Pops and stores a static variable

%G[a-z] Gets a static variable and pushes

%+ Addition. Pops two values off the stack, adds them together, and
pushes the result onto the stack

%- Subtraction. Pops two values off the stack, subtracts one from the
other, and pushes the result onto the stack

%* Multiplication. Pops two values off the stack, multiplies them by each
other, and pushes the result onto the stack

%/ Integer division. Pops two values off the stack, divides one by the
other, and pushes the result onto the stack

%m Modulus. Pops two values off the stack and pushes the remainder
when one number is divided by the other

%& Bitwise AND

%| Bitwise OR

%^ Bitwise exclusive OR

(1 of 2)

Adding Color and Intensity

Modifying termcap and terminfo F-19

Operation Description

%~ Bitwise complement

%= Equal to. Pops two values off the stack, finds out whether the values
are equal, and pushes 1 onto the stack if the values are equal or 0 if
they are not equal

%> Greater than. Pushes two values off the stack, finds out whether the
first value is greater than the second, and pushes the result onto the
stack

%< Less than. Pushes two values off the stack, finds out whether the first
value is less than the second, and pushes the result onto the stack

%! Logical negation. Pops one value off the stack, logically inverts or
negates it (converts zero to 1 and nonzero to 0), and pushes the
negated value back onto the stack

%? expr %t thenpart %e elsepart %;

IF expr THEN thenpart ELSE elsepart; the %e elsepart is optional.

ELSE-IF’s are possible (c’s are conditions):

%? c1 %t…%e c2 %t…%e c3 %t…%e…%;

Nested IF’s allowed

All other characters are written to the terminal; use ’%%’ to write ’%’.

(2 of 2)

Examples
To illustrate, consider the monochrome Wyse terminal. The following table
shows the escape sequences for some display characteristics.

Escape Sequence Results

ESC G 0 Normal

ESC G 1 Blank (invisible)

ESC G 2 Blink

(1 of 2)

Adding Color and Intensity

F-20 HCL Informix 4GL Reference Guide

Escape Sequence Results

ESC G 4 Reverse

ESC G 5 Reverse and blank

ESC G 6 Reverse and blink

ESC G 8 Underscore

ESC G 9 Underscore and blank

ESC G : Underscore and blink

ESC G < Underscore and reverse

ESC G = Underscore, reverse, and blank

ESC G > Underscore, reverse, and blink

(2 of 2)

The characters after G form an ASCII sequence from the character 0 (zero)
through ?. You can generate the character by starting with 0 and adding 1 for
blank, 2 for blink, 4 for reverse, and 8 for underline.

You can construct the termcap entry in stages, as outlined in the following
display. %pi refers to pushing the ith parameter on the stack. The designation
for is \E. The termcap entry for the Wyse terminal must contain the following
ZA entry for 4GL monochrome attributes such as REVERSE and BOLD to work
correctly:

ZA =
EG #print EG
%’0’ #push ’0’ (normal) on the stack
%?%p1%{7}%=%t%{1}%| #if p1 = 7 (invisible), set

#the 1 bit (blank);
%e%p1%{3}%> #if p1 > 3 and < 7, set the 64 flag (dim);

%p1%{7}%<%&%t%{64}%| #
%;%; #

%?%p2%t%{4}%|%; #if p2 is set, set the 4 bit (reverse)
%?%p3%t%{2}%|%; #if p3 is set, set the 2 bit (blink)
%?%p4%t%{8}%|%; #if p4 is set, set the 8 bit (underline)
%c: #print whatever character

#is on top of the stack

Adding Color and Intensity

Modifying termcap and terminfo F-21

You then concatenate these lines as a single string that ends with a colon and
has no embedded NEWLINE characters. The actual ZA entry for the Wyse 50
terminal follows:

ZA = \EG%’0’%?%p1%{7}%=%t%{1}%|%e%p1%{3}%>%p1%{7}%<%&%t%{64}
%|%;%;%?%p2%t%{4}%|%;%?%p3%t%{2}%|%;%?%p4%t%{8}%|%;%c:

The next example is for the ID Systems Corporation ID231, a color terminal.
On this terminal, to set color and other characteristics, you must enclose a
character sequence between a lead-in sequence (ESC [0) and a terminating
character (m). The first in the sequence is a two-digit number that determines
whether the assigned color is in the background (30) or in the foreground
(40). The next is another two-digit number that is the other of 30 or 40, incre-
mented by the color number. These characters are followed by 5 if there is
blinking and by 4 for underlining.

The code in the following example sets up the entire escape sequence:

ZA =
\E[0; #print lead-in
%?%p1%{0}%=%t%{7} #encode color number (translate
%e%p1%{1}%=%t%{3} # from to the number
%e%p1%{2}%=%t%{5} # for the ID231)
%e%p1%{3}%=%t%{1} #
%e%p1%{4}%=%t%{6} #
%e%p1%{5}%=%t%{2} #
%e%p1%{6}%=%t%{4} #
%e%p1%{7}%=%t%{0}%; #
%?%p2%t30;%{40}%+%2d #if p2 is set, print ’30’ and

’40’ + color number (reverse)
%e40;%{30}%+%2d%; # else print ’40’ and

’30’ + color number (normal)
%?%p3%t;5%; #if p3 is set, print 5 (blink)
%?%p4%t;4%; #if p4 is set, print 4 (underline)
m #print ’m’ to end character

sequence

When you concatenate these strings, the termcap entry is as follows:

ZA =\E[0;%?%p1%{0}%=%t%{7}%e%p1%{1}%=%t%{3}%e%p1%{2}%=
%t%{5}%e%p1%{3}%=%t%{1}%e%p1%{4}%=%t%{6}%e%p1%{5}%=%t%
{2}%e%p1%{6}%=%t%{4}%e%p1%{7}%=%t%{0}%;%?%p2%t30;%{40}
%+%2d%e40;%{30}%+%2d%;%?%p3%t;5%;%?%p4%t;4%;m

In addition to the ZA capability, you can use other termcap capabilities. ZG
is the number of character positions on the screen occupied by the attributes
of ZA. Like the sg numeric capability, ZG is not required if no extra character
positions are needed for display attributes. The value for the ZG entry is
usually the same value as for the sg entry.

terminfo

F-22 HCL Informix 4GL Reference Guide

terminfo
If you have set the INFORMIXTERM environment variable to terminfo, 4GL
uses the terminfo directory indicated by the TERMINFO environment
variable (or /usr/lib/terminfo if TERMINFO is not set). 4GL uses the infor-
mation in terminfo to draw window borders, define function keys, and
display certain intensity attributes.

You might want to modify a file in the terminfo directory in the following
instances:

■ To extend function key definitions
■ To specify or change the graphics characters used for window

borders
■ To customize your terminal entry in other ways

If you use terminfo (instead of termcap), you cannot use color attributes with
4GL. To use color attributes with 4GL, you must use termcap.

Some terminals cannot support graphics characters. Read this appendix and
the user guide that comes with your terminal to determine whether or not the
changes described in this appendix are applicable to your terminal.

To modify a terminfo file, you need to be familiar with the following
information:

■ The format of terminfo entries
■ The infocmp program
■ The tic program

This information is summarized in this appendix; however, refer to your
operating system documentation for a complete discussion.

Format of a terminfo Entry

Modifying termcap and terminfo F-23

Format of a terminfo Entry
The terminfo directory contains a file for each terminal name that is defined.
Each file contains a compiled terminfo entry for that terminal. This section
describes the general format of terminfo entries. For a complete description
of terminfo, refer to your operating system documentation.

A terminfo entry contains a list of names for the terminal, followed by a list
of the terminal capabilities. There are three types of capabilities:

■ Boolean capabilities
■ Numeric capabilities
■ String capabilities

All terminfo entries have the following format:

■ ESCAPE is specified as a backslash (\) followed by the letter E, and
CONTROL is specified as a caret (^). Do not attempt to use the ESCAPE
or CONTROL key to indicate escape sequences or control characters in
a terminfo entry.

■ Each capability, including the last one in the entry, is followed by a
comma as a delimiter.

The following example shows a basic terminfo entry for the Wyse 50
terminal:

. Entry for Wyse 50:

w5|wy50|wyse50,
am, cols#80, lines#24, cuul=^K, clear=^Z,
home=^^, cuf1=^L, cup=\E=%p1%’\s’%+%c%p2%’\s’%+%c,
bw, ul, bel=^G, cr=\r, cud1=\n, cub1=\b, kpb=\b, kcudl=\n,
kdub1=\b, nel=\r\n, ind=\n,
xmc#1, cbt=\EI,

Comment lines begin with a period (.).

Format of a terminfo Entry

F-24 HCL Informix 4GL Reference Guide

Terminal Names
A terminfo entry starts with one or more names for the terminal, each
separated by a pipe symbol (|). For example, the terminfo entry for the
Wyse 50 terminal starts with the following line:

w5|wy50|wyse50,

The terminfo entry can be accessed by using any one of these names.

Boolean Capabilities
A Boolean capability is a two- to five-character code that indicates whether
or not a terminal has a specific feature. If the Boolean capability is present in
the terminfo entry, the terminal has that particular feature.

The next example shows some of the Boolean capabilities for the Wyse 50:

bw,am,

. bw backward wrap

. am automatic margins

Numeric Capabilities
A numeric capability is a 2- to 5-character code followed by a pound sign (#)
and a value. The following example shows the numeric capabilities for the
number of columns and the number of lines on a Wyse 50 terminal:

cols#80,lines#24,

. cols number of columns in a line

. lines number of lines on the screen

Format of a terminfo Entry

Modifying termcap and terminfo F-25

String Capabilities
A string capability specifies a sequence that can be used to perform a terminal
operation. A string capability is a two- to five-character code followed by an
equal (=) sign and a string ending at the next comma (,) delimiter.

Most terminfo entries include string capabilities for clearing the screen,
cursor movement, arrow keys, underscore, function keys, and so on. The
following example shows many of the string capabilities for the Wyse 50
terminal:

el=\ET,clear=E*,
cuf1=^L,cuu1=^K,
smso=\EG4,rmso=\EG0,
kcuu1=^K,kcud1=^J,kcuf1=^L,kcub1=^H,
kf0=^A@^M,kf1=^AA^M,kf2=^AB^M,kf3=^AC^M,

. el=\Et clear to end of line
. clear=\E* clear the screen
. cufl=^L non-destructive cursor right
. cuul=^K up one line
.
. smso=\EG4 start stand-out
. rmso=\EG0 end stand-out
.
. kcuul=^K up arrow key
. kcudl=^J down arrow key
. kcufl=^L right arrow key
. kcubl=^H left arrow key
.
. kf0=^A@^M function key F1
. kf1=^AA^M function key F2
. kf2=^AB^M function key F3
. kf3=^AC^M function key F4

Extending Function Key Definitions

F-26 HCL Informix 4GL Reference Guide

Extending Function Key Definitions
4GL recognizes function keys F1 through F36. These keys correspond to the
terminfo capabilities kf0 through kf36. The terminfo entry for these capabil-
ities is the sequence of ASCII characters that your terminal sends when you
press the function keys (or any other keys you choose to use as function
keys). For the Wyse 50 and Televideo 950 terminals, the first eight function
keys send the characters shown in the following table.

Function Key terminfo Entry

F1 kf0=^A@^M

F2 kf1=^AA^M

F3 kf2=^AB^M

F4 kf3=^AC^M

F5 kf4=^AD^M

F6 kf5=^AE^M

F7 kf6=^AF^M

F8 kf7=^AG^M

You can also define keys that correspond to the following capabilities:

■ Insert line (kill)
■ Delete line (kdll)
■ Next page (knp)
■ Previous page (kpp)

If these keys are defined in your terminfo file, 4GL uses them. Otherwise, 4GL
uses CONTROL-J, CONTROL-K, CONTROL-M, and CONTROL-N, respectively.

You can also use the OPTIONS statement to assign other function keys or
CONTROL keys for these operations.

Specifying Characters for Window Borders

Modifying termcap and terminfo F-27

Specifying Characters for Window Borders
4GL uses characters defined in the terminfo files to draw the border of a
window. If no characters are defined in this file, INFORMIX-4GL uses the
hyphen (-) for horizontal lines, the pipe symbol (|) for vertical lines, and
the plus sign (+) for corners.

You can look at the terminfo source file (using infocmp) to see if the entry for
your terminal includes these definitions. (Look for the acsc capability,
described later in this section.) If the file for your terminal does not contain
border character definitions, or to specify alternative border characters, you
or your system administrator can modify the terminfo source file. You can
refer to your operating system documentation for a complete description of
how to decompile terminfo entries by using the infocmp program.

Specifying Characters for Window Borders

F-28 HCL Informix 4GL Reference Guide

To specify border characters in the terminfo source file

1. Determine the escape sequences for turning graphics mode on and
off.
This information is located in the Guide that comes with your ter-
minal. For example, on Wyse 50 terminals, the escape sequence for
entering graphics mode is ESC H^B and the escape sequence for leav-
ing graphics mode is ESC H^C.
Terminals without a graphics mode do not have this escape
sequence. The procedure for specifying alternative border characters
on a non-graphics terminal is discussed at the end of this section.

2. Identify the ASCII equivalents for the six graphics characters that 4GL
requires to draw the border.
The ASCII equivalent of a graphics character is the key that the user
presses in graphics mode to obtain the indicated character.
The following table shows the graphics characters and the ASCII
equivalents for a Wyse 50 terminal.

Window Border Position Graphics Character ASCII Equivalent

Lower-left corner 1

Upper-right corner ̆ 3

Lower-right corner ̊ 5

Horizontal - z

Vertical | 6

This information should be located in the Guide that comes with
your terminal.

Specifying Characters for Window Borders

Modifying termcap and terminfo F-29

3. Edit the terminfo source file for your terminal.

a. You can decompile it by using infocmp redirected to a file.
b. You might want to make a copy of your terminfo directory

before you edit files.
You can use the TERMINFO environment variable to point to
whichever copy of the terminfo directory you want to access.

c. Use the following format to enter values for terminfo
capabilities:

terminfo-capability=value

Enter values for the following terminfo capabilities.

Code Description

smacs The escape sequence for entering graphics mode. In a
terminfo file, ESCAPE is represented as a backslash (\)
followed by the letter E; CONTROL is represented as a caret
(^). For example, the Wyse 50 escape sequence ESC-H
CTRL-B is represented as \EH^B.

rmacs The escape sequence for leaving graphics mode. For
example, the Wyse 50 escape sequence ESC-H CTRL-C is
represented as \EH^C.

acsc The concatenated, paired list of ASCII equivalents for the
six graphics characters used to draw the border. You can
specify the characters in any order, but you must pair the
ASCII equivalents for your terminal with the following
system default characters:
l for the upper-left corner
m for the lower-left corner
k for the upper-right corner
j for the lower-right corner
q for horizontal lines
x for vertical lines

Specifying Characters for Window Borders

F-30 HCL Informix 4GL Reference Guide

Use the following format to specify the acsc value.

Element Description
def is the default character for a particular border

 character and
new is the equivalent on that terminal for the same border

 character.

For example, on the Wyse 50 terminal, given the ASCII equiva-
lents for window border position and the system default
characters for border position, the acsc capability is set as shown:

acsc=l2m1k3j5qzx6

4. Use tic to recompile the modified terminfo file.
See your operating system documentation for a description of the tic
program.
The following example shows the full setting for specifying alterna-
tive border characters on the Wyse 50:

smacs=\EH^B, . sets smacs to ESC H CTRL B
rmacs=\EH^C, . sets rmacs to ESC H CTRL C
acsc=l2m1k3j5qzx6, . sets acsc to the ASCII equivalents

. of graphics characters for upper

. left (l), lower left (m), upper rig
ht (k),

. lower right (j), horizontal (q),
. and vertical (x)

If you prefer, you can enter this information in a linear sequence.
smacs=\EH^B,rmacs=\EH^C,acsc=l2m1k3j5qzx6,

If Your terminfo File Contains xmc#1 Capabilities
The terminfo file for some terminals contains xmc#1 capabilities. If xmc#1 is
included, 4GL reserves an additional column to the left and right of the
window. If you specify a border around the 4GL window, these two columns
are in addition to the two additional columns required for the border.

defnew

Color and Intensity

Modifying termcap and terminfo F-31

Terminals Without Graphics Capabilities
For terminals without graphics capabilities, you must enter a blank value for
the smacs and rmacs capabilities. For acsc, enter the characters that you want
4GL to use for the window border.

The following example shows possible values for smacs, rmacs, and acsc in
an entry for a terminal without graphics capabilities. In this example,
window borders are drawn using underscores(_) for horizontal lines, pipe
symbols (|) for vertical lines, periods (.) for the top corners, and pipe
symbols (|) for the lower corners.

smacs=,rmacs=,acsc=l.m|k.j|q_x|,

4GL uses the graphics characters in the terminfo file when you specify a
window border in an OPEN WINDOW statement.

Color and Intensity
If you use terminfo, you cannot use color or the following intensity attributes
in your 4GL programs:

BOLD
DIM
INVISIBLE
BLINK

If you specify these attributes in your 4GL code, they are ignored.

If the terminfo entry for your terminal contains the ul and so attributes, you
can use the UNDERLINE and REVERSE intensity attributes. You can see if your
terminfo entry includes these capabilities by using the infocmp program.
Refer to your operating system documentation for information about
infocmp.

To use color and intensity in your 4GL programs, you must use termcap (by
setting the INFORMIXTERM environment variable to termcap, and by setting
the TERMCAP environment variable to $INFORMIXDIR/etc/termcap). For
more information, see Appendix D, “Environment Variables.”

Reserved Words

INFORMIX-4GL has no reserved words in the sense of a string
that obeys the rules for identifiers but that always produces a
compilation error.

This appendix, however, lists keywords that you should not use
as programmer-defined identifiers in a 4GL application. If you
do, the program might fail with a compilation or runtime error,
or produce unexpected results. (If you receive an error message
that seems to be unrelated to the statement that produced the
error, review this appendix to see if the error was caused by a
reserved word used as an identifier.)

In general, you cannot use as an identifier the name of a built-in
constant or variable or the name of an operator that can begin an
expression. Chapter 5, “Built-In Functions and Operators,”
describes restricted functionality that results if you declare a 4GL
identifier with the same name as a built-in function or operator.

You are not prevented from declaring most other keywords of
4GL as identifiers, but you might not be able to reference such
identifiers in contexts where the same keyword makes sense. For
example, if you open a 4GL window named screen, you will not
be able to reference it in statements like CURRENT WINDOW,
where the SCREEN keyword specifies the 4GL screen. Similarly, if
ASCII is declared as the name of a variable, you cannot use it in
contexts where an expression is valid, because the ASCII operator
has different semantics but takes precedence over a variable.

Do not declare function names that occur in ESQL/C or in the
standard C or POSIX libraries, in the fglusr.h or fglsys.h header
files, or that start with fgl. If you avoid these names, you will not
run into problems.

Appendix

G

Reserved Words of 4GL

G-2 HCL Informix 4GL Reference Guide

Reserved Words of 4GL
Words in the following list are reserved in the sense that they are not
meaningful as the names of variables. Do not declare any of these words as
4GL identifiers.

AND FIELD_TOUCHED NULL
ASCII GET_FLDBUF ORD
AVERAGE INTERVAL OR
AVG INT_FLAG PAGENO
CHAR_LENGTH LENGTH PERCENT
COLUMN LINENO QUIT_FLAG
CONSTANT MAX SQLCA
COUNT MDY STATUS
COPY MIN SUM
CURRENT MOD TIME
DATE MONTH TODAY
DATETIME NEW TRUE
DAY NOT WEEKDAY
EXTEND NOTFOUND WORDWRAP
FALSE NOW YEAR

In addition to these words, do not declare the names of operating system calls
or C or C++ language keywords as identifiers in 4GL programs. For a list of
these words, see the documentation for your C or C++ compiler and the
documentation for your implementation of UNIX or LINUX.

Apart from the risk of unexpected behavior or errors, your 4GL code is likely
to be difficult to read and to maintain if you use keywords as identifiers.

Reserved Words of ANSI SQL
As in the case of the 4GL reserved words, declaring any of the ANSI reserved
words of SQL as an identifier can sometimes result in runtime errors if your
4GL application accesses a database that is ANSI-compliant.

If the default database when you compile is ANSI compliant, 4GL issues a
warning if you use an ANSI reserved word as an identifier in an embedded
SQL statement or other 4GL statement, and either of the following is true:

■ The DBANSIWARN environment variable is set.
■ You specify the -ansi command-line flag.

ANSI

Reserved Words of ANSI SQL

The ANSI SQL-92 reserved words are listed in the following table.

AGGREGATE DELETE ITEM RETAIN
ALL DESC JOIN ROLLBACK
ALL_ROWS DISTINCT LANGUAGE SCHEMA
AND DOUBLE LEFT SECTION
ANY END LIKE SELCONST
AS ESCAPE LOCKS SELECT
ASC EXEC MAX SET
AVG EXISTS MEMORY_RESIDENT SMALLINT
ALL_ROWS FETCH MIN SOME
AND FIRST_ROWS MODULE SQL
ANY FLOAT NON_RESIDENT SQLCODE
CACHE FOR NOT SQLERROR
CASE FORTRAN NULL SUBSTR
CHAR FOUND NUMERIC SUBSTRING
CHARACTER FROM NVL SUM
CHECK DELETE OF TABLE
CLOSE DESC ON TO
COBOL GO OPEN UNION
COMMIT GOTO OPTION UNIQUE
CONTINUE GRANT OR UPDATE
CRCOLS GROUP ORDER USER
COUNT HAVING OUT VALUES
CRCOLS IN PASCAL VIEW
CREATE INDICATOR PLI WHENEVER
CURRENT INNER PRECISION WHERE
CURSOR INSERT PRIVILEGES WITH
DEC INT PROCEDURE WORK
DECIMAL INTEGER PUBLIC

DECLARE INTO REAL
DECODE IS REPLICATION

If you compare this list with the shorter one for 4GL on the previous page, you
can see that some words (for example, AND, AVG, COUNT, and CURRENT) are
reserved both by 4GL and by the ANSI/ISO Entry Level standard for SQL.

The draft ANSI SQL3 standard lists additional reserved words, such as TYPE,
which Informix database servers later than Version 7.3 recognize as reserved
words. See the Informix Guide to SQL: Tutorial for more information about
using the keywords of SQL as identifiers in SQL statements.

Reserved Words G-3

The Demonstration
Application

This appendix contains the form specifications, INFORMIX-4GL
source code modules, and help message source code for the
demo4.4ge demonstration application.

The demo4.4ge application documented here is not meant to be
a complete application as some of the functions called by the
menus are merely placeholders and have not been implemented.

File Name Description

custform.per Form for displaying customer information

orderform.per Form for entering an order

state_list.per Form for displaying a list of states

stock_sel.per Form for displaying a list of stock items

d4_globals.4gl Module containing global definitions

d4_main.4gl Module that contains MAIN routine

d4_cust.4gl Module that handles the Customer option

d4_orders.4gl Module that handles the Orders option

d4_stock.4gl Module that handles the Stock option

d4_report.4gl Module that handles the Report option

d4_demo.4gl Module that handles a hidden source code option

helpdemo.src Source file for help messages

Appendix

H

custform.per

H-2 HCL Informix 4GL Reference Guide

custform.per

DATABASE stores7

SCREEN
{

Customer Form

Number :[f000]
Owner Name :[f001][f002]
Company :[f003]
Address :[f04]

 [f005]
City :[f006] State:[a0] Zipcode:[f007]
Telephone :[f008]

}

TABLES
customer

ATTRIBUTES
f000 = customer.customer_num, NOENTRY;
f001 = customer.fname;
f002 = customer.lname;
f003 = customer.company;
f004 = customer.address1;
f005 = customer.address2;
f006 = customer.city;
a0 = customer.state, UPSHIFT;
f007 = customer.zipcode;
f008 = customer.phone, PICTURE = "###-###-#### XXXXX";

orderform.per

The Demonstration Application H-3

orderform.per

DATABASE stores7

SCREEN
{

 ORDER FORM

Customer Number:[f000
Company Name:[f003

Address:[f004

] Contact Name:[f001
]
][f005

][f002]

]
City:[f006] State:[a0] Zip Code:[f007]

Telephone:[f008]

Order No:[f009] Order Date:[f010] PO Number:[f011
Shipping Instructions:[f012]

Item No. Stock No. Code Description Quantity Price Total
[f013] [f014] [a1] [f015] [f016] [f017] [f018]
[f013] [f014] [a1] [f015] [f016] [f017] [f018]
[f013] [f014] [a1] [f015] [f016] [f017] [f018]
[f013] [f014] [a1] [f015] [f016] [f017] [f018]

Running Total including Tax and Shipping Charges:[f019]
==

}

TABLES
customer orders items stock

ATTRIBUTES
f000 = customer.customer_num;
f001 = customer.fname;
f002 = customer.lname;
f003 = customer.company;
f004 = customer.address1;
f005 = customer.address2;
f006 = customer.city;
a0 = customer.state, UPSHIFT;
f007 = customer.zipcode;
f008 = customer.phone, PICTURE = "###-###-#### XXXXX";

f009 = orders.order_num;
f010 = orders.order_date, DEFAULT = TODAY;
f011 = orders.po_num;
f012 = orders.ship_instruct;

f013 = items.item_num, NOENTRY;
f014 = items.stock_num;
a1 = items.manu_code, UPSHIFT;
f015 = stock.description, NOENTRY;
f016 = items.quantity;
f017 = stock.unit_price, NOENTRY;
f018 = items.total_price, NOENTRY;
f019 = formonly.t_price TYPE MONEY;

INSTRUCTIONS
SCREEN RECORD s_items[4](items.item_num, items.stock_num, items.manu_code,

stock.description, items.quantity, stock.unit_price, items.total_price)

state_list.per

H-4 HCL Informix 4GL Reference Guide

state_list.per

DATABASE stores7

SCREEN
{

State Selection

[a0] [f000]
[a0] [f000]
[a0] [f000]
[a0] [f000]
[a0] [f000]
[a0] [f000]
[a0] [f000
}

]

TABLES
state

ATTRIBUTES
a0 = state.code;
f000 = state.sname;

INSTRUCTIONS
DELIMITERS " "
SCREEN RECORD s_state[7](state.*)

stock_sel.per

The Demonstration Application H-5

stock_sel.per

DATABASE stores7

SCREEN
{

}

TABLES
stock

ATTRIBUTES
f018 = FORMONLY.stock_num;
f019 = FORMONLY.manu_code;
f020 = FORMONLY.manu_name;
f021 = FORMONLY.description;
f022 = FORMONLY.unit_price;
f023 = FORMONLY.unit_descr;

INSTRUCTIONS
DELIMITERS " "
SCREEN RECORD s_stock[3] (FORMONLY.stock_num THRU FORMONLY.unit_descr)

[f018][f019][f020][f021][f022][f023]

[f018][f019][f020][f021][f022][f023]
[f018][f019][f020][f021][f022][f023]

d4_globals.4gl

H-6 HCL Informix 4GL Reference Guide

d4_globals.4gl

DATABASE stores7

GLOBALS
DEFINE

p_customer RECORD LIKE customer.*,
p_orders RECORD

order_num LIKE orders.order_num,
order_date LIKE orders.order_date,
po_num LIKE orders.po_num,
ship_instruct LIKE orders.ship_instruct

END RECORD,
p_items ARRAY[10] OF RECORD

item_num LIKE items.item_num,
stock_num LIKE items.stock_num,
manu_code LIKE items.manu_code,
description LIKE stock.description,
quantity LIKE items.quantity,
unit_price LIKE stock.unit_price,
total_price LIKE items.total_price

END RECORD,
p_stock ARRAY[30] OF RECORD

stock_num LIKE stock.stock_num,
manu_code LIKE manufact.manu_code,
manu_name LIKE manufact.manu_name,
description LIKE stock.description,
unit_price LIKE stock.unit_price,
unit_descr LIKE stock.unit_descr

END RECORD,
p_state ARRAY[50] OF RECORD LIKE state.*,
state_cnt, stock_cnt INTEGER,
print_option CHAR(1)

END GLOBALS

d4_main.4gl

The Demonstration Application H-7

d4_main.4gl

GLOBALS
"d4_globals.4gl"

MAIN

DEFER INTERRUPT
OPTIONS
HELP FILE "helpdemo"
LET print_option = "s"
CALL get_states()
CALL get_stocks()

CALL ring_menu()
MENU "MAIN"

COMMAND "Customer" "Enter and maintain customer data" HELP 101
CALL customer()
CALL ring_menu()

COMMAND "Orders" "Enter and maintain orders" HELP 102
CALL orders()
CALL ring_menu()

COMMAND "Stock" "Enter and maintain stock list" HELP 103
CALL stock()
CALL ring_menu()

COMMAND "Reports" "Print reports and mailing labels" HELP 104
CALL reports()
CALL ring_menu()

COMMAND key("!")
CALL bang()
CALL ring_menu()
NEXT OPTION "Customer"

COMMAND key("X")
CALL demo()
CALL ring_menu()
NEXT OPTION "Customer"

COMMAND "Exit" "Exit program and return to operating system" HELP 105
CLEAR SCREEN
EXIT PROGRAM

END MENU
END MAIN

FUNCTION bang()

DEFINE cmd CHAR(80),
x CHAR(1)

CALL clear_menu()
LET x = "!"
W H I L E x = "!"

PROMPT "!" FOR cmd
RUN cmd
PROMPT "Type RETURN to continue." FOR CHAR x

END WHILE
END FUNCTION

d4_main.4gl

H-8 HCL Informix 4GL Reference Guide

FUNCTION mess(str, mrow)

DEFINE str CHAR(80),
mrow SMALLINT

DISPLAY " ", str CLIPPED AT mrow,1
SLEEP 3
DISPLAY "" AT mrow,1

END FUNCTION

FUNCTION ring_menu()

DISPLAY " ",
"Type Control-W for MENU HELP -------" AT 4,2 ATTRIBUTE(MAGENTA)

END FUNCTION

FUNCTION clear_menu()

DISPLAY "" AT 1,1
DISPLAY "" AT 2,1

END FUNCTION

FUNCTION get_states()

DECLARE c_state CURSOR FOR
SELECT * FROM state
ORDER BY sname

LET state_cnt = 1
FOREACH c_state INTO p_state[state_cnt].*

LET state_cnt = state_cnt + 1
IF state_cnt > 50 THEN

EXIT FOREACH
END IF

END FOREACH
LET state_cnt = state_cnt - 1

END FUNCTION

FUNCTION get_stocks()

DECLARE stock_list CURSOR FOR
SELECT stock_num, manufact.manu_code,

manu_name, description, unit_price, unit_descr
FROM stock, manufact
WHERE stock.manu_code = manufact.manu_code
ORDER BY stock_num

LET stock_cnt = 1
FOREACH stock_list INTO p_stock[stock_cnt].*

LET stock_cnt = stock_cnt + 1
IF stock_cnt > 30 THEN

EXIT FOREACH
END IF

END FOREACH
LET stock_cnt = stock_cnt - 1

END FUNCTION

d4_cust.4gl

The Demonstration Application H-9

d4_cust.4gl

GLOBALS
"d4_globals.4gl"

FUNCTION customer()

OPTIONS
FORM LINE 7

OPEN FORM customer FROM "custform"
DISPLAY FORM customer

ATTRIBUTE(MAGENTA)
CALL ring_menu()
CALL fgl_drawbox(3,30,3,43)
CALL fgl_drawbox(3,61,8,7)
CALL fgl_drawbox(11,61,8,7)
LET p_customer.customer_num = NULL
MENU "CUSTOMER"

COMMAND "One-add" "Add a new customer to the database" HELP 201
CALL add_customer(FALSE)

COMMAND "Many-add" "Add several new customer to database" HELP 202
CALL add_customer(TRUE)

COMMAND "Find-cust" "Look up specific customer" HELP 203
CALL query_customer(23)
IF p_customer.customer_num IS NOT NULL THEN

NEXT OPTION "Update-cust"
END IF

COMMAND "Update-cust" "Modify current customer information" HELP 204
CALL update_customer()
NEXT OPTION "Find-cust"

COMMAND "Delete-cust" "Remove a customer from database" HELP 205
CALL delete_customer()
NEXT OPTION "Find-cust"

COMMAND "Exit" "Return to MAIN Menu" HELP 206
CLEAR SCREEN
EXIT MENU

END MENU
OPTIONS

FORM LINE 3
END FUNCTION

FUNCTION add_customer(repeat)
DEFINE repeat INTEGER

CALL clear_menu()
MESSAGE "Press F1 or CTRL-F for field help; ",

"F2 or CTRL-Z to return to menu"
IF repeat THEN

WHILE input_cust()
ERROR "Customer data entered" ATTRIBUTE (GREEN)

END WHILE
CALL mess("Multiple insert completed -

current screen values ignored", 23)
ELSE

IF input_cust() THEN
ERROR "Customer data entered" ATTRIBUTE (GREEN)

ELSE
CLEAR FORM
LET p_customer.customer_num = NULL

d4_cust.4gl

H-10 HCL Informix 4GL Reference Guide

ERROR "Customer addition aborted" ATTRIBUTE (RED, REVERSE)

END IF
END IF

END FUNCTION
FUNCTION input_cust()

DISPLAY "Press ESC to enter new customer data" AT 1,1
INPUT BY NAME p_customer.*

AFTER FIELD state
CALL statehelp()
DISPLAY "Press ESC to enter new customer data", "" AT 1,1

ON KEY (F1, CONTROL-F)
CALL customer_help()

ON KEY (F2, CONTROL-Z)
LET int_flag = TRUE
EXIT INPUT

END INPUT
IF int_flag THEN

LET int_flag = FALSE
RETURN(FALSE)

END IF
LET p_customer.customer_num = 0
INSERT INTO customer VALUES (p_customer.*)
LET p_customer.customer_num = SQLCA.SQLERRD[2]
DISPLAY BY NAME p_customer.customer_num ATTRIBUTE(MAGENTA)
RETURN(TRUE)

END FUNCTION

FUNCTION query_customer(mrow)

DEFINE where_part CHAR(200),
query_text CHAR(250),
answer CHAR(1),
mrow, chosen, exist SMALLINT

CLEAR FORM
CALL clear_menu()

MESSAGE "Enter criteria for selection"
CONSTRUCT where_part ON customer.* FROM customer.*
MESSAGE ""
IF int_flag THEN

LET int_flag = FALSE
CLEAR FORM
ERROR "Customer query aborted" ATTRIBUTE(RED, REVERSE)
LET p_customer.customer_num = NULL
RETURN (p_customer.customer_num)

END IF
LET query_text = "select * from customer where ", where_part CLIPPED,

" order by lname"
PREPARE statement_1 FROM query_text
DECLARE customer_set SCROLL CURSOR FOR statement_1
OPEN customer_set
FETCH FIRST customer_set INTO p_customer.*
IF status = NOTFOUND THEN

LET exist = FALSE
ELSE

LET exist = TRUE
DISPLAY BY NAME p_customer.*
MENU "BROWSE"

COMMAND "Next" "View the next customer in the list"

d4_cust.4gl

The Demonstration Application H-11

FETCH NEXT customer_set INTO p_customer.*
IF status = NOTFOUND THEN

ERROR "No more customers in this direction"
ATTRIBUTE(RED, REVERSE)

FETCH LAST customer_set INTO p_customer.*
END IF
DISPLAY BY NAME p_customer.* ATTRIBUTE(CYAN)

COMMAND "Previous" "View the previous customer in the list"
FETCH PREVIOUS customer_set INTO p_customer.*
IF status = NOTFOUND THEN

ERROR "No more customers in this direction"
ATTRIBUTE(RED, REVERSE)

FETCH FIRST customer_set INTO p_customer.*
END IF
DISPLAY BY NAME p_customer.* ATTRIBUTE(CYAN)

COMMAND "First" "View the first customer in the list"
FETCH FIRST customer_set INTO p_customer.*
DISPLAY BY NAME p_customer.* ATTRIBUTE(CYAN)

COMMAND "Last" "View the last customer in the list"
FETCH LAST customer_set INTO p_customer.*
DISPLAY BY NAME p_customer.* ATTRIBUTE(CYAN)

COMMAND "Select" "Exit BROWSE selecting the current customer"
LET chosen = TRUE
EXIT MENU

COMMAND "Quit" "Quit BROWSE without selecting a customer"
LET chosen = FALSE
EXIT MENU

END MENU
END IF
CLOSE customer_set

IF NOT exist THEN

CLEAR FORM
CALL mess("No customer satisfies query", mrow)
LET p_customer.customer_num = NULL
RETURN (FALSE)

END IF
IF NOT chosen THEN

CLEAR FORM
LET p_customer.customer_num = NULL
CALL mess("No selection made", mrow)
RETURN (FALSE)

END IF
RETURN (TRUE)

END FUNCTION
FUNCTION update_customer()

CALL clear_menu()
IF p_customer.customer_num IS NULL THEN

CALL mess("No customer has been selected; use the
Find-cust option",23)

RETURN
END IF
MESSAGE "Press F1 or CTRL-F for field-level help"
DISPLAY "Press ESC to update customer data; DEL to abort" AT 1,1
INPUT BY NAME p_customer.* WITHOUT DEFAULTS

AFTER FIELD state
CALL statehelp()
DISPLAY "Press ESC to update customer data; DEL to abort",

"" AT 1,1
ON KEY (F1, CONTROL-F)

d4_cust.4gl

H-12 HCL Informix 4GL Reference Guide

CALL customer_help()

END INPUT
IF NOT int_flag THEN

UPDATE customer SET customer.* = p_customer.*
WHERE customer_num = p_customer.customer_num

CALL mess("Customer data modified", 23)
ELSE

LET int_flag = FALSE
SELECT * INTO p_customer.* FROM customer

WHERE customer_num = p_customer.customer_num
DISPLAY BY NAME p_customer.*
ERROR "Customer update aborted" ATTRIBUTE (RED, REVERSE)

END IF
END FUNCTION

FUNCTION delete_customer()

DEFINE answer CHAR(1),
num_orders INTEGER

CALL clear_menu()
IF p_customer.customer_num IS NULL THEN

ERROR "No customer has been selected; use the Find-customer option"
ATTRIBUTE (RED, REVERSE)

RETURN
END IF

SELECT COUNT(*) INTO num_orders
FROM orders
WHERE customer_num = p_customer.customer_num

IF num_orders THEN
ERROR "This customer has active orders and can not be removed"

ATTRIBUTE (RED, REVERSE)
RETURN

END IF

PROMPT " Are you sure you want to delete this customer row? "
FOR CHAR answer

IF answer MATCHES "[yY]" THEN
DELETE FROM customer

WHERE customer_num = p_customer.customer_num
CLEAR FORM
CALL mess("Customer entry deleted", 23)
LET p_customer.customer_num = NULL

ELSE
ERROR "Deletion aborted" ATTRIBUTE (RED, REVERSE)

END IF
END FUNCTION

FUNCTION customer_help()
CASE

WHEN infield(customer_num) CALL showhelp(1001)
WHEN infield(fname) CALL showhelp(1002)
WHEN infield(lname) CALL showhelp(1003)
WHEN infield(company) CALL showhelp(1004)
WHEN infield(address1) CALL showhelp(1005)
WHEN infield(address2) CALL showhelp(1006)
WHEN infield(city) CALL showhelp(1007)
WHEN infield(state) CALL showhelp(1008)

d4_cust.4gl

The Demonstration Application H-13

WHEN infield(zipcode) CALL showhelp(1009)
WHEN infield(phone) CALL showhelp(1010)

END CASE
END FUNCTION

FUNCTION statehelp()
DEFINE idx INTEGER

SELECT COUNT(*) INTO idx

FROM state
WHERE code = p_customer.state

IF idx = 1 THEN
RETURN

END IF

DISPLAY "Move cursor using F3, F4, and arrow keys; press ESC to select
state"
AT 1,1

OPEN WINDOW w_state AT 8,37
WITH FORM "state_list"
ATTRIBUTE (BORDER, RED, FORM LINE 2)

CALL set_count(state_cnt)
DISPLAY ARRAY p_state TO s_state.*
LET idx = arr_curr()

CLOSE WINDOW w_state
LET p_customer.state = p_state[idx].code
DISPLAY BY NAME p_customer.state ATTRIBUTE (MAGENTA)
RETURN

END FUNCTION

d4_orders.4gl

H-14 HCL Informix 4GL Reference Guide

d4_orders.4gl

GLOBALS
"d4_globals.4gl"

FUNCTION orders()

OPEN FORM order_form FROM "orderform"
DISPLAY FORM order_form

ATTRIBUTE(MAGENTA)
MENU "ORDERS"

COMMAND "Add-order" "Enter new order to database and print invoice"
HELP 301

CALL add_order()
COMMAND "Update-order" "Enter shipping or payment data" HELP 302

CALL update_order()
COMMAND "Find-order" "Look up and display orders" HELP 303

CALL get_order()
COMMAND "Delete-order" "Remove an order from the database" HELP 304

CALL delete_order()
COMMAND "Exit" "Return to MAIN Menu" HELP 305

CLEAR SCREEN
EXIT MENU

END MENU
END FUNCTION

FUNCTION add_order()
DEFINE pa_curr, s_curr, num_stocks INTEGER,

file_name CHAR(20),
query_stat INTEGER

CALL clear_menu()
LET query_stat = query_customer(2)
IF query_stat IS NULL THEN

RETURN
END IF
IF NOT query_stat THEN

OPEN WINDOW cust_w AT 3,5
WITH 19 ROWS, 72 COLUMNS
ATTRIBUTE(BORDER, YELLOW)

OPEN FORM o_cust FROM "custform"
DISPLAY FORM o_cust

ATTRIBUTE(MAGENTA)
CALL fgl_drawbox(3,61,4,7)
CALL fgl_drawbox(11,61,4,7)
CALL add_customer(FALSE)
CLOSE FORM o_cust
CLOSE WINDOW cust_w
IF p_customer.customer_num IS NULL THEN

RETURN
ELSE

DISPLAY by name p_customer.*
END IF

END IF

MESSAGE "Enter the order date, PO number and shipping instructions."
INPUT BY NAME p_orders.order_date, p_orders.po_num,

p_orders.ship_instruct
IF int_flag THEN

LET int_flag = FALSE

d4_orders.4gl

The Demonstration Application H-15

CLEAR FORM
ERROR "Order input aborted" ATTRIBUTE (RED, REVERSE)
RETURN

END IF
INPUT ARRAY p_items FROM s_items.* HELP 311

BEFORE FIELD stock_num
MESSAGE "Press ESC to write order"
DISPLAY "Enter a stock number or press CTRL-B to scan stock list"

AT 1,1
BEFORE FIELD manu_code

MESSAGE "Enter the code for a manufacturer"
BEFORE FIELD quantity

DISPLAY "" AT 1,1
MESSAGE "Enter the item quantity"

ON KEY (CONTROL-B)
IF INFIELD(stock_num) OR INFIELD(manu_code) THEN

LET pa_curr = arr_curr()
LET s_curr = scr_line()
CALL get_stock() RETURNING

p_items[pa_curr].stock_num, p_items[pa_curr].manu_code,
p_items[pa_curr].description, p_items[pa_curr].unit_price

DISPLAY p_items[pa_curr].stock_num TO s_items[s_curr].stock_num
DISPLAY p_items[pa_curr].manu_code TO s_items[s_curr].manu_code
DISPLAY p_items[pa_curr].description TO s_items[s_curr].

description
DISPLAY p_items[pa_curr].unit_price TO s_items[s_curr].

unit_price
NEXT FIELD quantity

END IF
AFTER FIELD stock_num, manu_code

LET pa_curr = arr_curr()
IF p_items[pa_curr].stock_num IS NOT NULL

AND p_items[pa_curr].manu_code IS NOT NULL
THEN

CALL get_item()
END IF

AFTER FIELD quantity
MESSAGE ""
LET pa_curr = arr_curr()
IF p_items[pa_curr].unit_price IS NOT NULL

AND p_items[pa_curr].quantity IS NOT NULL
THEN

CALL item_total()
ELSE

ERROR
"A valid stock code, manufacturer, and quantity must all be

entered"
ATTRIBUTE (RED, REVERSE)

NEXT FIELD stock_num
END IF

AFTER INSERT, DELETE
CALL renum_items()
CALL order_total()

AFTER ROW
CALL order_total()

END INPUT

d4_orders.4gl

H-16 HCL Informix 4GL Reference Guide

IF int_flag THEN

LET int_flag = FALSE
CLEAR FORM
ERROR "Order input aborted" ATTRIBUTE (RED, REVERSE)
RETURN

END IF
WHENEVER ERROR CONTINUE
BEGIN WORK
INSERT INTO orders (order_num, order_date, customer_num,

ship_instruct, po_num)
VALUES (0, p_orders.order_date, p_customer.customer_num,

p_orders.ship_instruct, p_orders.po_num)
IF status < 0 THEN

ROLLBACK WORK
ERROR "Unable to complete update of orders table"

ATTRIBUTE(RED, REVERSE, BLINK)
RETURN

END IF
LET p_orders.order_num = SQLCA.SQLERRD[2]
DISPLAY BY NAME p_orders.order_num
IF NOT insert_items() THEN

ROLLBACK WORK
ERROR "Unable to insert items" ATTRIBUTE(RED, REVERSE, BLINK)
RETURN

END IF

COMMIT WORK
WHENEVER ERROR STOP
CALL mess("Order added", 23)
LET file_name = "inv", p_orders.order_num USING "<<<<&",".out"
CALL invoice(file_name)
CLEAR FORM

END FUNCTION

FUNCTION update_order()

ERROR "This option has not been implemented" ATTRIBUTE (RED)

END FUNCTION

FUNCTION delete_order()

ERROR "This option has not been implemented" ATTRIBUTE (RED)
END FUNCTION

FUNCTION order_total()
DEFINE order_total MONEY(8),

i INTEGER

LET order_total = 0.00
F O R i = 1 TO ARR_COUNT()

IF p_items[i].total_price IS NOT NULL THEN
LET order_total = order_total + p_items[i].total_price

d4_orders.4gl

The Demonstration Application H-17

END IF

END FOR
LET order_total = 1.1 * order_total
DISPLAY order_total TO t_price

ATTRIBUTE(GREEN)
END FUNCTION
FUNCTION item_total()

DEFINE pa_curr, sc_curr INTEGER

LET pa_curr = arr_curr()
LET sc_curr = scr_line()
LET p_items[pa_curr].total_price =

p_items[pa_curr].quantity * p_items[pa_curr].unit_price
DISPLAY p_items[pa_curr].total_price TO s_items[sc_curr].total_price

END FUNCTION

FUNCTION renum_items()
DEFINE pa_curr, pa_total, sc_curr, sc_total, k INTEGER

LET pa_curr = arr_curr()
LET pa_total = arr_count()
LET sc_curr = scr_line()
LET sc_total = 4
FOR k = pa_curr TO pa_total

LET p_items[k].item_num = k
IF sc_curr <= sc_total THEN

DISPLAY k TO s_items[sc_curr].item_num
LET sc_curr = sc_curr + 1

END IF
END FOR

END FUNCTION

FUNCTION insert_items()

DEFINE idx INTEGER

FOR idx=1 TO arr_count()
IF p_items[idx].quantity != 0 THEN

INSERT INTO items
VALUES (p_items[idx].item_num, p_orders.order_num,

p_items[idx].stock_num, p_items[idx].manu_code,
p_items[idx].quantity, p_items[idx].total_price)

IF status < 0 THEN
RETURN (FALSE)

END IF
END IF

END FOR
RETURN (TRUE)

END FUNCTION

FUNCTION get_stock()

DEFINE idx integer

OPEN WINDOW stock_w AT 7, 3
WITH FORM "stock_sel"
ATTRIBUTE(BORDER, YELLOW)

CALL set_count(stock_cnt)
DISPLAY

d4_orders.4gl

H-18 HCL Informix 4GL Reference Guide

"Use cursor using F3, F4, and arrow keys; press ESC to select a stock

item"
AT 1,1

DISPLAY ARRAY p_stock TO s_stock.*
LET idx = arr_curr()
CLOSE WINDOW stock_w
RETURN p_stock[idx].stock_num, p_stock[idx].manu_code,

p_stock[idx].description, p_stock[idx].unit_price
END FUNCTION

FUNCTION get_order()
DEFINE idx, exist, chosen INTEGER,

answer CHAR(1)

CALL clear_menu()
CLEAR FORM
IF NOT query_customer(2) THEN

RETURN
END IF
DECLARE order_list CURSOR FOR

SELECT order_num, order_date, po_num, ship_instruct
FROM orders
WHERE customer_num = p_customer.customer_num

LET exist = FALSE
LET chosen = FALSE
FOREACH order_list INTO p_orders.*

LET exist = TRUE
CLEAR orders.*
FOR idx=1 T O 4

CLEAR s_items[idx].*
END FOR
DISPLAY p_orders.* TO orders.*
DECLARE item_list CURSOR FOR

SELECT item_num, items.stock_num, items.manu_code,
description, quantity, unit_price, total_price

FROM items, stock
WHERE order_num = p_orders.order_num

AND items.stock_num = stock.stock_num
AND items.manu_code = stock.manu_code

ORDER BY item_num
LET idx = 1

FOREACH item_list INTO p_items[idx].*
LET idx = idx + 1
IF idx > 10 THEN

ERROR "More than 10 items; only 10 items displayed"
ATTRIBUTE (RED, REVERSE)

EXIT FOREACH
END IF

END FOREACH
CALL set_count(idx - 1)
CALL order_total()
MESSAGE "Press ESC when you finish viewing the items"
DISPLAY ARRAY p_items TO s_items.*

ATTRIBUTE(CYAN)
MESSAGE ""
IF int_flag THEN

LET int_flag = FALSE
EXIT FOREACH

d4_orders.4gl

The Demonstration Application H-19

END IF
PROMPT " Enter ’y’ to select this order ",

"or RETURN to view next order: " FOR CHAR answer
IF answer MATCHES "[yY]" THEN

LET chosen = TRUE
EXIT FOREACH

END IF
END FOREACH

IF NOT exist THEN
ERROR "No orders found for this customer" ATTRIBUTE (RED)

ELSE
IF NOT chosen THEN

CLEAR FORM
ERROR "No order selected for this customer" ATTRIBUTE (RED)

END IF
END IF

END FUNCTION

FUNCTION get_item()
DEFINE pa_curr, sc_curr INTEGER

LET pa_curr = arr_curr()
LET sc_curr = scr_line()
SELECT description, unit_price

INTO p_items[pa_curr].description,
p_items[pa_curr].unit_price

FROM stock
WHERE stock.stock_num = p_items[pa_curr].stock_num

AND stock.manu_code = p_items[pa_curr].manu_code
IF status THEN

LET p_items[pa_curr].description = NULL
LET p_items[pa_curr].unit_price = NULL

END IF
DISPLAY p_items[pa_curr].description, p_items[pa_curr].unit_price

TO s_items[sc_curr].description, s_items[sc_curr].unit_price
IF p_items[pa_curr].quantity IS NOT NULL THEN

CALL item_total()
END IF

END FUNCTION

FUNCTION invoice(file_name)

DEFINE x_invoice RECORD
order_num LIKE orders.order_num,
order_date LIKE orders.order_date,
ship_instruct LIKE orders.ship_instruct,
backlog LIKE orders.backlog,
po_num LIKE orders.po_num,
ship_date LIKE orders.ship_date,
ship_weight LIKE orders.ship_weight,
ship_charge LIKE orders.ship_charge,
item_num LIKE items.item_num,
stock_num LIKE items.stock_num,
manu_code LIKE items.manu_code,
quantity LIKE items.quantity,
total_price LIKE items.total_price,
description LIKE stock.description,
unit_price LIKE stock.unit_price,
unit LIKE stock.unit,

d4_orders.4gl

H-20 HCL Informix 4GL Reference Guide

unit_descr LIKE stock.unit_descr,
manu_name LIKE manufact.manu_name

END RECORD,
file_name CHAR(20),
msg CHAR(40)

DECLARE invoice_data CURSOR FOR

SELECT o.order_num,order_date,ship_instruct,backlog,po_num,ship_date,
ship_weight,ship_charge,
item_num,i.stock_num,i.manu_code,quantity,total_price,
s.description,unit_price,unit,unit_descr,
manu_name

FROM orders o,items i,stock s,manufact m
WHERE

((o.order_num=p_orders.order_num) AND
(i.order_num=p_orders.order_num) AND
(i.stock_num=s.stock_num AND
i.manu_code=s.manu_code) AND
(i.manu_code=m.manu_code))

ORDER BY 9
CASE (print_option)

WHEN "f"
START REPORT r_invoice TO file_name
CALL clear_menu()
MESSAGE "Writing invoice -- please wait"

WHEN "p"
START REPORT r_invoice TO PRINTER
CALL clear_menu()
MESSAGE "Writing invoice -- please wait"

WHEN "s"
START REPORT r_invoice

END CASE
FOREACH invoice_data INTO x_invoice.*

OUTPUT TO REPORT r_invoice (p_customer.*, x_invoice.*)
END FOREACH
FINISH REPORT r_invoice
IF print_option = "f" THEN

LET msg = "Invoice written to file ", file_name CLIPPED
CALL mess(msg, 23)

END IF
END FUNCTION

REPORT r_invoice (c, x)

DEFINE c RECORD LIKE customer.*,
x RECORD

order_num LIKE orders.order_num,
order_date LIKE orders.order_date,
ship_instruct LIKE orders.ship_instruct,
backlog LIKE orders.backlog,
po_num LIKE orders.po_num,
ship_date LIKE orders.ship_date,
ship_weight LIKE orders.ship_weight,
ship_charge LIKE orders.ship_charge,
item_num LIKE items.item_num,
stock_num LIKE items.stock_num,
manu_code LIKE items.manu_code,
quantity LIKE items.quantity,
total_price LIKE items.total_price,
description LIKE stock.description,
unit_price LIKE stock.unit_price,

d4_orders.4gl

The Demonstration Application H-21

unit LIKE stock.unit,
unit_descr LIKE stock.unit_descr,
manu_name LIKE manufact.manu_name

END RECORD,
sales_tax, calc_total MONEY(8,2)

OUTPUT

LEFT MARGIN 0
RIGHT MARGIN 0
TOP MARGIN 1
BOTTOM MARGIN 1
PAGE LENGTH 48

FORMAT

BEFORE GROUP OF x.order_num
SKIP TO TOP OF PAGE
SKIP 1 LINE
PRINT 10 SPACES,

" W E S T C O A S T W H O L E S A L E R S , INC ."
PRINT 30 SPACES," 1400 Hanbonon Drive"
PRINT 30 SPACES,"Menlo Park, CA 94025"
SKIP 1 LINES
PRINT "Bill To:", COLUMN 10,c.fname CLIPPED, " ", c.lname CLIPPED;
PRINT COLUMN 56,"Invoice No. ",x.order_num USING "&&&&&"
PRINT COLUMN 10,c.company
PRINT COLUMN 10,c.address1 CLIPPED;
PRINT COLUMN 56,"Invoice Date: ", x.order_date
PRINT COLUMN 10,c.address2 CLIPPED;
PRINT COLUMN 56,"Customer No. ", c.customer_num USING "####&"
PRINT COLUMN 10,c.city CLIPPED,", ",c.state CLIPPED," ",

c.zipcode CLIPPED;
PRINT COLUMN 56,"PO No. ",x.po_num
PRINT COLUMN 10,c.phone CLIPPED;
PRINT COLUMN 56,"Backlog Status: ",x.backlog
SKIP 1 LINES
PRINT COLUMN 10,"Shipping Instructions: ", x.ship_instruct
PRINT COLUMN 10,"Ship Date: ",x.ship_date USING "ddd. mmm dd, yyyy";
PRINT " Weight: ", x.ship_weight USING "#####&.&&"
SKIP 1 LINES
PRINT " ";
PRINT " "
PRINT " Stock Unit ";
PRINT " Item "
PRINT " # Num Man Description Qty Cost Unit ";
PRINT " Unit Description Total"
SKIP 1 LINES
LET calc_total = 0.00

ON EVERY ROW

PRINT x.item_num USING "#&"," ",
x.stock_num USING "&&", " ",x.manu_code;

PRINT " ",x.description," ",x.quantity USING "###&", " ";
PRINT x.unit_price USING "$$$&.&&"," ",x.unit, " ",

x.unit_descr," ";
PRINT x.total_price USING "$$$$$$$&.&&"
LET calc_total = calc_total + x.total_price

AFTER GROUP OF x.order_num
SKIP 1 LINES
PRINT " ";
PRINT " "

d4_orders.4gl

H-22 HCL Informix 4GL Reference Guide

PRINT COLUMN 50, " Sub-total: ",calc_total USING "$$$$$$$&.&&"
LET sales_tax = 0.065 * calc_total
LET x.ship_charge = 0.035 * calc_total
PRINT COLUMN 45, "Shipping Charge (3.5%): ",

x.ship_charge USING "$$$$$$$&.&&"
PRINT COLUMN 50, " Sales Tax (6.5%): ",sales_tax USING "$$$$$$$&.&&"
PRINT COLUMN 50, " "
LET calc_total = calc_total + x.ship_charge + sales_tax
PRINT COLUMN 50, " Total: ",calc_total USING "$$$$$$$&.&&"
IF print_option = "s" THEN

PAUSE "Type RETURN to continue"
END IF

END REPORT

d4_stock.4gl

The Demonstration Application H-23

d4_stock.4gl

GLOBALS
"d4_globals.4gl"

FUNCTION stock()
MENU "STOCK"

COMMAND "Add-stock" "Add new stock items to database" HELP 401
CALL add_stock()

COMMAND "Find-stock" "Look up specific stock item" HELP 402
CALL query_stock()

COMMAND "Update-stock" "Modify current stock information" HELP 403
CALL update_stock()

COMMAND "Delete-stock" "Remove a stock item from database" HELP 404
CALL delete_stock()

COMMAND "Exit" "Return to MAIN Menu" HELP 405
CLEAR SCREEN
EXIT MENU

END MENU
END FUNCTION

FUNCTION add_stock()

ERROR "This option has not been implemented" ATTRIBUTE (RED)
END FUNCTION

FUNCTION query_stock()
ERROR "This option has not been implemented" ATTRIBUTE (RED)

END FUNCTION

FUNCTION update_stock()
ERROR "This option has not been implemented" ATTRIBUTE (RED)

END FUNCTION

FUNCTION delete_stock()
ERROR "This option has not been implemented" ATTRIBUTE (RED)

END FUNCTION

d4_report.4gl

H-24 HCL Informix 4GL Reference Guide

d4_report.4gl

GLOBALS
"d4_globals.4gl"

FUNCTION reports()
CALL ring_menu()
MENU "REPORTS"

COMMAND "Labels" "Print mailing labels from customer list"
HELP 501

CALL print_labels()
CLEAR SCREEN
CALL ring_menu()

COMMAND "Accounts-receivable" "Print current unpaid orders" HELP 502
CALL print_ar()
CLEAR SCREEN
CALL ring_menu()

COMMAND "Backlog" "Print backlogged orders" HELP 503
CALL print_backlog()
CLEAR SCREEN
CALL ring_menu()

COMMAND "Stock-list" "Print stock available" HELP 504
CALL print_stock()
CLEAR SCREEN
CALL ring_menu()

COMMAND "Options" "Change the report output options" HELP 505
CALL update_options()
CALL ring_menu()

COMMAND "Exit" "Return to MAIN Menu" HELP 506
CLEAR SCREEN
EXIT MENU

END MENU
END FUNCTION
FUNCTION print_labels()

DEFINE where_part CHAR(200),
query_text CHAR(250),
msg CHAR(50),
file_name CHAR(20)

OPTIONS
FORM LINE 7

OPEN FORM customer FROM "custform"
DISPLAY FORM customer

ATTRIBUTE(MAGENTA)
CALL fgl_drawbox(3,30,3,43)
CALL fgl_drawbox(3,61,8,7)
CALL fgl_drawbox(11,61,8,7)
CALL clear_menu()
DISPLAY "CUSTOMER LABELS:" AT 1,1
MESSAGE "Use query-by-example to select customer list"
CONSTRUCT BY NAME where_part ON customer.*
IF int_flag THEN

LET int_flag = FALSE
ERROR "Label print request aborted"
RETURN

END IF
MESSAGE ""
LET query_text = "select * from customer where ", where_part CLIPPED,

" order by zipcode"

d4_report.4gl

The Demonstration Application H-25

PREPARE label_st FROM query_text
DECLARE label_list CURSOR FOR label_st
CASE (print_option)

WHEN "f"
PROMPT " Enter file name for labels >" FOR file_name
IF file_name IS NULL THEN

LET file_name = "labels.out"
END IF
MESSAGE "Printing mailing labels to ", file_name CLIPPED,

" -- Please wait"
START REPORT labels_report TO file_name

WHEN "p"
MESSAGE "Printing mailing labels -- Please wait"
START REPORT labels_report TO PRINTER

WHEN "s"
START REPORT labels_report
CLEAR SCREEN

END CASE
FOREACH label_list INTO p_customer.*

OUTPUT TO REPORT labels_report (p_customer.*)
IF int_flag THEN

LET int_flag = FALSE
EXIT FOREACH

END IF
END FOREACH
FINISH REPORT labels_report
IF int_flag THEN

LET int_flag = FALSE
ERROR "Label printing aborted" ATTRIBUTE (RED, REVERSE)
RETURN

END IF
IF print_option = "f" THEN

LET msg = "Labels printed to ", file_name CLIPPED
CALL mess(msg, 23)

END IF
CLOSE FORM customer
OPTIONS

FORM LINE 3
END FUNCTION

REPORT labels_report (rl)
DEFINE rl RECORD LIKE customer.*

OUTPUT

TOP MARGIN 0
BOTTOM MARGIN 0
PAGE LENGTH 6

FORMAT

ON EVERY ROW
SKIP TO TOP OF PAGE
PRINT rl.fname CLIPPED, 1 SPACE, rl.lname
PRINT rl.company
PRINT rl.address1
IF rl.address2 IS NOT NULL THEN

PRINT rl.address2
END IF
PRINT rl.city CLIPPED, ", ", rl.state, 2 SPACES, rl.zipcode
IF print_option = "s" THEN

PAUSE "Type RETURN to continue"

d4_report.4gl

H-26 HCL Informix 4GL Reference Guide

END IF

END REPORT

FUNCTION print_ar()
DEFINE r RECORD

customer_num LIKE customer.customer_num,
fname LIKE customer.fname,
lname LIKE customer.lname,
company LIKE customer.company,
order_num LIKE orders.order_num,
order_date LIKE orders.order_date,
ship_date LIKE orders.ship_date,
paid_date LIKE orders.paid_date,
total_price LIKE items.total_price

END RECORD,
file_name CHAR(20),
msg CHAR(50)
DECLARE ar_list CURSOR FOR
SELECT customer.customer_num,fname,lname,company,

orders.order_num,order_date,ship_date,paid_date,
total_price

FROM customer,orders,items
WHERE customer.customer_num=orders.customer_num AND

paid_date IS NULL AND
orders.order_num=items.order_num

ORDER BY 1,5

CALL clear_menu()
CASE (print_option)

WHEN "f"
PROMPT " Enter file name for AR Report >" FOR file_name
IF file_name IS NULL THEN

LET file_name = "ar.out"
END IF
MESSAGE "Printing AR REPORT to ", file_name CLIPPED,

" -- Please wait"
START REPORT ar_report TO file_name

WHEN "p"
MESSAGE "Printing AR REPORT -- Please wait"
START REPORT ar_report TO PRINTER

WHEN "s"
START REPORT ar_report
CLEAR SCREEN
MESSAGE "Printing AR REPORT -- Please wait"

END CASE
FOREACH ar_list INTO r.*

OUTPUT TO REPORT ar_report (r.*)
IF int_flag THEN

LET int_flag = FALSE
EXIT FOREACH

END IF
END FOREACH
FINISH REPORT ar_report
IF int_flag THEN

LET int_flag = FALSE
ERROR "AR REPORT printing aborted" ATTRIBUTE (RED, REVERSE)
RETURN

END IF
IF print_option = "f" THEN

d4_report.4gl

The Demonstration Application H-27

LET msg = "AR REPORT printed to ", file_name CLIPPED
CALL mess(msg, 23)

END IF
END FUNCTION
REPORT ar_report (r)

DEFINE r RECORD
customer_num LIKE customer.customer_num,
fname LIKE customer.fname,
lname LIKE customer.lname,
company LIKE customer.company,
order_num LIKE orders.order_num,
order_date LIKE orders.order_date,
ship_date LIKE orders.ship_date,
paid_date LIKE orders.paid_date,
total_price LIKE items.total_price

END RECORD,
name_text CHAR(80)

OUTPUT

PAGE LENGTH 22
LEFT MARGIN 0

FORMAT

PAGE HEADER
PRINT 15 SPACES,"West Coast Wholesalers, Inc."
PRINT 6 SPACES,

"Statement of ACCOUNTS RECEIVABLE - ",
TODAY USING "mmm dd, yyyy"

SKIP 1 LINES
LET name_text = r.fname CLIPPED," ",r.lname CLIPPED,"/",

r.company CLIPPED
PRINT 29 - length(name_text)/2 SPACES, name_text
SKIP 1 LINES
PRINT " Order Date Order Number Ship Date Amount"
PRINT " "

BEFORE GROUP OF r.customer_num
SKIP TO TOP OF PAGE

AFTER GROUP OF r.order_num

NEED 3 LINES
PRINT " ",r.order_date,7 SPACES,r.order_num USING "###&",8 SPACES,

r.ship_date," ",
GROUP SUM(r.total_price) USING "$$$$,$$$,$$$.&&"

AFTER GROUP OF r.customer_num
PRINT 42 SPACES," ---------------- "
PRINT 42 SPACES,GROUP SUM(r.total_price) USING "$$$$,$$$,$$$.&&"

PAGE TRAILER
IF print_option = "s" THEN

PAUSE "Type RETURN to continue"
END IF

END REPORT

FUNCTION update_options()
DEFINE po CHAR(2)

DISPLAY "Current print option:" AT 8,25

d4_report.4gl

H-28 HCL Informix 4GL Reference Guide

LET p o = " ", print_option
DISPLAY po AT 8,46 ATTRIBUTE(CYAN)
MENU "REPORT OPTIONS"

COMMAND "File" "Send all reports to a file"
LET print_option = "f"
EXIT MENU

COMMAND "Printer" "Send all reports to the printer"
LET print_option = "p"
EXIT MENU

COMMAND "Screen" "Send all reports to the terminal screen"
LET print_option = "s"
EXIT MENU

COMMAND "Exit"
EXIT MENU

END MENU
DISPLAY "" AT 8,1

END FUNCTION

FUNCTION print_backlog()
ERROR "This option has not been implemented" ATTRIBUTE (RED)

END FUNCTION

FUNCTION print_stock()
ERROR "This option has not been implemented" ATTRIBUTE (RED)

END FUNCTION

d4_demo.4gl

The Demonstration Application H-29

d4_demo.4gl

FUNCTION demo()

CALL ring_menu()
MENU "DEMO"

COMMAND "Menus" "Source code for MAIN Menu"
CALL showhelp(2001)

COMMAND "Windows" "Source code for STATE CODE Window"
CALL showhelp(2007)

COMMAND "Forms" "Source code for new CUSTOMER data entry"
CALL showhelp(2006)

COMMAND "Detail-Scrolling"
"Source code for scrolling of new ORDER line-items"
CALL showhelp(2003)

COMMAND "Scroll-
Cursor" "Source code for customer record BROWSE/SCROLL"

CALL showhelp(2008)
COMMAND "Query_language" "Source code for new order insertion using

SQL"
CALL showhelp(2004)

COMMAND "Construct_query"
"Source code for QUERY-BY-EXAMPLE selection and reporting"
CALL showhelp(2002)

COMMAND "Reports" "Source code for MAILING LABEL report"
CALL showhelp(2005)

COMMAND "Exit" "Return to MAIN MENU"
CLEAR SCREEN
EXIT MENU

END MENU
END FUNCTION

helpdemo.src

H-30 HCL Informix 4GL Reference Guide

helpdemo.src

.101
The Customer option presents you with a menu that allows you to:

o Add new customers to the database
o Locate customers in the database
o Update customer files
o Remove customers from the database

.102
The Orders option presents you with a menu that allows you to:

o Enter a new order and print an invoice
o Update an existing order
o Look up and display orders
o Remove orders from the database

.103
The Stock option presents you with a menu that allows you to:

o Add new items to the list of stock
o Look up and display stock items
o Modify current stock descriptions and values
o Remove items from the list of stock

.104
The Reports option presents you with a menu that allows you to:

o Select and print mailing labels sorted by zip code
o Print a report of current accounts receivable
o Print a report of backloged orders
o Print a list of current stock available
o Change the report output options

.105
The Exit option leaves the program and returns you to the operating system.

.201
The One-add option enables you to enter data on new customers to
the database. You may get assistance on what input is appropriate
for each field by pressing the function key F1 when the cursor
is in the field. When you have entered all the data you want
for a given customer, press ESC to enter the data in the database.
If you want to abort a given entry and not write it to the database,
press the INTERRUPT key (usually DEL or CTRL-C).

helpdemo.src

The Demonstration Application H-31

.202
The Many-add option enables you to enter data on new customers
to the database. You may get assistance on what input is appropriate
for each field by pressing the function key F1 when the cursor
is in the field. When you have entered all the data you
want for a given customer, press ESC to enter the data in the database. If
you want to abort a given entry and not write it to the
database, press the INTERRUPT key (usually DEL or CTRL-C). After each
entry, the cursor will move to the beginning of the form
and await the entry of the next customer. If you have no more
customers to add, press CTRL-Z to return to the CUSTOMER Menu.

.203
The Find- cust option allows you to select one or more customers and to
display their data on the screen by using query-by-example input.
Use the RETURN or arrow keys to move through the form.
Enter the criteria you want the program to use in searching
for customers. Your options include:

o Literal values
o A range of values (separated by ":")
o A list of values (separated by "|")
o Relational operators (for example ">105")
o Wildcards like ? and * to match single or any number of characters

.204
The Update-cust option enables you to alter data on old customers in the
database. You must first select a current customer row to deal with
by using the Find-cust option. You may get assistance on what input is
appropriate for each field by pressing the function key F1 when the cursor
is in the field. When you have altered all the data you want for
a given customer, press ESC to enter the data in the database.
If you want to abort the changes and not write them to the database,
press the INTERRUPT key (usually DEL or CTRL-C).

.205
The Delete-cust option enables you to remove customers from the database.
You must first select a current customer row to deal with by using the
Find-cust option. For your protection, you will be asked to confirm
that the record should be deleted. Once deleted, it cannot be
restored. Customers with active orders can not be deleted.

.206
The Exit option of the CUSTOMER Menu takes you back to the MAIN Menu.

.301
The Add-order option enables you to add a new order for an existing
customer. You must first select the desired customer using query-by-
example selection criteria. You will then enter the order date,
PO number, and shipping instructions. The detail line items are then
entered into a scrolling display array. Up to ten items may be entered
using the four line screen array. After the new order is
entered, an invoice is automatically generated and displayed on the screen.

.302
The Update-order option is currently not implemented.

helpdemo.src

H-32 HCL Informix 4GL Reference Guide

.303
The Find-order option enables you to browse through and select an existing
order. You must first select the desired customer (or customers) who’s
orders you wish to scan. For each customer selected, each corresponding
order will be displayed on the screen for examination. You may
either select an invoice, skip to the next invoice, or cancel processing.

.304
The Delete-order option is currently not implemented.

.305
The Exit option of the ORDER Menu returns you to the MAIN Menu.

.311
You may enter up to ten line items into the scrolling screen array. A num
ber of standard functions are available for manipulating the cursor in
a screen array.

o F1Insert new line in the screen array
o F2 Remove the current line from the screen array
o F3Page down one page in the screen array
o F4Page up one page in the screen array
o ESCExit input array
o CTRL-BWhen in the Stock Number or Manufacturer Code fields,

a window will open in the middle of the screen and
display a scrolled list of all items in stock, identified
by the stock number and manufacturer. Using F3, F4, and
the up and down arrow keys, move the cursor to the line
that identifies the desired item and hit ESC. The
window will disappear and the selected information will
automatically appear in the proper line.

o etc...The arrow-keys, and the standard field editing keys
are available

The item_total field will be displayed in reverse-video green for total
amounts over $500.

.401
The Add-stock option is currently not implemented.

.402
The Find-stock option is currently not implemented.

.403
The Update-stock option is currently not implemented.

.404
The Delete-stock option is currently not implemented.

.405
The Exit option of the STOCK Menu returns you to the MAIN Menu.

.501
The Labels option enables you to create a list of mailing labels gener
ated using a query-by-example specification. You will be prompted for
the output file name.

.502
The Accounts-receivable option enables you to create a report
summarizing all unpaid orders in the database. You will be prompted for
the output file name.

helpdemo.src

The Demonstration Application H-33

.503
The Backlog option is currently not implemented.

.504
The Stock-list option is currently not implemented.

.505
The Options option enables you to change the destination of any re
port generated during the current session. The default option is to
display all reports on the terminal screen. The other options are
to print all reports to either the printer or an operating system file.

.506
The Exit option of the REPORT Menu returns you to the MAIN Menu.

.1001
The Number field on the Customer Form contains the serial integer assigned
to the customer row when the data for the customer is first
entered into the database. It is a unique number for each customer.
The lowest value of this field is 101.

.1002
The first section following the Name label should contain the first name of
the contact person at the customer’s company.

.1003
The second section following the Name label should contain the last name of
the contact person at the customer’s company.

.1004
This field should contain the name of the customer’s company.

.1005
The first line of the Address section of the form should contain the
mailing address of the company.

.1006
The second line of the Address section of the form should be used only
when there is not sufficient room in the first line to contain the
entire mailing address.

.1007
The City field should contain the city name portion of the mailing address
of the customer.

.1008
Enter the two-character code for the desired state. If no code is
entered, or the entered code is not in the program’s list of valid entries,
a window will appear on the screen with a scrolling list of all
states and codes. Using the F3, F4, up and down arrow keys, move the
cursor to the line containing the desired state. After typing ESC,
the window will disappear and the selected state code will appear in
the customer entry screen.

.1009
Enter the five digit Zip Code in this field.

helpdemo.src

H-34 HCL Informix 4GL Reference Guide

.1010
Enter the telephone number of the contact person at the customer’s company.
Include the Area Code and extension using the format "###-###-#### #####".

.2001
The following is the INFORMIX-4GL source for the main menu. Note that only
the text is specified by the MENU statement; the structure and runtime menu
functions are built-in.

OPTIONS
HELP FILE "helpdemo"

OPEN FORM menu_form FROM "ring_menu"
DISPLAY FORM menu_form
MENU "MAIN"

COMMAND "Customer" "Enter and maintain customer data" HELP 101
CALL customer()
DISPLAY FORM menu_form

COMMAND "Orders" "Enter and maintain orders" HELP 102
CALL orders()
DISPLAY FORM menu_form

COMMAND "Stock" "Enter and maintain stock list" HELP 103
CALL stock()
DISPLAY FORM menu_form

COMMAND "Reports" "Print reports and mailing labels" HELP 104
CALL reports()
DISPLAY FORM menu_form

COMMAND "Exit" "Exit program and return to operating system" HELP 105
CLEAR SCREEN
EXIT PROGRAM

END MENU

.2002
The following is the INFORMIX-4GL source code for mailing-
label selection and printing. The CONSTRUCT statement manages the query-by-
example input and builds the corresponding SQL where-clause.

CONSTRUCT BY NAME where_part ON customer.*
LET query_text = "select * from customer where ", where_part CLIPPED,

" order by zipcode"
PREPARE mail_query FROM query_text
DECLARE label_list CURSOR FOR mail_query
PROMPT "Enter file name for labels >" FOR file_name
MESSAGE "Printing mailing labels to ", file_name CLIPPED," --

Please wait"
START REPORT labels_report TO file_name
FOREACH label_list INTO p_customer.*

OUTPUT TO REPORT labels_report (p_customer.*)
END FOREACH
FINISH REPORT labels_report

See the source code option REPORT for the corresponding report routine.

helpdemo.src

The Demonstration Application H-35

.2003
The following is the INFORMIX-4GL source code for order entry using
scrolled input fields. Only the INPUT ARRAY statement in needed
to utilize the full scrolling features. Some additional code has been
added merely to customize the array processing to this application.

DISPLAY "Press ESC to write order" AT 1,1
INPUT ARRAY p_items FROM s_items.* HELP 311

BEFORE FIELD stock_num
MESSAGE "Enter a stock number."

BEFORE FIELD manu_code
MESSAGE "Enter the code for a manufacturer."

AFTER FIELD stock_num, manu_code
LET pa = arr_curr()
LET sc = scr_line()
SELECT description, unit_price

INTO p_items[pa].description,
p_items[pa].unit_price

FROM stock
WHERE stock_num = p_items[pa].stock_num AND

stock_manu = p_items[pa].menu_code
DISPLAY p_items[pa].description, p_items[pa].unit_price

TO stock[sc].*
CALL item_total()

AFTER FIELD quantity
CALL item_total()

AFTER INSERT, DELETE, ROW
CALL order_total()

END INPUT

See the source code option QUERY-LANGUAGE for the SQL statements that
insert the order information into the database.

.2004
The following is the INFORMIX-4GL source code that uses SQL to insert the
entered order information into the database. Note that the use of
transactions ensures that database integrity is maintained, even if an
intermediate operation fails.

BEGIN WORK
LET p_orders.order_num = 0
INSERT INTO orders VALUES (p_orders.*)
IF status < 0 THEN

ROLLBACK WORK
MESSAGE "Unable to complete update of orders table"
RETURN

END IF
LET p_orders.order_num = SQLCA.SQLERRD[2]
DISPLAY BY NAME p_orders.order_num
F O R i = 1 to arr_count()

INSERT INTO items
VALUES (p_items[counter].item_num, p_orders.order_num,

p_items[counter].stock_num, p_items[counter].manu_code,
p_items[counter].quantity, p_items[counter].total_price)

IF status < 0 THEN
ROLLBACK WORK
Message "Unable to insert items"
RETURN FALSE

END IF
END FOR
COMMIT WORK

helpdemo.src

H-36 HCL Informix 4GL Reference Guide

.2005
The following is the INFORMIX-4GL source code that generates the mailing-
label report. See the source code option CONSTRUCT for the report
calling sequence.

REPORT labels_report (rl)

DEFINE rl RECORD LIKE customer.*
OUTPUT

TOP MARGIN 0
PAGE LENGTH 6

FORMAT
ON EVERY ROW

SKIP TO TOP OF PAGE
PRINT rl.fname CLIPPED, 1 SPACE, rl.lname
PRINT rl.company
PRINT rl.address1
IF rl.address2 IS NOT NULL THEN

PRINT rl.address2
END IF
PRINT rl.city CLIPPED, ", ", rl.state, 2 SPACES, rl.zipcode

END REPORT

.2006
The following is the INFORMIX-4GL source code that manages a simple form
for data entry. Note the use of special key definitions during data entry.

OPEN FORM cust_form FROM "customer"
DISPLAY FORM cust_form
MESSAGE "Press F1 or CTRL-F for field help;",

"F2 or CTRL-Z to return to CUSTOMER Menu"
DISPLAY "Press ESC to enter new customer data or DEL to abort entry"
INPUT BY NAME p_customer.*

AFTER FIELD state
CALL statehelp()

ON KEY (F1, CONTROL-F)
CALL customer_help()

ON KEY (F2, CONTROL-Z)
CLEAR FORM
RETURN

END INPUT

.2007
The following is the INFORMIX-4GL source code that opens a window in the
customer entry screen, displays the list of valid state names and codes, sa
ves the index into the p_state array for the selected state, closes the
window, and returns the index to the calling routine.

OPEN WINDOW w_state AT 8,40
WITH FORM "state_list"
ATTRIBUTE (BORDER, RED, FORM LINE 2)

CALL set_count(state_cnt)
DISPLAY ARRAY p_state TO s_state.*
LET idx = arr_curr()

CLOSE WINDOW w_state
RETURN (idx)

helpdemo.src

The Demonstration Application H-37

.2008
The following is the INFORMIX-4GL source code that allows the user
to browse through the rows returned by a "scroll" cursor.

DECLARE customer_set SCROLL CURSOR FOR

SELECT * FROM customer
ORDER BY lname

OPEN customer_set
FETCH FIRST customer_set INTO p_customer.*
IF status = NOTFOUND THEN

LET exist = FALSE
ELSE

LET exist = TRUE
DISPLAY BY NAME p_customer.*
MENU "BROWSE"

COMMAND "Next" "View the next customer in the list"
FETCH NEXT customer_set INTO p_customer.*
IF status = NOTFOUND THEN

ERROR "No more customers in this direction"
FETCH LAST customer_set INTO p_customer.*

END IF
DISPLAY BY NAME p_customer.*

COMMAND "Previous" "View the previous customer in the list"
FETCH PREVIOUS customer_set INTO p_customer.*
IF status = NOTFOUND THEN

ERROR "No more customers in this direction"
FETCH FIRST customer_set INTO p_customer.*

END IF
DISPLAY BY NAME p_customer.*

COMMAND "First" "View the first customer in the list"
FETCH FIRST customer_set INTO p_customer.*
DISPLAY BY NAME p_customer.*

COMMAND "Last" "View the last customer in the list"
FETCH LAST customer_set INTO p_customer.*
DISPLAY BY NAME p_customer.*

COMMAND "Select" "Exit BROWSE selecting the current customer"
LET chosen = TRUE
EXIT MENU

COMMAND "Quit" "Quit BROWSE without selecting a customer"
LET chosen = FALSE
EXIT MENU

END MENU
END IF
CLOSE customer_set

SQL Statements That Can
Be Embedded in 4GL Code

This appendix lists the syntax of SQL statements, as imple-
mented for Informix database servers, that can be directly
embedded in INFORMIX-4GL code. Most of these statements are
from the Version 4.10 release of Informix servers, but a few are
from subsequent releases. All of these statements are supported
by the 4GL compiler.

Statements That Cannot Be Embedded
Any SQL statements or SQL syntax not listed in this appendix
cannot be embedded within 4GL modules. SQL syntax that is not
listed in this appendix can appear in 4GL source code only if all
of the following are true of the SQL statement:

■ It is preparable.
■ It is supported by your Informix database server.
■ It appears between SQL ... END SQL delimiters, as

described in “SQL” on page 4-349.

Alternatively, if the first two conditions are true, you can also use
the PREPARE statement of SQL to do the following:

1. Store the SQL statement as a character string.
2. Set up the statement for execution by means of the

PREPARE statement (see page I-18).
3. Process the statement by means of the EXECUTE or

EXECUTE IMMEDIATE statement (see page I-12).
4. If the statement does not need to be reused, release the

resources that it occupies with the FREE statement.

Appendix

I

Embedded SQL Statements

I-2 HCL Informix 4GL Reference Guide

Index Name
p. I-31

NOT

Add Column
Clause
p. I-3

Embedded SQL Statements
The following SQL statements can be directly embedded in INFORMIX-4GL
code.

 +

ALTER INDEX TO CLUSTER

 +

ALTER TABLE

 ,

 ,

ADD ()
ADD Clause

Table Name
p. I-31

Synonym

Name
p. I-31

 ADD Clause
p. I-2

DROP Clause
p. I-3

MODIFY Clause
p. I-3

ADD CONSTRAINT
Clause p. I-3

DROP CONSTRAINT
Clause p. I-3

MODIFY NEXT SIZE
Clause p. I-4

LOCK MODE
Clause p. I-4

Embedded SQL Statements

SQL Statements That Can Be Embedded in 4GL Code I-3

Modify Column
Clause

 new
column
name

DROP

 ,
(column name)

 ,

MODIFY ()

 column
name

ADD CONSTRAINT

DROP CONSTRAINT (

 ,

)
DROP CONSTRAINT Clause

DROP Clause

Add Column Clause

 ,
NOT NULL

BEFORE column name

p. I-32
ata Ty D
SQL

pe

Column-Level
Constraint Definition

p. I-7

MODIFY Clause

Modify Column Clause

 ,
NOT NULL

Column-Level
Constraint Definition

p. I-7

SQL
Data Type

p. I-32

Constraint
Definition

p. I-8

ADD CONSTRAINT Clause

Constraint
Name
p. I-31

Embedded SQL Statements

I-4 HCL Informix 4GL Reference Guide

'

MODIFY NEXT SIZE kbytes

LOCK MODE (PAGE)
ROW

 +

BEGIN WORK

CLOSE

 +

CLOSE DATABASE

COMMIT WORK

CONNECT TO

MODIFY NEXT SIZE Clause

LOCK MODE Clause

Cursor Name
p. I-31

Database
Environment

p. I-5 E/C

AS connection '
USER
Clause
p. I-5 E/C

AS connection_var

DEFAULT

WITH CONCURRENT TRANSACTION

 E/C

Embedded SQL Statements

SQL Statements That Can Be Embedded in 4GL Code I-5

Table
Name
p. I-31

View
Name
p. I-31

Synonym
Name
p. I-31

'dbname '

'@dbservername '
 'dbname@dbservername '

E/C db_env_var

USER 'user _id '

user_id_var

USING validation_var

 SE

 +

CREATE AUDIT FOR IN "pathname "

 +

CREATE DATABASE

WITH LOG IN "pathname "

Database Environment

USER Clause

Database
Name
p. I-31

"databasename "
IN dbspace

OL Log
Clause

SE Log
Clause

MODE ANSI

SE Log Clause

Embedded SQL Statements

I-6 HCL Informix 4GL Reference Guide

UNIQUE CLUSTER

DISTINCT

ASC

DESC

Variable
p. I-13

Synonym
Name
p. I-31

WITH

 +

CREATE INDEX index name

 ON

 ,

(column name)

 +

CREATE PROCEDURE FROM "filename "

 +

CREATE SYNONYM FOR

ON Clause

OL Log Clause

BUFFERED

LOG MODE ANSI

LOG

ON
Clause

Table
Name
p. I-31

Synonym
Name
p. I-31

Table Name
p. I-31

View Name
p. I-31

Embedded SQL Statements

SQL Statements That Can Be Embedded in 4GL Code I-7

CREATE TABLE

TEMP
+

Table
Name
p. I-31

Column
Definition

p. I-7
, Constraint

Definition
p. I-8

 , ,

, Temp Table
Column

Definition
p. I-7

Temp Table
Constraint
Definition

p. I-8
name

+

DI

 , ,

()

temp

TABLE table ()

column

column

UNIQUE

STINCT

WITH NO LOG

Storage
Option
p. I-9

NOT NULL Column-Level

Constraint
Definition

p. I-7

SQL Data Type
p. I-32

Column Definition

Temp Table Column Definition

Column-Level Constraint Definition

NOT NULL Temp Table

Column
Constraint

p. I-8

SQL Data Type
p. I-32

+

CONSTRAINT
Constraint

Name
p. I-31

Embedded SQL Statements

I-8 HCL Informix 4GL Reference Guide

Condition
p. I-29

+

DI

UNIQUE

+

DISTINCT

PRIMARY KEY

 ,

UNIQUE (column)

STINCT

 ,

 CHECK ()

CHECK
Clause
p. I-8

Temp Table Column Constraint

Constraint Definition

+

CONSTRAINT
Constraint

Name
p. I-31

+

DISTINCT

PRIMARY KEY

(column)

CHECK
Clause
p. I-8

UNIQUE

Temp Table Constraint Definition

CHECK Clause

Embedded SQL Statements

SQL Statements That Can Be Embedded in 4GL Code I-9

 ,

(column name)

View
Name
p. I-31

LOCK MODE

CREATE VIEW AS

 +

DATABASE

Storage Option

IN dbspace

IN "pathname "

LOCK MODE
Clause
p. I-9

Extent
Option
p. I-9

Extent Option

EXTENT SIZE first kpages NEXT SIZE next kpages

LOCK MODE Clause

PAGE

ROW

WITH CHECK

OPTION

SELECT
(Subset)
p. I-20

Database
Name
p. I-31

EXCLUSIVE

Embedded SQL Statements

I-10 HCL Informix 4GL Reference Guide

DECLARE

DELETE FROM

DISCONNECT CURRENT

 E/C

DEFAULT

ALL

'connection'
connection_var

CURSOR FOR +

 +
WITH
HOLD

 +
SELECT

Statement
(Subset)
p. I-20

FOR
U E PDAT

SCROLL
CURSOR FOR ,

WITH
HOLD

OF column

Prepared
Statement

Name
p. I-41

SELECT
Statement

p. I-20

Cursor
Name
p. I-31

INSERT
Statement
(Subset)
p. I-16

+

WHERE
View
Name
p. I-31

Synonym

Name
p. I-31

CURRENT OF
Cursor
Name
p. I-31

Table
Name
p. I-31

Condition
p. I-29

Embedded SQL Statements

SQL Statements That Can Be Embedded in 4GL Code I-11

 SE

 +

DROP AUDIT FOR

 +

DROP DATABASE

 +

DROP INDEX

 +

DROP SYNONYM

 +

DROP TABLE

 +

DROP VIEW

Table Name
p. I-31

View Name
p. I-31

Synonym Name
p. I-31

Database
Name
p. I-31

"databasename "

Index
Name
p. I-31

Synonym
Name
p. I-31

Synonym

Name
p. I-31

Table
Name
p. I-31

Synonym
Name
p. I-31

View
Name
p. I-31

Embedded SQL Statements

I-12 HCL Informix 4GL Reference Guide

1 USING

1 INTO

Variable List
p. I-13

Prepared
Statement

Name
p. I-41

Quoted String
p. I-41

 + ,

EXECUTE

 +

EXECUTE IMMEDIATE

statement_var

 +

FETCH

 +

FLUSH

 +

Cursor
Name
p. I-31

NEXT

PREVIOUS

 +

PRIOR
FIRST
LAST

CURRENT
RELATIVE

+ row position

-
ABSOLUTE

Variable List
p. I-13

Variable
p. I-13

INTO

Cursor
Name
p. I-31

Embedded SQL Statements

SQL Statements That Can Be Embedded in 4GL Code I-13

Variable
List

.

record

Variable

. *
. first THROUGH record . last

THRU

FOREACH cursor statement END FOREACH

USING Variable
List

INTO

Variable
List

CONTINUE FOREACH

EXIT FOREACH

WITH REOPTIMIZATION

,

variable

record .
 ,

1 array [3 integer expression]

Variable

Embedded SQL Statements

I-14 HCL Informix 4GL Reference Guide

Cursor
Name
p. I-31

Prepared
Statement

Name
p. I-41

TEXT or BYTE
Variable
p. I-13

FREE

The 4GL compiler treats the name of the object to be freed in the order shown
in the diagram. In other words, the compiler looks first for a TEXT or BYTE
variable having the given name; if one exists, that is the object that is freed. If
no TEXT or BYTE variable having that name exists, the compiler then looks for
a prepared statement or a cursor having that name and frees that.

When a TEXT or BYTE variable has the same name as a prepared statement or
cursor, you cannot free resources allocated to the prepared statement or to
the cursor.

+

Embedded SQL Statements

SQL Statements That Can Be Embedded in 4GL Code I-15

TO PUBLIC

,

user

ON
Table
Name
p. I-31

TO PUBLIC

,

user

WITH GRANT OPTION

Table-
Level

Privileges
p. I-16

Database-
Level

Privileges
p. I-20

Synonym
Name
p. I-31

View
Name
p. I-31

 + AS grantor

 +

GRANT +

Embedded SQL Statements

I-16 HCL Informix 4GL Reference Guide

INSERT INTO

Table-Level Privileges

ALL

PRIVILEGES

 ,

 1 INSERT

 1 DELETE

 1 SELECT

 + ,

(column) name

1 UPDATE

 +

 ,

(column)
name

1 INDEX

1 ALTER

 ,

(column)
name

Synonym
Name
p. I-31

View
Name
p. I-31

VALUES Clause
p. I-17

Table
Name
p. I-31

SELECT
Statement
(Subset)
p. I-20

Embedded SQL Statements

SQL Statements That Can Be Embedded in 4GL Code I-17

 ,

)

 +

LOAD FROM

VALUES (

NULL

.*

. member

THRU . member

Record
Reference

p. I-42

Constant
Expression

p. I-36

Variable
p. I-13

Record
Reference

p. I-42

Record
Reference

p. I-42

VALUES Clause

" filename "
DELIMITER "delimiter "

Variable
p. I-13

INSERT INTO
Table
Name
p. I-31

Synonym
Name
p. I-31

View
Name
p. I-31

 ,

(column)

Variable
p. I-13

Variable
p. I-13

Embedded SQL Statements

I-18 HCL Informix 4GL Reference Guide

Prepared
Statement

Name
p. I-41

 +

LOCK TABLE

IN SHARE MODE

EXCLUSIVE

 +

OPEN

 +

PREPARE FROM

 +

PUT

RECOVER TABLE

Synonym
Name
p. I-31

Table
Name
p. I-31

Cursor
Name
p. I-31 ,

USING

WITH REOPTIMIZATION

Variable
p. I-13

Quoted
String
p. I-41

Variable
p. I-13

Cursor
Name
p. I-31

 ,

FROM Variable
p. I-13

Table
Name
p. I-31

SE

+

Embedded SQL Statements

SQL Statements That Can Be Embedded in 4GL Code I-19

Table
Name
p. I-31

owner .

Table-Level
Privileges

p. I-19

Database-Level
Privileges

p. I-20

Table
Name
p. I-31

Synonym
Name
p. I-31

View
Name
p. I-31

FROM
 , PUBLIC

user

 +

RENAME COLUMN . old column TO new column

 +

RENAME TABLE old name TO new name

 +

REVOKE ON

Table-Level Privileges

ALL

PRIVILEGES

 ,

INSERT

DELETE

SELECT

UPDATE

INDEX

ALTER

Embedded SQL Statements

I-20 HCL Informix 4GL Reference Guide

UNION

UNION ALL

SELECT

WHERE
Clause
p. I-23

HAVING
Clause
p. I-24

INTO
Clause
p. I-21

FROM
Clause
p. I-22

Select
Clause

ORDER BY
Clause
p. I-24

GROUP BY
Clause
p. I-23

CONNECT

RESOURCE

DBA

ROLLBACK WORK

ROLLFORWARD DATABASE

+ INTO TEMP

Clause
p. I-24

Database-Level Privileges

Database
Name
p. I-31

SE

+

Embedded SQL Statements

SQL Statements That Can Be Embedded in 4GL Code I-21

ALL

DISTINCT

 +

UNIQUE

SELECT Clause
Select
Item

p. I-21

 ,

 ,

INTO

display label

 +

AS

*

.

.

.

Table
Name
p. I-31

SQL Expression
p. I-35

View
Name
p. I-31

Synonym
Name
p. I-31

Select Item

Variable
p. I-13

INTO Clause

Embedded SQL Statements

I-22 HCL Informix 4GL Reference Guide

FROM

 +

AS

table
alias

,

,

table alias

AS

OUTER

OUTER (
Table
Name
p. I-31

)
table
alias

,

AS

+

Synonym
Name
p. I-31

View
Name
p. I-31

Table
Name
p. I-31

Table
Name
p. I-31

Additional
Tables

+

Additional Tables

Synonym
Name
p. I-31

View
Name
p. I-31

Additional
Tables
p. I-22

FROM Clause

View
Name
p. I-31

Synonym
Name
p. I-31

 Table

Name
p. I-31

table alias

AS

View
Name
p. I-31

Synonym
Name
p. I-31

Embedded SQL Statements

SQL Statements That Can Be Embedded in 4GL Code I-23

Join
p. I-23

Condition
p. I-29

Relational
Operator

p. I-42
.

table alias .

.

. Synonym
Name
p. I-31

View
Name
p. I-31

Table
Name
p. I-31

column name

r

.

table alias .

.

Synonym . Name
p. I-31

+ select numbe

View
Name
p. I-31

Table
Name
p. I-31

AND

WHERE

column name column name

 ,

GROUP BY

WHERE Clause

Join

.

table alias .

.

. Synonym
Name
p. I-31

View
Name
p. I-31

Table
Name
p. I-31

GROUP BY Clause

Embedded SQL Statements

I-24 HCL Informix 4GL Reference Guide

column name

. ASC

DESC

table alias .

.

.

select number

display label

rowid

Synonym
Name
p. I-31

View
Name
p. I-31

Table
Name
p. I-31

+
Database

Environment
p. I-5

HAVING

 ,

ORDER BY

INTO TEMP temp table name

SET CONNECTION 'connection '
connection_var

DORMANT

DEFAULT

+ CURRENT DORMANT

HAVING Clause
Condition

p. I-29

ORDER BY Clause

INTO TEMP Clause

WITH NO LOG

+ +

Embedded SQL Statements

SQL Statements That Can Be Embedded in 4GL Code I-25

BUFFERED

Database
Name
p. I-31

 +

SET EXPLAIN

 +

SET ISOLATION TO DIRTY READ

COMMITTED READ

CURSOR STABILITY

REPEATABLE READ

 +

SET LOCK MODE TO WAIT

seconds

NOT WAIT

 +

SET LOG

 +

START DATABASE WITH LOG IN "pathname "

OFF

ON

SE

MODE ANSI

Embedded SQL Statements

I-26 HCL Informix 4GL Reference Guide

Statement

Synonym
Name
p. I-31

View
Name
p. I-31

Table
Name
p. I-31

. member

Record
Reference

p. I-42

 +

UNLOAD TO " filename " SELECT

p. I-20
DELIMITER " delimiter "

Variable
p. I-13

 +

UNLOCK TABLE

UPDATE SET

.*

. member

. member THRU

Variable
p. I-13

Synonym
Name
p. I-31

Table
Name
p. I-31

SET Clause
p. I-27

WHERE

Cursor
CURRENT OF Name

p. I-31

Condition
p. I-29

Referenced Values

Record
Reference

p. I-42

Record
Reference

p. I-42

Record
Reference

p. I-42

Embedded SQL Statements

SQL Statements That Can Be Embedded in 4GL Code I-27

,

column name =

Record
Reference . member

p. I-42

 , ,

(column
name

*

) = ()

.* ()

.*

.* Referenced

Values
p. I-26

Referenced
Values
p. I-26

SELECT
Statement
(Subset)
p. I-20

SQL Expression
(Subset)
p. I-35

SELECT Statement
(Subset)
p. I-20

SQL Expression
(Subset)
p. I-35

SET Clause

 +

UPDATE STATISTICS

 Table
Name
p. I-31

View
Name
p. I-31

Synonym
Name
p. I-31

FOR

TABLE
Table

Specification

Embedded SQL Statements

I-28 HCL Informix 4GL Reference Guide

WHENEVER NOT FOUND CONTINUE

SQLERROR

ANY ERROR

SQLWARNING

GO TO : label

 +

GOTO label

 STOP

WARNING CALL function

Table Name
p. I-31

Synonym Name
p. I-31

Table Specification

+ + +

Embedded SQL SEGMENTS

SQL Statements That Can Be Embedded in 4GL Code I-29

SELECT
(Subset)
p. I-20

Embedded SQL SEGMENTS
The following SQL segments can be embedded directly in INFORMIX-4GL
code.

IN ()

NOT

SQL Expression
p. I-35

ALL/ANY/SOME
Subquery

p. I-30

EXISTS
Subquery

p. I-30

IN
Subquery

p. I-29

Comparison
Condition

p. I-30

Condition AND

OR

NOT

IN Subquery

Embedded SQL SEGMENTS

I-30 HCL Informix 4GL Reference Guide

SELECT
(Subset)
p. I-20

SELECT
(Subset)
p. I-20

EXISTS ()

()

Comparison Condition

xpressio LIKE ESCAPE "character"
p. I-35

NOT +
MATCHES

NOT

Constant
Expression

p. I-36

SQL Expression
p. I-35

SQL Expression
p. I-35

+

Variable
p. I-13

SQL Expression
p. I-35 BETWEEN

Relational
Operator

p. I-42

SQL Expression
p. I-35

Quoted
String
p. I-41

AND

 ,

Column
Expression

p. I-35

SQL Expression
p. I-35 IN ()

NOT

IS NULL

Column
E n

NOT

SQL Expression
p. I-35

EXISTS Subquery

NOT

Relational
Operator

p. I-42

SQL Expression
p. I-35

ALL
ANY

SOME

ALL/ANY/SOME
Subquery

Embedded SQL SEGMENTS

SQL Statements That Can Be Embedded in 4GL Code I-31

@dbservername

"//dbservername/dbname"

"/pathname/dbname@dbservername "

"//dbservername/pathname/dbname"

Variable
p. I-13

Identifier
p. I-38

Cursor Name

Constraint Name

Index Name

Synonym Name

Table Name

View Name

Database Name

 SE

For SE engines, database identifiers can have up to ten characters in UNIX.

When the identifier for a database is also the name of a 4GL variable, the
compiler uses the variable. To override this compiler action, quote the
database identifier.

Identifier
p. I-38

' owner.'
database :

@dbservername

Identifier
p. I-38

Embedded SQL SEGMENTS

I-32 HCL Informix 4GL Reference Guide

SQL Data Type

CHAR

CHARACTER

(size)

+ VARCHAR (maximum

(1)
)

, reserve

, 0

Large Object
Data Type

p. I-34

Time
Data Type

p. I-33

Number
Data Type

p. I-33

Character
Data Type

p. I-32

Character Data Type

Embedded SQL SEGMENTS

SQL Statements That Can Be Embedded in 4GL Code I-33

+ DATE

+ DATETIME

+ INTERVAL

Number Data Type

INTEGER

+
INT

SERIAL

 (1)
(start)

SMALLINT

FLOAT

DOUBLE PRECISION (float precision)

+ SMALLFLOAT

REAL

DECIMAL

DEC (precision)

NUMERIC 16 , scale

+ MONEY

(precision)
16 , 2

, scale

Time Data Type

DATETIME Field Qualifier
p. I-34

INTERVAL Field Qualifier
p. I-39

Embedded SQL SEGMENTS

I-34 HCL Informix 4GL Reference Guide

TEXT

BYTE

DATETIME Field Qualifier

YEAR

MONTH

DAY

HOUR

MINUTE

SECOND

FRACTION

TO YEAR

TO MONTH

TO DAY

TO HOUR

TO MINUTE

TO SECOND

TO FRACTION

(3)

(digit)

Large Object Data Type

IN TABLE

blobspace

+

Embedded SQL SEGMENTS

SQL Statements That Can Be Embedded in 4GL Code I-35

column name

 +

[first, last]

ROWID

@ .

table alias .

.

Synonym
Name
p. I-31

View
Name
p. I-31

Table
Name
p. I-31 +

.

+
 -

*
/

SQL Expression

-
+

()

Variable
p. I-13

Aggregate
Expression

p. I-38

Function
Expression

p. I-37

Constant
Expression

p. I-36

Column
Expression

p. I-35

SQL Expression

Column Expression

Embedded SQL SEGMENTS

I-36 HCL Informix 4GL Reference Guide

 USER

TODAY

CURRENT

SITENAME

+

Literal Number
p. I-41

Quoted String
p. I-41

DATETIME Field
Qualifier
p. I-34

Constant Expression

tblspace num

expression

 Literal DATETIME
p. I-39

Literal INTERVAL

p. I-39

ROUND (

TRUNC (

DBINFO ('DBSPACE' ,)

'sqlca.sqlerrd1'

'sqlca.sqlerrd2'

Algebraic Functions
SQL

Ex ion press)
p. I-35

, rounding factor

, 0
SQL

Expression
p. I-35

)

, truncating factor

, 0

DBINFO Function

Embedded SQL SEGMENTS

SQL Statements That Can Be Embedded in 4GL Code I-37

Function Expression

+ DAY (date expression)

DATE

MONTH
WEEKDAY

YEAR

(nondate expression)

datetime expression

EXTEND (date expression)
datetime expression ,

MDY (
expression

integer
month , in

day
r , i

year
r

expression
tege

expression
ntege)

LENGTH ()

variable name

column name

.

HEX (integer expression)

Algebraic Functions
p. I-36

Quoted String
p. I-41

Table Name
p. I-31

DATETIME
Field Qualifier

p. I-34

Embedded SQL SEGMENTS

I-38 HCL Informix 4GL Reference Guide

COUNT (*)

AVG (

MAX
MIN
SUM

DISTINCT

UNIQUE

column)
name

.

COUNT (DISTINCT

UNIQUE

AVG (

MAX
MIN
SUM

)

ALL

Identifier

letter

underscore

17 letter

digit

underscore

Aggregate Expression

Table
Name
p. I-31

Expression
(Subset)
p. I-35

Embedded SQL SEGMENTS

SQL Statements That Can Be Embedded in 4GL Code I-39

Numeric
Datetime

Numeric
Interval

INTERVAL Field Qualifier

YEAR

MONTH

DAY

HOUR

MINUTE

SECOND

FRACTION

(y-precision)
(4)

(precision)

(2)

(precision)

(2)

(precision)
(2)

(precision)

(2)

(precision)

(2)

TO YEAR

TO MONTH

TO DAY

TO HOUR

TO MINUTE

TO SECOND

TO FRACTION

(f-precision)
(3)

Literal DATETIME

DATETIME ()

Literal INTERVAL

INTERVAL ()

DATETIME
Field Qualifier

p. I-34

INTERVAL
Field Qualifier

p. I-39

Embedded SQL SEGMENTS

I-40 HCL Informix 4GL Reference Guide

Numeric Datetime

yyyy

-

mo

-

dd

space

hh

:

mi

:

ss

.

f

Numeric Interval

yyyy

-
mo

dd

space

hh

:
mi

:
ss

.
f

Embedded SQL SEGMENTS

SQL Statements That Can Be Embedded in 4GL Code I-41

,

integer expression

character

" "

character

' '

function ()

Prepared Statement Name

Quoted String

" "

' '

+

-

digit

.
 . digit

e
E

-
+ digit

Literal Number

Function Call

Identifier
p. I-38

+

Embedded SQL SEGMENTS

I-42 HCL Informix 4GL Reference Guide

>

Relational Operator

Record Reference

program record

record

 ,
.

3 array [integer expression]

<
 <=

>
 =

>=
<
!=

B-1

Notices

Notices and Information

HCL Informix 4gl 7.51.FC3

======
DETAIL
======
Note: generic licenses are marked with (*)
Note: missing copyright references are marked with (*)

1. Library: icu4c-release-60-2 Product: Informix 4GL

========
LICENSES
========
Licensed under ICU License
License terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/LICENSE

License Text Under Appendix

==========

COPYRIGHTS
==========

Copyright 1 out of 15

Copyrighted under Copyright 1997-2016 International Business Machines Corporation and others
Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/readme.html

Copyright 2 out of 15

Copyrighted under Copyright 2016 and later: Unicode, Inc. and others
Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/readme.html

Copyright 3 out of 15

Copyrighted under Copyright 1997-2016 International Business Machines Corporation and others
Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/readme.html

Copyright 4 out of 15

Copyrighted under Copyright 1999 TaBE Project
Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/LICENSE

B-2

Copyright 5 out of 15

Copyrighted under Copyright 1991-2017 Unicode, Inc
Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/LICENSE

Copyright 6 out of 15

Copyrighted under Copyright 1999 Pai-Hsiang Hsiao

Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/LICENSE

Copyright 7 out of 15

Copyrighted under Copyright 1999 Computer Systems and Communication Lab,
Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/LICENSE

Copyright 8 out of 15

Copyrighted under Copyright 2013 Brian Eugene Wilson, Robert Martin Campbell
Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/LICENSE

Copyright 9 out of 15

Copyrighted under Copyright 1996 Chih-Hao Tsai @ Beckman Institute,

Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/LICENSE

Copyright 10 out of 15

Copyrighted under Copyright 2013 LeRoy Benjamin Sharon
Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/LICENSE

Copyright 11 out of 15

Copyrighted under Copyright 2013 International Business Machines Corporation

Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/LICENSE

Copyright 12 out of 15

Copyrighted under Copyright 2014 International Business Machines Corporation
Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/LICENSE

B-3

Copyright 13 out of 15

Copyrighted under Copyright 1995-2016 International Business Machines Corporation and others
Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/LICENSE

Copyright 14 out of 15

Copyrighted under Copyright 2006-2008 Google Inc
Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/LICENSE

Copyright 15 out of 15

Copyrighted under Copyright 2000-2001 2002, 2003 Nara Institute of Science
Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/LICENSE

=========================
APPENDIX: License Details
=========================

ICU License

License Text:
(*) ICU License - ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2015 International Business Machines Corporation and others

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, provided that the above copyright notice(s)
and this permission notice appear in all copies of the Software and that both the above copyright notice(s)
and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED

TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY
RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM,
OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or

otherwise to promote the sale, use or other dealings in this Software without prior written authorization of
the copyright holder.

B-4

All trademarks and registered trademarks mentioned herein are the property of their respective owners.

Third-Party Software Licenses

This section contains third-party software notices and/or additional terms for licensed third-party software
components included within ICU libraries.

1. Unicode Data Files and Software

COPYRIGHT AND PERMISSION NOTICE

Copyright Â© 1991-2015 Unicode, Inc. All rights reserved.
Distributed under the Terms of Use in
http://www.unicode.org/copyright.html.

Permission is hereby granted, free of charge, to any person obtaining
a copy of the Unicode data files and any associated documentation
(the "Data Files") or Unicode software and any associated documentation
(the "Software") to deal in the Data Files or Software
without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, and/or sell copies of
the Data Files or Software, and to permit persons to whom the Data Files
or Software are furnished to do so, provided that
(a) this copyright and permission notice appear with all copies

of the Data Files or Software,

(b) this copyright and permission notice appear in associated
documentation, and

(c) there is clear notice in each modified Data File or in the Software
as well as in the documentation associated with the Data File(s) or
Software that the data or software has been modified.

THE DATA FILES AND SOFTWARE ARE PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS
NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,

DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THE DATA FILES OR SOFTWARE.

Except as contained in this notice, the name of a copyright holder

shall not be used in advertising or otherwise to promote the sale,
use or other dealings in these Data Files or Software without prior
written authorization of the copyright holder.
2. Chinese/Japanese Word Break Dictionary Data (cjdict.txt)

The Google Chrome software developed by Google is licensed under the BSD license. Other software included
in this distribution is provided under other licenses, as set forth below.

The BSD License

http://opensource.org/licenses/bsd-license.php
Copyright (C) 2006-2008, Google Inc.

All rights reserved.

http://www.unicode.org/copyright.html
http://opensource.org/licenses/bsd-license.php

B-5

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the

following disclaimer in the documentation and/or other materials provided with the distribution.
Neither the name of Google Inc. nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

The word list in cjdict.txt are generated by combining three word lists listed
below with further processing for compound word breaking. The frequency is generated
with an iterative training against Google web corpora.

* Libtabe (Chinese)

- https://sourceforge.net/project/?group_id=1519

- Its license terms and conditions are shown below.

* IPADIC (Japanese)
- http://chasen.aist-nara.ac.jp/chasen/distribution.html

- Its license terms and conditions are shown below.

---------COPYING.libtabe ---- BEGIN--------------------

/*
* Copyrighy (c) 1999 TaBE Project.

* Copyright (c) 1999 Pai-Hsiang Hsiao.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions
* are met:
*
* . Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* . Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* . Neither the name of the TaBE Project nor the names of its

* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

http://chasen.aist-nara.ac.jp/chasen/distribution.html

B-6

* REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.

*/

/*
* Copyright (c) 1999 Computer Systems and Communication Lab,

* Institute of Information Science, Academia Sinica.
* All rights reserved.
*

* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* . Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* . Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* . Neither the name of the Computer Systems and Communication Lab
* nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/

Copyright 1996 Chih-Hao Tsai @ Beckman Institute, University of Illinois
c-tsai4@uiuc.edu http://casper.beckman.uiuc.edu/~c-tsai4

COPYING.libtabe END

COPYING.ipadic BEGIN

Copyright 2000, 2001, 2002, 2003 Nara Institute of Science
and Technology. All Rights Reserved.

Use, reproduction, and distribution of this software is permitted.

Any copy of this software, whether in its original form or modified,
must include both the above copyright notice and the following

mailto:c-tsai4@uiuc.edu
http://casper.beckman.uiuc.edu/%7Ec-tsai4

B-7

paragraphs.

Nara Institute of Science and Technology (NAIST),
the copyright holders, disclaims all warranties with regard to this
software, including all implied warranties of merchantability and
fitness, in no event shall NAIST be liable for
any special, indirect or consequential damages or any damages

whatsoever resulting from loss of use, data or profits, whether in an
action of contract, negligence or other tortuous action, arising out
of or in connection with the use or performance of this software.

A large portion of the dictionary entries

originate from ICOT Free Software. The following conditions for ICOT

Free Software applies to the current dictionary as well.

Each User may also freely distribute the Program, whether in its

original form or modified, to any third party or parties, PROVIDED
that the provisions of Section 3 ("NO WARRANTY") will ALWAYS appear

on, or be attached to, the Program, which is distributed substantially

in the same form as set out herein and that such intended
distribution, if actually made, will neither violate or otherwise
contravene any of the laws and regulations of the countries having
jurisdiction over the User or the intended distribution itself.

NO WARRANTY

The program was produced on an experimental basis in the course of the
research and development conducted during the project and is provided
to users as so produced on an experimental basis. Accordingly, the
program is provided without any warranty whatsoever, whether express,
implied, statutory or otherwise. The term "warranty" used herein

includes, but is not limited to, any warranty of the quality,

performance, merchantability and fitness for a particular purpose of
the program and the nonexistence of any infringement or violation of
any right of any third party.

Each user of the program will agree and understand, and be deemed to
have agreed and understood, that there is no warranty whatsoever for
the program and, accordingly, the entire risk arising from or

otherwise connected with the program is assumed by the user.

Therefore, neither ICOT, the copyright holder, or any other
organization that participated in or was otherwise related to the

development of the program and their respective officials, directors,
officers and other employees shall be held liable for any and all

damages, including, without limitation, general, special, incidental
and consequential damages, arising out of or otherwise in connection
with the use or inability to use the program or any product, material
or result produced or otherwise obtained by using the program,
regardless of whether they have been advised of, or otherwise had
knowledge of, the possibility of such damages at any time during the

project or thereafter. Each user will be deemed to have agreed to the
foregoing by his or her commencement of use of the program. The term

"use" as used herein includes, but is not limited to, the use,

modification, copying and distribution of the program and the
production of secondary products from the program.

In the case where the program, whether in its original form or

B-8

modified, was distributed or delivered to or received by a user from

any person, organization or entity other than ICOT, unless it makes or
grants independently of ICOT any specific warranty to the user in
writing, such person, organization or entity, will also be exempted

from and not be held liable to the user for any such damages as noted
above as far as the program is concerned.

COPYING.ipadic END

3. Lao Word Break Dictionary Data (laodict.txt)

Copyright (c) 2013 International Business Machines Corporation
and others. All Rights Reserved.

Project: http://code.google.com/p/lao-dictionary/

Dictionary: http://lao-dictionary.googlecode.com/git/Lao-Dictionary.txt

License: http://lao-dictionary.googlecode.com/git/Lao-Dictionary-LICENSE.txt
(copied below)

This file is derived from the above dictionary, with slight modifications.

Copyright (C) 2013 Brian Eugene Wilson, Robert Martin Campbell.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this

list of conditions and the following disclaimer. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

4. Burmese Word Break Dictionary Data (burmesedict.txt)

Copyright (c) 2014 International Business Machines Corporation
and others. All Rights Reserved.

This list is part of a project hosted at:

github.com/kanyawtech/myanmar-karen-word-lists

Copyright (c) 2013, LeRoy Benjamin Sharon
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

http://code.google.com/p/lao-dictionary/
http://lao-dictionary.googlecode.com/git/Lao-Dictionary.txt
http://lao-dictionary.googlecode.com/git/Lao-Dictionary-LICENSE.txt

B-9

Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

Neither the name Myanmar Karen Word Lists, nor the names of its
contributors may be used to endorse or promote products derived from

this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

5. Time Zone Database

ICU uses the public domain data and code derived from Time Zone Database for its time zone support. The

ownership of the TZ database is explained in BCP 175: Procedure for Maintaining the Time Zone Database section
7.

7. Database Ownership

The TZ database itself is not an IETF Contribution or an IETF
document. Rather it is a pre-existing and regularly updated work
that is in the public domain, and is intended to remain in the public
domain. Therefore, BCPs 78 [RFC5378] and 79 [RFC3979] do not apply
to the TZ Database or contributions that individuals make to it.

Should any claims be made and substantiated against the TZ Database,
the organization that is providing the IANA Considerations defined in
this RFC, under the memorandum of understanding with the IETF,
currently ICANN, may act in accordance with all competent court
orders. No ownership claims will be made by ICANN or the IETF Trust
on the database or the code. Any person making a contribution to the
database or code waives all rights to future claims in that
contribution or in the TZ Database.

Glossary

4GL function A 4GL program block defined with the FUNCTION statement.

The function header follows the FUNCTION keyword and
defines the name and formal argument list for the function. The
function body (all statements between the function header and
the END FUNCTION keywords) defines the actions of the func-
tion. The function header and the function body together are
often called the function definition. To return values, use the
RETURN statement within the function body. Frequently, a 4GL
function is simply referred to as a function. See also argument,
function, programmer-defined function, program block, return value.

4GL screen 1) In the INFORMIX-4GL Interactive Debugger, the 4GL screen
is where the Debugger displays the 4GL application.
2) When running a 4GL application, the 4GL screen is the display
area of the screen. This area displays the application forms, 4GL
windows, and text. See also 4GL window, screen.

4GL window A rectangular region in the 4GL screen, possibly one of many,
managed by a 4GL application. The default 4GL window is the
4GL screen. The OPEN WINDOW statement creates a new 4GL
window. 4GL manages its windows with a stack. Each window
is pushed onto this stack when it is opened. A 4GL program per-
forms its input and output in the current window. See also 4GL
screen, current, popup window, reserved lines, screen, stack.

2 HCL Informix 4GL Reference Guide

abnormal
termination

The termination of the 4GL application through any mechanism other than
terminating the MAIN program block at the END MAIN keywords or with a
RETURN statement. Whenever a runtime error occurs, or the user presses an
Interrupt or Quit key, or the EXIT PROGRAM statement is executed, an abnor-
mal termination occurs. In the INFORMIX-4GL Interactive Debugger, you can
inspect the application state after an abnormal termination. You cannot, how-
ever, resume execution. See also debug, exception handling, MAIN program block,
normal termination, program execution.

Accept key The logical key that the user can press within a 4GL application to indicate
acceptance of the entered data or query criteria. Pressing it requests normal
completion of a user interaction statement. By default, the physical key for
Accept is ESCAPE. See also data entry, Interrupt key, logical key, query criteria,
Quit key, user interaction statement.

access mode The status of an open file that determines read and write access to that file.

activation key A logical key that the developer defines to provide the user with some
programmer-defined feature. The developer can define an activation key in
the ON KEY clause of the CONSTRUCT, DISPLAY ARRAY, INPUT, INPUT ARRAY,
or PROMPT statement, or in the KEY clause of the MENU statement. When the
user presses the activation key, 4GL executes the control block associated with
that key. See also control block, key, logical key, menu option.

active form A screen form for which the current user interaction statement is executing.
An application can have several active forms if it has several 4GL windows,
each continuing a screen form with a user interaction statement executing.
With multiple active forms, only one form is current. See also 4GL window,
current, screen form, user interaction statement.

active function A 4GL program block (MAIN, FUNCTION, or REPORT) that has started execu-
tion but not completed execution. The active functions consist of all functions
on the call stack, which are the current function and all functions that are
waiting for a function call to return. The MAIN block is always active for the
4GL session. The INFORMIX-4GL Interactive Debugger can inspect the active
functions that are not reports. See also active variable, abnormal termination, call
stack, debug, normal termination, program block, program execution.

active set The collection of database rows that satisfies a query associated with a data-
base cursor. An active set is stored in memory at runtime. It contains only a
copy of the rows that match the query criteria. See also cursor, query, row.

Glossary 3

active variable A 4GL variable for which storage exists. The active variables consist of the

local variables of all active functions, the module variables of all modules that
contain the active functions, and all global variables. You can evaluate or
assign values to active variables within the INFORMIX-4GL Interactive Debug-
ger. See also active function, abnormal termination, global variable, local variable,
module variable, normal termination, program execution, scope.

active window The window that contains the current keyboard focus. See also keyboard focus.

actual argument In a function call, the value that is passed by the calling routine as an argu-
ment to the programmer-defined function. This value must be of a compati-
ble data type with the corresponding formal argument in the function
definition. There are two methods for an actual argument to be passed to a
function: pass-by-reference and pass-by-value. See also argument, calling rou-
tine, data type conversion, formal argument, function call, pass-by-reference, pass-
by-value, programmer-defined function.

aggregate
function

1) A function built into the SQL language that returns a single value based on
the values of a column in several rows of a table. These functions are called
SQL aggregate functions. Examples of SQL aggregate functions are SUM(),
COUNT(), MIN(), and MAX(). These functions are valid only within SQL
statements. See also column, row, SQL, table.
2) A function built into the 4GL language that returns a single value based on
the values of input records. These functions are called report aggregate func-
tions. Examples of report aggregate functions are SUM(), GROUP SUM(),
PERCENT(*), MIN(), and MAX(). Report aggregate functions are valid only
within a REPORT program block. See also built-in function, input record, pro-
gram block, report.

alias In the database, an alias is a synonym for a table name. It immediately fol-
lows the name of the table in an SQL statement. It can be used wherever the
name of a table can be used. Aliases are often used to create short, readable
names for long or external table names. See also table.

ANSI compliant A database that conforms to certain ANSI (American National Standards
Institute) performance standards. Informix databases can be created either as
ANS compliant or as not ANSI compliant. An ANSI-compliant
database enforces ANSI requirements such as implicit transactions, required
owner-naming, and no buffered logging. The term MODE ANSI is sometimes
used to refer to an ANSI-compliant database. See also database, implicit trans-
action.

4 HCL Informix 4GL Reference Guide

application
development tool

application
program

application
program
interface (API)

Software, such as INFORMIX-SQL, INFORMIX-4GL, and INFORMIX-ESQL/C,
which a developer can use to create and maintain a database. Such software
allows a user to send instructions and data to and receive information from a
database server. See also database server.

1) A computer program developed and implemented for dealing with some
business activity. (A computer program is a group of instructions that cause
a computer to perform a sequence of operations.) An application program is
synthesized from some combination of application development tools. See
also application development tool, database, developer, user.
2) In 4GL, an application program is the 4GL program, with one MAIN
program block, its supporting 4GL source modules, its form specification
files, and its help message file. See also form specification file, help file, MAIN pro-
gram block, source module.

A rigorous definition of the method by which a program can access the ser-
vices provided by another program. Developers of an API often provide
libraries of callable functions that implement the API. For example, the 4GL
API enables a C program to call a 4GL routine; Motif enables a C program to
call X Windows; INFORMIX-ESQL/C, which is an SQL API, enables a C pro-
gram to access a database. There can be many different APIs that provide
access to the same set of services, though possibly at different points of entry.
In some cases, the same API can be used to access different services. (For
example, NetBIOS is a network API that is protocol independent and is often
used to access a variety of different protocols such as OSI, AND TCP/.) See
also application development tool.

argument A value passed from a calling routine to a function. In the calling routine, the
value passed is called an actual argument. Within the function definition, the
name of the argument is called a formal argument. When the function is
called, the value of the actual argument is assigned to the corresponding for-
mal argument variable. See also actual argument, calling routine, formal argu-
ment, pass-by-reference, pass-by-value, programmer-defined function, report.

arithmetic
operators

Operators that perform arithmetic operations on operands of number
(and some time) data types. The following are 4GL binary arithmetic
operators: addition (+), subtraction (-), multiplication (*), division (/),
exponentiation (**), and modulus (MOD). 4GL unary arithmetic operators
are unary minus (-) and unary plus (+). Arithmetic operators return a
numeric value (or else NULL) . See also associativity, binary operator, operand,
operator, precedence, unary operator.

Glossary 5

array 1) A data structure that has a fixed number of components. Each component

is called an element. All elements in an array have the same data type. See
also array element, screen array.
2) In uppercase, ARRAY is the keyword for defining a program array in 4GL.
The ARRAY data type is a structured data type of up to three dimensions. It
cannot have another array as an element. You can reference an array element
by listing the array name followed by one or more comma-separated sub-
scripts within brackets. See also program array, structured data type, subscript.

array element A component of a program array, of any 4GL data type except ARRAY. To ref-
erence any element within an array, use one or more integer subscripts
(sometimes called an array index). See also array, program array, subscript.

ASCII 1) Acronym for American Standards Code for Information Interchange. In
the default locale, the ordered set of internal codes that a computer uses to
represent characters. This set includes both printable and non-printable char-
acters. Appendix A, “The ASCII Character Set,” lists the ASCII characters and
their codes. See also control character, escape character, printable character.
2) As opposed to binary information, an ASCII file is readable in a text editor.
4GL source modules and form specification files are examples of ASCII files.
This Guide sometimes uses the term ASCII file in reference to files that con-
tain only printable characters (which might include non-ASCII characters) of
the client locale. See also form specification file, source module, text editor.

assign To store a value in a variable. In 4GL, the LET statement performs assignment.
4GL evaluates the expression on the right-hand side of the equal sign (=) and
assigns it to the variable on the left-hand side. You can also assign values to
a variable with the CALL...RETURNING, CONSTRUCT, FOREACH...INTO,
INITIALIZE, INPUT, INPUT ARRAY, and PROMPT statements, and with the
INTO clause of SELECT and EXECUTE statements of SQL. See also expression,
operator, precedence, variable.

associativity The principle that determines the order in which operands at the same level
of precedence in an expression are evaluated. For example, to evaluate the
expression a - b+ c, 4GL first evaluates a - b and then adds c to the result
because binary arithmetic operators associate to the left. You can use paren-
theses (()) symbols, as in algebra, to override the default associativity of
4GL operators. See also binary operator, expression, precedence.

asterisk notation The symbols .* appended to the name of a database table (table.*) or ofa 4GL

6 HCL Informix 4GL Reference Guide

record variable (record.*), which expands to the names of all the columns in
the table or of all members in the record. In other contexts, asterisk can be a
wildcard for matching strings, or can indicate overflow in a display or other
features of 4GL. See also program record, table.

attribute 1) A characteristic or aspect of some entity that the developer can set. 4GL
provides attributes for form fields (field attributes), screen forms (form
attributes), database columns (column attributes), and for output text (dis-
play attributes). Set field attributes on a field-by-field basis in the form spec-
ification file. Set form attributes with the ATTRIBUTE clause of the DISPLAY
FORM statement and of the 4GL user interaction statements. You can also set
display attributes with the ATTRIBUTE clause. You can set default column
attributes on a column-by-column basis with the upscol utility. See also col-
umn, field, form, form specification file, user interaction statement.
2) In some database terminologies, attribute is a term used for a column. See
also column.

audit trail A history of all changes to a table in an INFORMIX-SE database.

B+ tree A method of organizing an index for efficient retrieval of records. All Infor-
mix database servers use this access method.

background
process

In a multiprocessing environment, a process that is not performing input or
output. It can continue to run without needing access to a window or the
screen. See also foreground process, process, screen.

batch A mode of execution in which a program runs without input from a user. 4GL
programs that do not use user interactive statements are batch programs. If a
batch program produces output, it should direct the output to a file or the
printer, not the screen. Often reports are run in a batch mode. See also inter-
active, program execution, report, user interaction statement.

binary operator An operator that requires two operands. The binary operator appears
between the two operands. In 4GL, examples of binary operators include
addition (+), multiplication (*), and logical AND. 4GL associates most binary
operators from left-to-right. See also arithmetic operators, associativity, Boolean
operators, operand, operator, precedence, relational operators, unary operator.

Glossary 7

binding A one-to-one correspondence between entities in two domains. The

association between an identifier and its resource (a location in memory) is
called a binding. In 4GL, the correspondence between form fields and pro-
gram variables during data entry is also called a binding. Several 4GL screen
interaction statements include a binding clause that lists the program vari-
ables and their corresponding form fields (or database columns). These state-
ments include CONSTRUCT, INPUT, INPUT ARRAY, and PROMPT. See also data
entry, identifier, program array, program record, screen array, screen record, user
interaction statement.

blank space The character with the value of ASCII 32. A string of blank spaces is not the
same as a null string (which has nothing in it). 4GL pads string values with
blank spaces up to the declared size of the CHAR variable (but not VARCHAR
variables). Blank spaces are also used to separate elements of a menu or form.
More generally, characters in any locale that can separate terms within 4GL
statements, but that display as blank spaces, are often referred to as white
space characters. See also ASCII, clipped, null value, printable character, string.

blob A legacy acronym for binary large object that is now known as and includes
BYTE and TEXT data types. Blobs are data objects that effectively have no
maximum size (theoretically as large as 231 bytes). See also byte, data type, text.

blobpage The unit of disk allocation within a blobspace in the database. The System
Administrator determines the size of a blobpage; the size can vary.

blobspace A logical collection of blobpages to store TEXT and BYTE data in the database.

Boolean 4GL includes two Boolean constants: FALSE (= 0) and TRUE (=1). If an operand
evaluates to null, Boolean operators can return an unknown result that 4GL
treats as FALSE in some contexts. Because 4GL does not have a Boolean data
type, Boolean values are typically stored as integer data types. See also Bool-
ean operators, constant, integer, relational operators.

Boolean operator An operator (for example, AND, OR, NOT, or any of the relational operators)
that returns a Boolean value. In some contexts, 4GL interprets null values as
FALSE and any nonzero value as TRUE. Boolean expressions can also include
relational operators. See also associativity, binary operator, Boolean, operand,
operator, precedence, relational operators, unary operator.

built-in function A function that is part of the 4GL language and can therefore be called with-

8 HCL Informix 4GL Reference Guide

out needing to be defined by the developer. Calls to built-in functions have
the same syntax as those for programmer-defined functions. Examples of
built-in functions are ARG_VAL(), ARR_CURR(), FGL_KEYVAL(), and
SCR_LINE(). See also 4GL function, aggregate function, built-in operator, calling
routine, function call, programmer-defined function.

built-in operator An operator that is part of the 4GL language. Built-in operators are keywords
or symbols that perform special tasks. They differ from built-in functions in
that they cannot be invoked with the CALL statement and they cannot be
called from a C function. Examples of built-in operators are ASCII, CURRENT,
DATE, and TODAY. (Here built-in is redundant; the programmer cannot
define new 4GL operators.) See also built-in function, keyword, operator.

byte 1) A unit of storage that corresponds to 8 binary bits. A kilobyte is 1,024 bytes.
A megabyte is 1,048,576 bytes. See also character.
2) In uppercase letters, BYTE is the 4GL and SQL data type that can store up to
231 bytes of binary data. See also blob.

C Compiler The version of 4GL that precompiles 4GL code into Informix ESQL/C code and
then translates the ESQL/C into object code that is executable directly from
the command line. See also compile, Rapid Development System.

call stack A stack (also called the function stack) used by 4GL at runtime to keep track
of active functions. An active function is one that has been called but that has
not yet returned. Each time the program calls a function, the state of the func-
tion is pushed onto the call stack. When a function terminates, the state is
popped off the call stack. The MAIN program block is always at the bottom of
this stack. You can examine the call stack with the INFORMIX-4GL Interactive
Debugger. See also active function, MAIN program block, stack.

call-by-reference See pass-by-reference.

call-by-value See pass-by-value.

calling routine The program block that invokes a function (or report). In 4GL, the calling
routine can be either a MAIN, FUNCTION, or REPORT program block. A call
can be explicit, by using the CALL statement, or implicit, by embedding the
function name (and any arguments) within an expression. The calling routine
can pass values to the function and can receive returned values. See also argu-
ment, expression, function call, program block, return value.

Glossary 9

case sensitivity The ability to distinguish between uppercase and lowercase letters. 4GL is not

case sensitive, except within quoted strings; thus, variables a and A refer to
the same address in memory. Certain command-line syntax elements (such
as command names and options) are case sensitive. Unless the locale files
define the correspondence between uppercase and lowercase characters, case
sensitivity is not supported. See also identifier, keyword, naming conventions.

character 1) Any letter, digit, symbol, or control sequence that can be represented by
the character set of the client locale. In some East Asian locales, one logical
character can require more than one byte of storage. See also ASCII, blank
space, control character, escape character, printable character.
2) The character data types are CHAR and VARCHAR (and in some contexts,
a TEXT variable). See also blob, data type, string, string operators, subscript.
3) What a single keystroke, control character, or escape sequence produces
that the program, operating system, or output device treats as a single unit.
See also activation key, logical key, operating system.

character set In the default locale, the ASCII characters, each corresponding to an integer
value from 0 to 255 (8-bit) or 0 to 127 (7-bit). In other locales, the character set
is specified by a code set in the locale files. In some East Asian locales, a single
logical character can require more than one byte of storage, and the number
of logical characters in the code set can be a 4-digit number. Every locale must
support the ASCII characters. See also ASCII, Global Language Support.

clipped The CLIPPED operator of 4GL removes trailing white space from string val-
ues. It is often used in DISPLAY and PRINT statements. (SQL statements use
TRIM.) See also blank space, built-in operator, string operators.

close To cease to use an open entity. In programming, closing something releases
control of it and deallocates any resources that it used. For example, when
you close a database cursor, you release any memory or disk space that was
used to hold the active set for that cursor. When you close a file, you tell the
system that you no longer require the file and others can use it. When you
close a form, you release any memory or disk used to store it. When you close
a 4GL window, you deallocate memory for the image of the window and pop
it from the window stack. Typically things cannot be closed until they have
been opened. See also 4GL window, close, cursor, file, open, screen form.

close a cursor To drop the association between the active set of rows that result from a query
and a cursor.

column 1) In a database, a column is a data category that contains a specific type of

10 HCL Informix 4GL Reference Guide

information common to every row of the table. In other database terminolo-
gies, a column is sometimes called a field or an attribute. See also attribute,
database, row, table.
2) In a screen or in page of output from a report, a column is the x-coordinate
of a given position (on the horizontal axis). The y-coordinate (on the vertical
axis) is called a row (or a line). Several 4GL statements use columns (and rows
or lines) in this sense to identify locations in displays. See also row, screen.

command line A line of text typed by the user at the operating system prompt to run
a program. In a character-based environment, all programs are invoked
by a command line with optional command-line arguments and options. See
also operating system.

comment Text in a source file that the compiler ignores. These comments can explain
the contents of the file or disable a statement. In 4GL source modules, com-
ments can be introduced by a left brace ({) in the first position of the line and
terminated by a right brace (}) anywhere on a line to close the comment.
Comments in the same line as code can begin with a double-hyphen (--) or
pound (#) sign. In 4GL form specifications, left braces or the double-hyphen
can begin comments; the # symbol is not valid. Conditional comments have
comment indicators that Dynamic 4GL (for --#) or INFORMIX-4GL (for --@)
interpret as white space. See also form specification file, header, source module.

commit To successfully end a transaction by accepting all changes to the database
since the beginning of the transaction. When the transaction is committed, all
open database cursors (except hold cursors) are closed and all locks are
released. The COMMIT WORK statement commits the current transaction. See
also cursor, log, roll back, transaction.

compile 1) To translate a program from source code written by the developer to a form
executable by the computer (machine code). This translation is done by a sys-
tem program called a compiler. Results of the translation are called object
code, or a compilation. See also debug, execute, interpret, link, source module.
2) In 4GL, you can compile 4GL source code into either p-code or C language
code. For the p-code, the compiler translates the 4GL code into an intermedi-
ate form (p-code) that must be executed by the P-Code Runner. For C code,
the compiler first calls a preprocessor to translate 4GL code into
INFORMIX-ESQL/C code. It then translates the ESQL/C into object code, exe-
cutable directly from a command line. See also C Compiler, command line, com-
piler directive, p-code, preprocessor, Rapid Development System.

Glossary 11

compiler
directive

An instruction within a source module to a compiler, as opposed to an
executable statement. In the C language, directives can address the
preprocessor portion of the compilation, requesting, for example, conditional
compilation or inclusion of a named file. In 4GL, the WHENEVER and DEFER
statements are compiler directive. The effect of WHENEVER lasts until the end
of the source file (or until overridden by another WHENEVER). See also com-
pile, exception handling, preprocessor, source module, statement.

composite index An index constructed on two or more columns of a table. The ordering
imposed by the composite index varies least frequently on the first named
column and most frequently on the last named column.

composite join A join between two tables based on the relationship among two or more col-
umns in each table.

concatenate To form a character string by appending a second character string to the end
of the first character string. In 4GL and SQL, the concatenation operator is a
double pipe (||) symbol. See also character, string, string operators.

consistency
checking

The process of verifying that the character set, collation order, and other
client settings for a user session match the settings in the database locale.

constant A named value that, unlike a variable, cannot change during execution of
a program. Constants of 4GL include NOTFOUND, FALSE, and TRUE. These
values cannot be redefined by the developer. The documentation of Informix
database servers sometimes applies this term to literals. See also Boolean, lit-
eral, variable.

constraint See UNIQUE CONSTRAINT.

control block A statement block that executes when a certain condition (the activation
clause) becomes true. In 4GL, control blocks like BEFORE FIELD, AFTER INPUT,
AFTER CONSTRUCT, and ON KEY occur in the user interaction statements; in
this context, they are often called form management blocks. Control blocks
also occur in the FORMAT section of a report, including PAGE HEADER,
AFTER GROUP OF, and ON EVERY ROW. See also activation key, report, statement
block, user interaction statements.

control character A character whose occurrence in a specific context initiates, modifies,

12 HCL Informix 4GL Reference Guide

or stops a control function (an operation to control a device, for example, in
moving a cursor or in reading data). Control characters have values below
ASCII 32 in the ASCII character set. In a 4GL program, some control characters
have predefined functions (pressing CONTROL-W obtains on-line help). The
developer can also define actions that use CONTROL keys with another key
to execute some programming action. See also activation key, ASCII, character,
logical key, modifier key.

current The one item, among many similar items, that is about to be or was most
recently used. The current directory is the host system directory that was
selected most recently (it is where files are first looked for). The current row
is the row that was last fetched through a database cursor (it can be deleted
or updated using the cursor). The current window is the window most
recently activated (it receives the user’s keystrokes). The current statement
is the program statement being executed. (This statement is displayed in an
error message if the program terminates.) See also cursor, directory, row, state-
ment.

cursor 1) A focal point at which action can be applied. A text cursor is a mark show-
ing the focal point for keyboard input. See also keyboard focus, text cursor.
2) A database cursor is an identifier associated with an active set. It points to
the current row in the active set. This row can be fetched, deleted, or updated.
4GL supports the following types of database cursors: sequential, scroll, hold,
update, and insert. See also active set, close, current, identifier, open, prepared
statement, query, row, scrolling.

data conversion See data type conversion.

data entry 1) The action of providing, usually at the keyboard, data values to a
computer program. Data entry is performed by the user of an application at
runtime. In a database application, these values are usually stored in
a database. See also application program, key, user interaction statements.
2) A set of data values to be stored in program variables and, often, in a data-
base table. The INPUT, INPUT ARRAY, and PROMPT statements accept data
entry. See also query criteria, table, user interaction statement.

data file A file that contains the input used by a program. Data files are not executable;
they contain data that is to be read or acted on by other programs. See also file.

data type An interpretation to use on a stored value. In 4GL, database columns, pro-

Glossary 13

data type
conversion

gram variables, form fields, and formal arguments of a function (or report)
all have data types associated with them. The 4GL data types include: integer
(SMALLINT, INTEGER); fixed-point (DECIMAL(p,s), MONEY); floating-point
(DECIMAL(p), FLOAT, SMALLFLOAT); character (CHAR, VARCHAR); large
(BYTE, TEXT); time (DATE, DATETIME, INTERVAL); and structured (ARRAY,
RECORD). Informix databases can support additional data types. See also
blob, character, data type conversion, declare, fixed-point number, floating-point
number, integer, interval, operator, simple data type, structured data type, variable.

The process of interpreting and storing a value of one data type as some other
data type; sometimes called simply data conversion. The pairs of data types
for which data conversion is possible without error are called compatible
data types. This process can be automatic or explicit. 4GL performs some
automatic data conversion in expressions and assignment. It also provides
facilities to perform some explicit data conversion (for example the
EXTEND() function). In addition, the LIKE keyword, when used in a variable
definition, provides indirect data typing. See also column, data type, define,
indirect typing.

database A collection of related data organized in a way to optimize access to this data.
A relational database organizes data into tables, rows, and columns. Informix
databases are relational databases. At runtime, a separate database server
process is the portion of the database management system that actually
manipulates the data in the database files. To access a database, a 4GL appli-
cation must specify it with the DATABASE statement and must use SQL state-
ments. See also column, database server, process, row, SQL, system catalog, table.

database cursor See cursor.

database locale Locale of the user at the time of database creation, permanently saved in
database system tables and consulted when the database is accessed. See also
Global Language Support, user locale.

database server The part of a database management system that manipulates data files. This
process receives SQL statements from the database application, parses them,
optimizes the approach to the data, retrieves the data from the database, and
returns the data to the application. The database server is also called the back
end. See also application development tool, database, process.

debug 1) To find and remove runtime errors in a computer program. This analysis

14 HCL Informix 4GL Reference Guide

is often done by special software products called debuggers. You can analyze
a program to detect and locate errors in its logic, change the source code
appropriately, and then compile and run the program again. See also compile,
execute, link.
2) If you are using the Rapid Development System, you can use the
INFORMIX-4GL Interactive Debugger to debug 4GL programs. The Debugger
helps you to control and monitor program execution and inspect the applica-
tion state. The Debugger is purchased separately from 4GL. See also program
execution, Rapid Development System.

debugger A software product to analyze programs and to detect and locate errors in
program logic. The INFORMIX-4GL Interactive Debugger is a 4GL source lan-
guage debugger that supports a wide variety of programming tools, such as
tracing program logic and stopping execution at preset points. See breakpoint
and tracepoint.

declare To make the name and data type of a variable known to a compiler. In 4GL,
the DEFINE statement declares variables so the 4GL compiler can verify refer-
ences to the variables in the succeeding code. The GLOBALS statement
declares global variables. See also compile, data type, define, global variable, vari-
able.

default The value that will be used, or the action that will be taken, unless you specify
otherwise. In many SQL and 4GL statements, there is a default action that will
be used if you do not specify another; for example, the FETCH statement
retrieves the NEXT row unless you specify a different keyword such as PRIOR.
Screen forms can specify a default value for input from each field, in case the
user fails to enter one. See also screen form, variable.

define To allocate memory for storage of a variable. At runtime, the DEFINE
statement indicates how much storage should be allocated for a variable. The
GLOBALS statement defines global variables. To define a function (or report)
is to specify the actions performed by the function. See also data type, declare,
execute, function, global variable, report, variable.

Delete key The logical key that the user can press within a 4GL application to delete the
current line of a screen array (the current screen record) during the INPUT
ARRAY statement. 4GL automatically deletes the associated line of the pro-
gram array. By default, the physical key for Delete is F2. See also Insert key, log-
ical key, program array, screen array, screen record.

delimiter A character that separates one unit of text from another. The eye can easily

Glossary 15

see boundaries based on context, but programs need unambiguous marker
characters to detect the end of one item and the start of the next. In data pro-
duced by the UNLOAD statement, the data from each column ends with a
delimiter (| by default) so that the LOAD command can recognize the end.
In the form specification file, brackets ([]) mark or delimit the fields of the
form. See also form specification file.

developer An individual who develops computer programs, taking them from design,
coding, and debugging to general release. 4GL provides the developer with a
means of developing database applications. Also referred to as the program-
mer. See also application program, user.

development
environment

The special set of tools that a developer can use to develop computer pro-
grams. This environment might include text editors, language compilers,
function libraries, program linkers, program debuggers, and other program
utilities. Some of these tools might be accessed by wrapper programs, which
decide which tools need to be run. The Programmer’s Environment is an
integrated development environment that combines many of these tools into
a single, cooperative environment. See also compile, debug, execute, link,
Programmer’s Environment, text editor.

directory A directory is a file folder; it contains other files. Directories can also contain
other directories; directory structures are used to organize related files into
categories. The user can construct a hierarchy of subdirectories and files that
resembles an inverted tree in structure. Each user has a home directory that
represents the top level of the user’s personal hierarchy of other directories
and files. The current directory is a single directory (selectable by the user)
that enables the user to be in one directory at a time and to refer to its files
unambiguously. To refer to files in other directories, the user must supply a
path, that is, a list of the subdirectories that describe the location of those files.
See also current, file, operating system.

DIRTY READ A level of process isolation that does not account for locks and does allow
viewing of any existing rows, even rows that might be currently altered from
inside an uncommitted transaction. DIRTY READ is the lowest level of isola-
tion (no isolation at all). It is the level at which INFORMIX-SE operates, and it
is an optional level under Informix Dynamic Server. See process isolation.

display field Field used in a screen form to indicate where data is to be displayed on the
screen. A display field is usually associated with a column in a table.

element See array element.

16 HCL Informix 4GL Reference Guide

environment
variable

A special variable with a value that is maintained by the operating system
and made available to all programs. Environment variables are usually
stored in a special system area and contain system specifics such as the path
(the directories in which the operating system looks for user-invoked com-
mands). See also operating system, shell.

error An exception that indicates failure of a requested action or an illegal
specification. Errors can occur during compilation—during preprocessing of
program statements or during the linking stage—or during execution of the
program. At runtime, some errors are fatal in that the program cannot con-
tinue execution (runtime errors); others are recoverable in that the program
can take corrective action and continue execution. Rounding errors can occur
during truncation in rounding; overflow errors can occur during arithmetic
operations in which the size of the result is larger than the size of the space in
which the result is to be stored. See also compile, error handling, exception, exe-
cute, link, status variable, truncation.

error handling Program code that checks for a runtime error. By default, 4GL terminates a
program when it encounters a runtime error. The 4GL WHENEVER ERROR
statement can change this default error-handling behavior. With the
WHENEVER ERROR CONTINUE statement, 4GL sets the built-in status vari-
able to a negative value and continues execution when it encounters a runt-
ime error. The program must explicitly check the value of status and
determine appropriate action. See also error, error log, error text, exception han-
dling, program execution, status variable.

error log A file that receives error information for a program at runtime. 4GL contains
some built-in functions that allow you to make entries in the error log:
ERR_GET(), ERR_PRINT(), ERR_QUIT(), ERRORLOG(), and STARTLOG(). See
also built-in function, error, error handling, status variable.

error message Text that describes a 4GL error. Each error is identified by an integer, usually
negative, called an error code. Each code corresponds to a specific error mes-
sage. Such messages can be retrieved by running the finderr utility or within
a program by making a call to the ERR_GET(), ERR_PRINT(), or ERR_QUIT()
built-in functions. By default, 4GL automatically displays some runtime error
messages on the screen. See also error handling, error log, status variable.

error trapping Code within a program that anticipates and reacts to runtime errors.

Glossary 17

escape character A character that indicates that the following character, normally interpreted

by a program, is to be printed as a literal character instead. Usually programs
that handle user input (such as text editors and shells) have some characters
that have special interpreted meanings. The escape character is used with the
interpreted character to escape or ignore the interpreted meaning. The ASCII
escape character is a nonprinting character with value of ASCII 27. In 4GL, the
backlash (\) can be used as an escape character: the string "\\" would indi-
cate that the backslash character is to be sent. See also ASCII, character, print-
able character, shell, text editor.

Escape key The physical key usually marked ESC on the keyboard. It sends the ASCII
code for the escape character. This key is the default Accept key in user inter-
action statements like CONSTRUCT, DISPLAY ARRAY, INPUT, or INPUT ARRAY.
See also Accept key, escape character, key, user interaction statement.

exception A runtime event for which the program might want to take some action.
Exceptions in 4GL include: runtime errors (an error returned by a database
server, a state initiated by a stored procedure statement, or an error detected
by the application program), a database query that returns no rows (status
variable is set to NOTFOUND), warnings (SQL conditions), and the pressing
of the Interrupt or Quit key by the user. See also error, exception handling, Inter-
rupt key, Quit key, status variable, warning.

exception
handling

Program code that checks for exceptions and performs recovery actions in the
event they occur. By default, 4GL performs the following exception handling:
runtime errors—terminate the program; SQL NOTFOUND—set status to
NOTFOUND and continue execution; warnings—continue execution; and
Interrupt (or Quit) key—terminate program. The developer can change the
default exception handling for these first three types of exceptions with the
WHENEVER statement: runtime errors (WHENEVER ERROR, WHENEVER ANY
ERROR); NOTFOUND (WHENEVER NOT FOUND); and warnings (WHENEVER
WARNING). The DEFER statement changes handling of the Interrupt and Quit
keys. See also error handling, Interrupt key, program execution, Quit key, status,
warning.

executable file 1) A file that contains machine code (in binary form) that has been linked

18 HCL Informix 4GL Reference Guide

executable
statement

and is ready to be run on a computer. Can also refer to a collection of instruc-
tions that can be executed by a command interpreter or processor, for exam-
ple a batch file. See also compile, execute, file, interpret, link.
2) In 4GL, an executable file can be either interpretive p-code (with a .4gi or
.4go extension) or compiled C code (with an .exe extension), depending on
the version of 4GL that you are using. See also command line, p-code.

A statement that requires processing action at runtime. Executable state-
ments are distinguished from declarative statements (that provide informa-
tion about the nature of the data without themselves causing any processing)
and compiler directives that are instructions to the compiler. All 4GL state-
ments are executable except MAIN, DEFINE, DEFER, FUNCTION, GLOBALS,
REPORT, and WHENEVER. See also compiler directive, declare, define, statement.

execute 1) To run a compiled or interpreted program by carrying out the instructions
in an executable file. To execute or run a program, the operating system must
create a process for the program and then allocate the CPU (and any other
resources needed by the program) to this process. The state of the program in
execution is often called runtime. See also compile, debug, executable file, inter-
pret, link, operating system, process, resources.
2) A 4GL executable file contains either interpreted p-code or compiled
C code, depending on the version of 4GL that you are using. See also C Com-
piler, command line, Rapid Development System.

execution stack See call stack.

expansion page An additional page filled with data from a single row. Informix Dynamic
Server uses expansion pages when the data for a row cannot fit in the initial
page. Expansion pages are added and filled as needed. The original page
entry contains pointers to the expansion pages.

explicit
transaction

A transaction that the developer must explicitly begin and end. The BEGIN
WORK statement indicates the beginning of the transaction. The developer
must explicitly indicate the end of the transaction with the COMMIT WORK
and ROLLBACK WORK statement. A database that is not ANSI compliant but
that has a transaction log uses explicit transactions. See also ANSI compliant,
commit, roll back, transaction.

Glossary 19

exponent 1) In the representation of a FLOAT or SMALLFLOAT value, a signed integer

that indicates the power to which the mantissa is to be raised. See
also floating-point number, mantissa.
2) The right-hand unsigned integer operand of the exponentiation (**) oper-
ator in 4GL expressions. See also arithmetic operators.

expression A sequence of operators, operands, and parentheses that can be evaluated to
a single value, usually at runtime. In 4GL, an expression should evaluate to a
simple 4GL data type: number (Boolean, integer, floating-point, and fixed-
point), character, or time (DATE, DATETIME, and INTERVAL). See also Boolean,
character, data type, fixed-point, floating-point, integer, interval, operand, operator,
precedence, regular expression.

extent A continuous segment of disk space allocated to a tblspace in the database.
The programmer can specify both the initial extent size for a table and the size
of all subsequent extents assigned to the table.

external signal The notification of an operating system event that is delivered to a process.
4GL programs can handle two external signals: Interrupt and Quit. See also
Interrupt key, operating system, process, Quit key.

field 1) An area for holding a data value. Usually refers to a delimited, unprotected
area on a screen form used for entry and display of a data value. Such fields
can have field attributes associated with them that control, for example, the
case of letters, default values, and so on. When a form is active, the location
of the cursor designates what is called the current field, the field in which the
user can enter data. A field on a screen form corresponds to a column in a
database, unless it has been defined as a form-only field. See also attribute,
current, form, form specification file, form-only field, multiple-segment field, screen
array, screen form.
2) In some database terminologies, a column. See also column.

field buffer A portion of computer memory associated with and holding the current con-
tents of a screen field. In 4GL, the GET_FLDBUF() built-in function allows the
developer to examine the field buffer. See also built-in function, field.

field tag A unique name that identifies a field in the SCREEN section of a form specifi-
cation file. It is also used in the ATTRIBUTES section to assign a set of field
attributes to the field. Unlike a label, a field tag does not appear when the
form is displayed. See also attribute, field, form specification file, label.

file 1) A named collection of information stored together, usually on disk. A file

20 HCL Informix 4GL Reference Guide

filename
extension

can contain the words in a letter or report, a computer program, or a listing
of data. Files are usually stored in directories and are managed by the oper-
ating system. See also data file, directory, executable file, form specification file,
help file, log, operating system, output file, source module.
2) In some database terminologies, the term used for a table. See also table.

The part of the filename following the period (.). It usually identifies
the purpose of the file. For example, form specification files have a .per exten-
sion while compiled form files have a .frm extension. 4GL source modules
have a .4gl extension. INFORMIX-ESQL/C files have a .ec extension. See also
executable file, file, form specification file, help file, source file.

fill character Specific ASCII characters that are used to provide formatting instructions in a
format string. In 4GL reports, the ampersand (&) instructs the PRINT state-
ment to insert leading zeros when a number does not completely fill the for-
mat string. Fill characters are used in reports and forms. See also ASCII,
character, form specification file, format string, report.

fixed-point
number

A real number with a fixed scale. In 4GL, the fixed-point number data types
are DECIMAL(p,s) and MONEY. These data types store values that include a
fractional part as fixed-point numbers. See also data type, floating-point num-
ber, scale, simple data type.

flag 1) A value used to indicate or flag some condition. You can define a program
variable as a flag (usually assigning it the values TRUE and FALSE). See also
Boolean, variable.
2) A command-line option to an operating system program is sometimes
called a flag as well. See also command line, operating system.

floating-point
number

A real number with a fixed precision and undefined scale. The decimal point
floats as needed to represent an assigned value. In 4GL, the floating-point
number data types are FLOAT, SMALLFLOAT, and DECIMAL(p). See also data
type, exponent, fixed-point number, mantissa, precision, scale, simple data type.

forced residency An option that forces UNIX to keep Informix Dynamic Server shared memory
segments always resident in memory, preventing UNIX from swapping out
these segments to disk on a busy system. (This option is not available in all
UNIX systems.)

foreground
process

A process that currently has access to a window or the screen. It requires this
access because it needs to perform input or output. See also background
process, process, screen.

Glossary 21

form See screen form.

form field A field on a screen form. See field.

form
specification file

An ASCII source file that describes the logical format of the screen form and
provides instructions about how to display data values in the form at run-
time. You define a screen form in its source file (with a .per extension) and
create a compiled version (with a .frm extension) for use at runtime. form4gl
creates the compiled version. Sometimes this file is referred to as simply the
form specification. See also field, field tag, file, screen array, screen form.

form-only field A field on a screen form that is not associated with any database column.
Usually, a form-only field is used for display purposes only. See also column,
field, form specification file, screen form.

formal argument In a function definition, the variable in the argument list that serves
as a placeholder for an actual argument. The argument list determines the
number and data types of the function’s arguments. In the function call, the
actual argument sends the value to the function. See also actual argument, call-
ing routine, formal argument, function call.

format string A quoted string whose characters specify how to display data values. The
USING operator, the FORMAT and PICTURE field attributes, and certain envi-
ronment variables can use format strings. See also attribute, environment vari-
able, fill character, quoted string, string.

formatted mode An output mode of a 4GL program in which screen addressing is used. 4GL
enters this mode when it executes any 4GL user interaction or output state-
ment (ERROR, MESSAGE, DISPLAY AT, and so on) except a simple DISPLAY
statement (one without an AT, BY NAME, or TO clause). Output in formatted
mode displays in the 4GL screen. It should not be mixed with line mode. See
also line mode.

22 HCL Informix 4GL Reference Guide

fourth-
generation
language

A programming language, approximating a natural language, designed and
developed for a given class of applications. Because they focus on a specific
type of application, such languages can anticipate the actions programs need
to perform. As a result, many typical operations can be encapsulated into a
generalized but powerful statement. Sometimes abbreviated as 4GL.

4GL is a fourth-generation language for the creation of database applications.
It includes the ability to embed SQL statements in a program as well as pro-
viding additional statements, operators, and functions to assist in the cre-
ation of database applications. See also application program, built-in function,
built-in operator, database, operator, SQL, statement.

function 1) A named collection of statements defined to perform an application task,
often one that needs to be repeated. Functions can be defined to accept argu-
ments and to return values. See also argument, built-in function, programmer-
defined function, return value, SQL, statement.
2) A 4GL function (a program block defined with the FUNCTION statement)
is often referred to simply as a function. See also 4GL function.

function call The invocation, by a calling routine, of a programmer-defined or built-in
function. This syntax includes the function name followed by the actual argu-
ment values, in parentheses. Calls can be explicit (with the CALL statement)
or implicit (embedding the call in a 4GL expression). See also actual argument,
calling routine, programmer-defined function, pass-by-reference, pass-by-value.

function
definition

See 4GL function.

function key Most keyboards have functions keys F1 through F12. In 4GL, you can define
actions to perform when the user presses a certain function key. To define
these actions, use the ON KEY clause of the CONSTRUCT, DISPLAY ARRAY,
INPUT, INPUT ARRAY, or PROMPT statement, or in the KEY clause of the
MENU statement. Here and in the OPTIONS statement, you can use the nota-
tion F1 through F64 to denote the individual function keys (but not all key-
boards support that many function keys). See also control block, key, logical key.

Glossary 23

global variable A variable defined outside all program blocks and accessible within all pro-

gram blocks of the program. The scope of a global variable is all statements
that follow the global variable declaration and all source modules which ref-
erence the global variable declaration. In 4GL, global variables are declared in
the GLOBALS…END GLOBALS statement, either at the top of a source module
(outside all program blocks), or in a separate source file. See also declare,
define, program block, scope of reference, source module, variable.

GLS Acronym for Global Language Support. The ability to support the character sets
and the cultural conventions for data display of most European and Asian
languages. (This version of 4GL does not support right-to-left or bidirectional
Middle Eastern languages.)

header A comment block at the top of an ASCII file that identifies the file contents.
Contents can include the purpose, author, modification information, and
other relevant information. Headers are often used in 4GL source modules
and form specification files. See also comment, form specification file, source mod-
ule.

help file A file that contains help messages for a 4GL application. Text associated
with each message must be uniquely identified within a given help file. You
define a help message in its source file (by default having a .msg extension)
and create a compiled version (default .iem extension) for use at runtime. The
mkmessage utility creates the compiled version. Sometimes this file is
referred to as a help message file. See also file, help message.

Help key The logical key that the user can press in a 4GL application to display a help
message for the current form, field, or menu option. By default, the physical
key for help is CONTROL-W. See also logical key, help file, help message.

help message Text that provides information and guidelines on a specific topic or for a
given context. In 4GL, each message is identified by a positive, nonzero inte-
ger, called a help number. Each number corresponds to one and only one help
message text resident in the currently designated help file. Help messages
can be displayed automatically or at the request of the user (the Help key).
See also Help key, help file.

hexadecimal
number

A number represented in base 16. The right-most digit is multiplied by 16 to
the power of zero. The digit immediately to the left is multiplied by 16 to the
first power. The digit immediately to the left of that is multiplied by 16 to the
second power, and so on. The characters that represent a hexadecimal num-
ber are 0-9 and A-F (for 10-15).

highlight An inverse-video rectangular area that marks the user’s place on the screen.

24 HCL Informix 4GL Reference Guide

A highlight often indicates the current option on a menu or the current char-
acter in an editing session. If a terminal cannot display highlighting, the cur-
rent option often appears in angle brackets while the current character is
underlined.

identifier A sequence of letters, digits, and symbols that the compiler recognizes as a
programmer-defined name of some entity. In 4GL, an identifier can include
letters, digits, and underscores (_). It must have either a letter or an under-
score as the first character. It can be up to 50 characters in length but the first
7 must be unique among similar program entities that have the same scope
of reference. 4GL does not distinguish between uppercase and lowercase let-
ters. Types of identifiers include variable names, cursor names, function
names, report names, table names, window names, form names, prepared
statement names, and report names. See also 4GL function, 4GL window, case
sensitivity, cursor, keyword, name space, prepared statement, report, reserved word,
scope of reference, screen form, table, variable.

implicit
transaction

A transaction that automatically begins when an SQL statement that alters the
database executes. The developer must explicitly indicate the end of the
transaction with the COMMIT WORK and ROLLBACK WORK statements. An
ANSI-compliant database uses implicit transactions. See also ANSI compliant,
commit, roll back, transaction.

index 1) A database file that contains a list of unique data values, with pointers to
the database rows that contain those values. Indexes are used to reduce the
time required to order rows and to optimize the performance of database
queries. See also database, query, row.
2) A subscript value into an array. See also array, subscript.

indirect typing The process of assigning a data type to a variable by referencing a database
table or column. In 4GL, indirect typing is carried out by the keyword LIKE in
a variable definition. See also column, data type conversion, define, table, variable.

input record A group of related values that are passed to a 4GL report for formatting. The
report formats data one input record at a time. The OUTPUT TO REPORT state-
ment sends an input record to a report. See also report.

Glossary 25

Insert key The logical key that the user can press in a 4GL application to insert a new line

at the current position of the screen array during the INPUT ARRAY state-
ment. 4GL automatically inserts a line at the associated position of the pro-
gram array. By default, the physical key for Insert is F1. See also Delete key,
logical key, program array, screen array.

int_flag variable See Interrupt key.

integer 1) A real number with no fractional part. In 4GL, the INTEGER and SMALLINT
data types can store integer values within the limits of their ranges. Boolean
values are also stored as integers. See also Boolean, data type, simple data type.
2) In uppercase, INTEGER is a data type for storing integers whose absolute
value is no greater than 2,147,483,647.

interactive A mode of execution in which a program accepts input from a user and pro-
cesses that input, or a program that sends output to the screen, or a program
that does both. 4GL programs that use user interactive statements are interac-
tive. See also batch, program execution, user interaction statement.

interpret 1) To run a program that has been compiled to intermediate code. The
executable file contains instructions in intermediate code. This translation is
done by a system program called an interpreter, sometimes called a runner.
See also compile, debug, execute, link.
2) The Rapid Development System can interpret 4GL source code by execut-
ing the intermediate code (the p-code) produced by the 4GL compiler. See
also p-code, Rapid Development System.

Interrupt key The logical key that the user can press within a 4GL application to indicate
cancellation of the user interaction statement. If the 4GL program does not
include the DEFER INTERRUPT statement, pressing this key terminates pro-
gram execution. With DEFER INTERRUPT, pressing the Interrupt key sets the
built-in int_flag variable to TRUE and cancels the current interaction state-
ment, resuming execution at the next 4GL statement. Further response to the
Interrupt signal can be deferred, however, until the next pause for user input.
The physical key for Interrupt is CONTROL-C. See also Accept key, exception han-
dling, interrupt signal, logical key, Quit key, user interaction statement.

Interrupt signal A high-priority kind of signal sent to a running program either by the oper-
ating system directly or by the user. An Interrupt signal is usually a com-
mand to interrupt a running program. In a 4GL application, the user can
invoke an Interrupt signal by pressing the Interrupt key. See also Interrupt key,
program execution.

interval 1) A span of time. In 4GL, there are two types of intervals, namely year-month

26 HCL Informix 4GL Reference Guide

(those measured in years and months), and day-time (those measured in
smaller time units: days, hours, minutes, seconds, and fraction of seconds).
See also data type, simple data type.
2) In uppercase, INTERVAL is a data type for intervals of time.

ISAM Acronym for Indexed Sequential Access Method. An access method is a way
of retrieving pieces of information (rows) from a larger set of information
(table). An ISAM allows you to find information in a specific order or to find
specific pieces of information quickly through an index.

join The process of combining information from two or more tables based on
some common domain of information. Rows from one table are paired with
rows from another table when information in the corresponding rows match
on the joining criterion. For example, if a customer_number column exists in
both the customer table and the orders table, you can construct a query that
pairs each customer row with all the associated orders rows based on the
common customer_number.

key 1) In database terminology, a key value is that part of a row that makes the
row unique from all other rows; for example, a SERIAL number. At least one
such value must exist in any row; the most important is designated as the pri-
mary key. See also column, rowid, table.
2) In application terminology, when speaking of the keyboard, a key is what
the user presses to enter text or commands in the application. The actual keys
of the keyboard (A, ESCAPE, RETURN) are often called physical keys to distin-
guish them from logical keys (which might be made up of a sequence of
keys). See also accelerator key, activation key, control character, function key, key-
board, logical key, mnemonic key, modifier key, RETURN key.

keyboard focus The area on the screen that currently gets input from the keyboard; for exam-
ple, a text field. The keyboard focus is usually indicated by highlighting or
the presence of a text cursor. See also active window, key, screen, text cursor.

keyword A sequence of letters recognized by a compiler as having a reserved meaning
within a language. In 4GL, examples of keywords are INPUT, INSERT, TO, and
LIKE. In 4GL documentation, keywords are usually shown in uppercase to
assist readability, but 4GL keywords are not case sensitive. See also case sensi-
tivity, identifier, reserved word.

Glossary 27

label A character string used as a point of reference. For example, a label on a

language
supplement

screen form helps to identify a form field. In a LABEL statement, the label is
the identifier that indicates the position in a 4GL program to which GOTO
statements can transfer control. See also screen form, string.

A product obtained from an Informix sales office that provides settings for an
additional national language. See also locale file, Global Language Support.

line mode An output mode of a 4GL program in which screen addressing is not used.
4GL enters this mode and displays the line mode overlay when it executes a
simple DISPLAY statement (one without an AT, BY NAME, or TO clause).4GL
remains in line mode as long as it encounters additional simple DISPLAY
statements or the PROMPT statement. When it encounters any other output
statement (ERROR, DISPLAY AT, and so on) or a user interaction statement,
4GL returns to formatted mode. Because this mode results in a simple stream
of characters to standard output, it should not be mixed with formatted
mode. The OPTIONS, RUN, START REPORT, and REPORT statements can
explicitly specify IN FORM MODE or IN LINE MODE to set the screen mode to
formatted mode or line mode for PIPE output or for processes that RUN exe-
cutes. See also formatted mode, line mode overlay.

line mode overlay A window that overlays the entire 4GL screen when 4GL enters line mode.
The line mode overlay remains as long as the program remains in line mode.
It is only updated, however, when 4GL executes either a PROMPT or a SLEEP
statement. See also 4GL window, formatted mode, line mode.

link 1) To combine one or more compiled source modules into a single executable
file or program. This merging is done by a system program called a linker or
a link editor. The linker verifies it can locate all functions called and all vari-
ables used. See also compile, debug, execute, executable file, source module.
2) The 4GL Programmer’s Environment can link compiled 4GL source mod-
ules into a single executable file. The Programmer’s Environment can handle
the entire process of compilation, linking, and running of a multimodule 4GL
program. If you do not use the Programmer’s Environment, you must explic-
itly link compiled 4GL source modules into a single executable file. See also
p-code, Programmer’s Environment.

literal Characters specifying some fixed value, such as a pathname, number, or date.

28 HCL Informix 4GL Reference Guide

In the format string of a PICTURE field attribute, for example, any characters
except A, #, and X are literals, because they are displayed unchanged in the
formatted display. In 4GL statements, literal character values must appear
between single (' ') or double (" ") quotation marks. The documentation of
Informix database servers sometimes uses the term constant in references to
literals. See also attribute, constant, form specification file, quoted string, string.

local variable A variable declared in a program block. The scope of a local variable is lim-
ited to statements within the same program block. In 4GL, the DEFINE state-
ment declares local variables within MAIN, FUNCTION, or REPORT program
blocks. See also declare, define, program block, scope of reference, variable.

locale file A file installed on the system and that defines conventions for some specific
language or culture, such as formatting time or money, and classifying, con-
verting, and collating (sorting) characters. See also language supplement.

local variable A variable that has meaning only in the program block in which it is defined.
See variable and scope of reference.

log 1) With an Informix Dynamic Server database server, a physical log contains
images of entire pages before they were changed. Physical logs are used dur-
ing fast recovery when Dynamic Server is coming up. See also error log, file.
2) A logical log, sometimes called a transaction log, records changes per-
formed on a database during the period the log was active. A logical log
includes, as needed, images of the row before it was changed and images of
the row after it was changed. Logical logs are used to roll back transactions,
recover from system failures, and restore databases from archives. See also
commit, roll back, transaction.
3) The STARTLOG() function of 4GL can specify an error log file in which
to record runtime errors.

logical key A key that the user can press to perform certain tasks predefined by 4GL or
the operating system. These include the following keys: Accept key, Delete
key, Help key, Insert key, Interrupt key, Quit key. Each key is associated with
some default physical key. The OPTIONS statement can assign most logical
keys to different physical keys. Certain 4GL statements can reference logical
keys with keywords like ACCEPT, DELETE, INSERT, and so forth. See also
Accept key, Delete key, Help key, Insert key, Interrupt key, key, Quit key.

login The procedure that identifies a user to a computer. If the login is successful,
the user is granted access to the system. See also user name.

Glossary 29

main menu The top menu in a hierarchy of nested menus. See also menu, ring menu.

MAIN
program block

The program block that 4GL begins executing when it starts a 4GL program.
This program block is defined with the MAIN statement and includes all
statements between the MAIN and the END MAIN keywords. When it reaches
the END MAIN keywords, 4GL ends the program. See also 4GL function, func-
tion, normal execution, program block, report.

mantissa 1) In the representation of a FLOAT or SMALLFLOAT value, a signed integer
that indicates the number that is to be raised to the power indicated by the
exponent. See also exponent, floating-point number.
2) The left-hand unsigned integer operand of the exponentiation (**) opera-
tor in 4GL expressions. See also arithmetic operators.

member See record member.

menu A graphical object from which the user can choose one of several options,
called menu items. Menus often control a program by providing menu items
for actions that can be performed. See also main menu, ring menu.

menu option A choice the user can make from a ring menu. A menu option can be visible,
in which case it appears in the ring menu. It can also be invisible, in which
case the user must know the correct activation key for choosing the option. A
hidden menu option cannot be activated by the user unless the program uses
SHOW MENU within the MENU statement. See also activation key, ring menu.

mnemonic key A shorthand name for a key, menu option, or command. See also activation
key, alias, key.

MODE ANSI See ANSI compliant.

modifier key A key that is held while pressing another key to modify its meaning. See also
control character, key.

module A group of related functions. If these related functions share variables, these
variables can be defined as module variables. During program execution, the
current module is the source file that contains the program block currently
being executed. See also current, module variable, source module.

module variable A variable defined outside all program blocks. The scope of reference
of a module variable is all statements that follow its definition. In 4GL, mod-
ule variables are defined with the DEFINE statement at the top of a source
module, outside all program blocks. See also declare, define, program block,
scope of reference, source module, variable.

30 HCL Informix 4GL Reference Guide

multiple-
segment field

In a screen form, a field consisting of several, separately delimited parts, each
sharing a common field tag. Such a field allows long character strings to be
displayed or entered on successive lines of the form. A multiple-segment
field requires the WORDWRAP field attribute in the form specification file. See
also field, field tag, form specification file, screen form.

name space The set of identifiers of different types whose names must be unique within
the same scope. For example, the following types of identifiers have the same
name space: cursor names, window names, form names, function names, glo-
bal variable names, and report names. Because they share the same name
space, none of them can have the same name. For example, a cursor cannot
have the same name as a window or a global variable. A cursor can have the
same name as a local variable, however, if the cursor does not have the same
scope as the variable. See also identifier, naming conventions, scope of reference,
variable.

naming
conventions

Guidelines for the creation of identifier names that assist the programmer in
recognizing the purpose of the identifier from its name. For example, prefixes
can be used to identify names of cursors (c_), windows (w_), program
records (p_), program arrays (pa_), global variables (g_), screen arrays
(sa_). These guidelines are distinct from naming rules, which the 4GL com-
piler and runtime enforce with error messages (and failure of your program
logic) if a violation occurs. See also identifier, name space, scope of reference, vari-
able.

navigation Traversing fields, menus, or other controls within a 4GL window. The user
can navigate by using the TAB, arrow, and other keys. See also key.

normal
termination

The termination of the 4GL application by exiting from the MAIN program
block at the END MAIN keywords. In the INFORMIX-4GL Interactive Debug-
ger, you can no longer inspect the application state after normal termination
because there are no active functions. (Some earlier versions of 4GL treated
the RETURN statement in the MAIN program block as a means of normal ter-
mination, but this is now treated as an error.) See also abnormal termination,
active function, debug, MAIN program block, program execution.

Glossary 31

null value 1) A value meaning not known or not applicable. Every data type can represent

a null value, which is distinct from a string of blanks or from a value of zero.
Database columns and program variables can have null values. In 4GL, this
is represented by the keyword NULL. To test for a null value, use the IS NULL
and IS NOT NULL operators. See also Boolean operators.
2) In some contexts, null is casually used to mean empty; for example, a char-
acter string with zero length is sometimes called the null string. This can lead
to confusion, because an empty string (the string “ ”) has a specific non-null
value, distinct from a null string. An empty string has a definite length (zero)
while a NULL character value has an unknown length and value. In several
contexts, however, 4GL represents a NULL character value as the empty
string or as a single blank. See also blank space, string.

open To prepare something for use. In programming, opening something often
entails allocating memory and other resources to it, and sometimes means
getting exclusive access. Typically, things cannot be used until they have
been opened; they remain usable until they are closed. To open a cursor
means to have the database server process the query up to the point of locat-
ing the first selected row; this can entail significant processing and space in
memory and on disk. To open a file is to locate the file and bring it into mem-
ory. To open a form is to find the compiled form file, bring it into memory,
and prepare to display it. To open a 4GL window is to allocate memory for
the image of the window, push it onto the window stack, and to display it on
the screen. See also 4GL window, close, cursor, file, query, resources, screen form.

operand A value on which an operation is performed by an operator. An operand can
be a variable, a constant, a literal value, a function that returns a single value,
or another expression. See also constant, expression, operator, variable.

operating system The software that provides an interface between application programs and
hardware. It is the part of a computer system that makes it possible for the
user to interact with the computer. It manages processes by allocating the
resources they need. See also command line, execute, process, resources.

operator A symbol or keyword built into a language that returns a value from the val-
ues of its operands. Operators can generate a value from a single value (unary
operators) or from two values (binary operators). See also arithmetic operators,
assign, associativity, binary operator, Boolean operators, built-in operator, operand,
precedence, relational operators, string operators, unary operators.

output file A file in which the results of a query or a report are stored. See also file, query,
report.

owner A designation that associates an individual with a file or set of files. Informix

32 HCL Informix 4GL Reference Guide

databases can use ownership to restrict access to certain columns or tables.
On UNIX systems, ownership also applies to files and directories for the pur-
pose of limiting access to their contents and location within the file system.
See also database, operating system.

p-code Abbreviation for pseudo-code. P-code is an intermediate form of code gener-
ated by the Rapid Development System. Although p-code takes more mem-
ory to run, it is machine independent. See also compile, debug, execute,
interpret, link.

page A unit of data analogous to the page of a book. One page of a program array
is the number of rows that can be displayed in the screen array at one time.
The database server stores data in pages. See also program array, screen array.

page header The top part of a page in a report. A running header appears at the top of each
page of a report. Information (for example, the title and date) printed at the
top of each page of a report is formatted in the PAGE HEADER and FIRST
PAGE HEADER control blocks of a report. See also control block, page trailer,
report.

page trailer The bottom part of a page in a report. Information (for example, the page
number) printed at the bottom of each page of a report is formatted in the
PAGE TRAILER control block. A page trailer is also referred to as a footer. See
also control block, page header, report.

pass-by-
reference

A method used in a function call that determines how an argument is passed
to the programmer-defined function. With pass-by-reference, the address in
memory of the actual argument is passed to the function. This method means
that changes made to the value of the formal argument within the body of the
function will be visible from the calling routine when the function terminates.
4GL uses pass-by-reference only for blob (BYTE and TEXT) variables. See also
argument, blob, function call, pass-by-value.

pass-by-value A method used in a function call that determines how an argument is passed
to the programmer-defined function. With pass-by-value, the actual argu-
ment is evaluated and the resulting value is passed to the function. This
method means that changes made to the value of the formal argument within
the body of the function will not be visible from the calling routine when the
function terminates. 4GL uses pass-by-value for variables of all data types
except blob (BYTE and TEXT). See also argument, blob, data type, function call,
pass-by-reference.

Glossary 33

pathname The list of directories needed to identify a file within a directory hierarchy. In

UNIX, directories of a pathname are separated by the slash (/). A file can be
referred in two ways: by its absolute pathname—all directories starting from
the root (top) of the directory hierarchy—or by its relative pathname—the
directories relative to the current directory. See also current, directory, file.

permission On some operating systems, the right to have access to files and directories.
Compare with privileges.

phantom row A row of a table that is initially modified or inserted during a transaction but
subsequently rolled back. Another process might see a phantom row if the
isolation level is DIRTY READ. No other isolation level allows a changed but
uncommitted row to be seen.

pipe A connection of one process to another process such that the output of the
first process is sent directly as input to the second process. It is one of several
ways in which processes can communicate. It is common to speak of a pro-
cess piping some data to another process. See also process.

pop To remove a value from a stack in memory. See stack and push.

popup window A 4GL window that automatically appears when a predefined condition or
event occurs. In a 4GL application, a popup window often contains a list of
values for a given field. The user can choose from this list rather than needing
to type in the value directly. See also 4GL window.

precedence of
operators

The hierarchy of operators. It determines the order in which 4GL evaluates
operators within an expression. 4GL evaluates higher-precedence operators
before those of lower precedence. The order in which operators at the same
precedence level are evaluated is left to right. Precedence order can be
changed by surrounding expressions with parentheses. See also associativity,
expression, operator.

precision The total number of significant digits in the representation of a numeric value
or in a data type specification. The number 3.14 has a precision of 3. See also
floating-point number, scale.

prepared
statement

The executable form of an SQL statement. SQL statements can be executed
dynamically by creating character strings with the text of the statement. This
character string must then be prepared with the PREPARE statement. The
result of the PREPARE is a prepared statement. The prepared statement can
then be executed with the EXECUTE or DECLARE statements. See also query by
example, SQL, statement, statement identifier.

preprocessor A program that translates macro code into statements that conforms to the

34 HCL Informix 4GL Reference Guide

host language. The results of preprocessing can then be passed to a standard
language compiler, such as C or COBOL. When using the C Compiler of 4GL,
the compiler first sends the 4GL source module through a preprocessor to
translate SQL statements into INFORMIX-ESQL/C calls before passing the file
to a C compiler. See also compile, source module.

primary key The information from a column or set of columns that uniquely identifies
each row in a table. The primary key is sometimes called a unique key.

print position The logical location of the print head. A print position can be compared to a
screen cursor in that both refer to a specific x,y coordinate on the page or
screen. See also column, report, row.

printable
character

A character that can be displayed on a terminal or printer. The locale files
specify what characters are printable. These characters might include the
ASCII codes 32 through 126: A-Z, a-z, 0-9, symbols (!, #, $, ;, *, and so on), TAB
(CONTROL-I), NEWLINE (CONTROL-J), FORMFEED (CONTROL-L) and the blank
space character. See also ASCII, blank space, character.

privileges The right to use or change the contents of a database.

process An independent unit of operating system execution. It keeps track of the state
of execution for a program. The operating system creates a process for each
program being executed. It allocates resources needed by a program (mem-
ory, disk, CPU) to its process. The current process is the one that has been allo-
cated use of the CPU.A 4GL application usually runs with two processes: the
4GL application (the front end) and a database server (the back end). See also
application development tool, background process, database server, foreground pro-
cess, operating system, pipe, resources, shell.

program array A 4GL variable defined with the ARRAY keyword. A common use for
a program array is as an array of records to store information to be displayed
in a screen array. The DISPLAY ARRAY and INPUT ARRAY statements can
manipulate program array values or records within the screen array. See also
array, program record, screen array, structured data type, variable.

Glossary 35

program block A programmer-defined group of 4GL statements that has its own scope dur-

program
execution

ing execution. The scope includes definitions and values of variables and can
include arguments and return values. 4GL has the following program blocks:
a MAIN program block, 4GL functions, and reports. Every executable state-
ment must appear within some program block. Program blocks can neither
overlap nor be nested. Any variable defined within a program block is local
to that block. See also 4GL function, call stack, executable statement, MAIN pro-
gram block, programmer-defined function, report, scope of reference, statement block,
variable.

The process of running (executing) a program. A program can be in the
following states: running, suspended (by the system or the program itself), or
terminated (abnormally or normally). See also abnormal termination, debug,
execute, normal termination.

program record A 4GL variable defined with the RECORD keyword. A common use for
a program record is for storing information in a screen record, a row of
a table, or in a line of a screen array. See also program array, record, row, screen
record, structured data type, variable.

program design
database

programmer-
defined
function

Programmer’s
Environment

A database that describes the resources needed to create some executable
programs. It is called syspg4gl (by default), and is accessed by the Program-
mer’s Environment. Regardless of the version of 4GL that you are using,
(RDS Version or C Compiler), this database tracks for each 4GL program such
resources as source files and compiler options. See also executable file, Pro-
grammer’s Environment.

A function written in 4GL that can be called in a 4GL program. The developer
can write 4GL functions (defined with the FUNCTION statement), a MAIN
program block (defined with the MAIN statement), and reports (defined with
the REPORT statement). Collectively these types of functions are often called
4GL program blocks. See also 4GL function, function, built-in function, built-in
operator, MAIN program block, program block, report.

The interface to the 4GL application development package. The Program-
mer’s Environment is an integrated development environment that allows
you to create, compile, link, run, and debug a 4GL program. See also C Com-
piler, compile, debug, development environment, execute, link, program design data-
base, Rapid Development System, target.

push To place a value onto a stack in memory. See stack and pop.

query A request to the database to retrieve data that meets certain criteria.

36 HCL Informix 4GL Reference Guide

The SELECT statement performs database queries. In 4GL, the CONSTRUCT
statement allows you to implement a query by example. See database, excep-
tion, output file, query by example.

query by example A formalized way of implementing a query. The CONSTRUCT statement
allows the user to enter query criteria on a screen form, and then it creates a
Boolean expression based on these criteria. This Boolean expression can then
be appended to an SQL statement (usually a SELECT) to retrieve the desired
rows from the database. The SQL statement must then be prepared and exe-
cuted. See also Boolean expression, cursor, query, prepared statement, query crite-
ria, screen form.

query criteria A set of data values that specify qualifications to apply when looking for data
to be returned in a query. The CONSTRUCT statement accepts query criteria
on a screen form. See also data entry, query by example, screen form, user interac-
tion statement.

Quit key The logical key that the user can press within a 4GL application to indicate
cancellation of the entered data or query criteria. Pressing it requests abnor-
mal completion of the INPUT, CONSTRUCT, PROMPT, INPUT ARRAY, or
DISPLAY ARRAY statements. The physical key for Quit is CONTROL-\. If the 4GL
program does not include the DEFER QUIT statement, pressing this key termi-
nates program execution. With DEFER QUIT, pressing the Quit key sets the
built-in quit_flag variable to TRUE but does not cancel the current interaction
statement. See also Accept key, exception handling, Interrupt key, logical key.

quit_flag variable See Quit key.

quoted string A string enclosed in double quotation (" ") marks. With the exception of fill
characters, the contents of quoted strings are literals. See also character, fill
character, literal, string.

Rapid
Development
System (RDS)

One of two implementations of the 4GL application development language
for UNIX systems. The RDS compiler produces p-code that can then be exe-
cuted by a runner. The other implementation of 4GL for UNIX systems is the
C Compiler; it uses preprocessors to generate C code, which is then compiled
and linked to make a stand-alone, executable file. See also C Compiler, compile,
execute, interpret, link, p-code, preprocessor, Programmer’s Environment, program
design database.

raw device A UNIX disk partition that is defined as a character device and that is not
mounted. The UNIX file system is unaware of a raw device.

Glossary 37

raw I/O The process of transferring data between memory and a raw device. Informix

Dynamic Server can bypass the UNIX file system and address raw devices
directly. The advantage of raw I/O is that data on a disk can be organized for
more efficient access. Raw I/O is sometimes referred to as direct I/O.

record 1) A data structure that has a fixed number of components. Each component
is called a member. Members can have the same or different data types. See
also input record, record member, screen record.
2) In uppercase, RECORD is the keyword for defining a program record in
4GL. The RECORD data type is a structured data type. In 4GL, all members of
the record are accessed by listing the record name followed by the member
name, with a period (.) separating them. See also asterisk notation, program
record, structured data type.
3) In some database terminologies, a term used for a row. See also row.

record member A named component of a program record. A member can be of any 4GL data
type, including RECORD or ARRAY. Some 4GL statements support the asterisk
notation (record.*) to specify all the members of a record. See also asterisk nota-
tion, program record, record.

regular
expression

A pattern used to match variable text. The elements of a regular expression
include literal characters that must match exactly; the wildcard symbols—
asterisk (*) to mean one or more characters here and question mark (?) to
mean any one character, and the class—a list of characters (within brackets)
that are acceptable. The MATCHES and LIKE operators of SQL allow you to
search for character strings that match to regular expression patterns. See also
expression, literal, wildcard.

relation See table.

relational
database

relational
operators

See database.

Operators that perform comparison operations. These operators return the
values TRUE (=1), FALSE (=0), and in some cases UNKNOWN. (If an operand
evaluates to NULL, Boolean operators can yield a third unknown result that
4GL treats as FALSE.) 4GL relational operators are: equal (=), not equal (!= or
<>), greater than (>), less than (<), greater than or equal to (>=), and less than
or equal to (<=). All relational operators have the same precedence level. See
also associativity, binary operator, Boolean operators, operator, precedence.

38 HCL Informix 4GL Reference Guide

REPEATABLE
READ

A level of process isolation available through Informix Dynamic Server that
ensures all data read during a transaction is not modified by another process.
Transactions under REPEATABLE READ are also known as serializable trans-
actions. It is the default level of isolation under Informix Dynamic Server for
MODE ANSI databases.

report A 4GL program block defined with the REPORT statement. A report formats
data sent as input records. The report header follows the REPORT keyword
and defines the name and formal argument list (the input record) for the
report. The report body (all statements between the report header and the
END REPORT keywords) defines the actions of the report. See also argument,
control block, function, input record, output file, page header, page trailer, program
block, programmer-defined function.

reserved lines Areas in a 4GL window that are set aside for use by the form or window.
These areas include the Error line, where the output of the ERROR statement
appears (the default is the last line on the screen); the Comment line, where
the text in the COMMENTS field attribute appears (the default is the next to
last line on the screen and the last line on all other 4GL windows); the Form
line, where the first line of the screen form appears (the default is the third
line of the current 4GL window); the Menu line, where the ring menu appears
(the default is the first line of the current 4GL window); the Message line,
where the output of the MESSAGE statement appears (the default is the sec-
ond line of the current 4GL window); and the Prompt line, where the output
of the PROMPT statement appears (the default is the 1st line of the current 4GL
window). These default positions can be changed with the OPTIONS state-
ment or with the ATTRIBUTES clause of the OPEN WINDOW statement. See
also 4GL window, ring menu, screen, screen form.

reserved word A string that you cannot use in any other context of the language or program.
In 4GL versions before 4.1, all keywords were reserved words. In Version 4.1
and higher, you can use keywords as identifiers, if they do not create an ambi-
guity for the 4GL compiler. If you compile a 4GL program for an ANSI-com-
pliant database, many keywords are still reserved words, and therefore
should not be declared as identifiers. See also ANSI compliant, identifier, key-
word.

Glossary 39

resources 1) The hardware and software needs of an executing program. Examples

include CPU, memory, disk, printer, terminal (or workstation). These are allo-
cated to the program’s process by the operating system. See also operating sys-
tem, process, terminal.
2) Visual and other attributes that can be chosen at runtime. Resources can be
chosen by using command-line options or by using other platform-specific
methods. On X/Motif systems, resources can be specified using pre-defined
resource names in some files. 4GL statements and ATTRIBUTE settings can
override resource choices made through the native resource management
systems of a platform. See also attribute.

RETURN key The key to indicate the end-of-line. The RETURN key is the default Accept key
in 4GL. See also key.

returned value The value returned by a 4GL function to the calling routine. To return a value,
the FUNCTION program block must include the RETURN statement. The call-
ing routine must have some way of handling returned values for a function.
Reports cannot return a value to a calling function. See also 4GL function, call-
ing routine, function definition, programmer-defined function.

ring menu A menu in which the items appear in a single horizontal line. Each menu item
is called a menu option. The user can press the SPACEBAR or RIGHT ARROW to
make the menu cursor traverse the menu like a ring, as if the first option fol-
lowed the last. In 4GL, the MENU statement creates a ring menu. The high-
lighted option is the current option. If the menu includes more options than
the current 4GL window can display on a single line, the menu continues onto
successive pages, with the first page following the last. The line below the
Menu line can display text that describes the current option. See also activa-
tion key, menu, menu option, page, user interaction statement.

roll back To terminate a transaction by undoing any changes to the database since the
beginning of the transaction. The database is restored to the state that existed
before the transaction began. When the transaction is rolled back, all open
database cursors (except hold cursors) are closed and all locks are released.
The ROLLBACK WORK statement rolls back the current transaction. See also
commit, cursor, log, transaction.

root dbspace The initial dbspace for an Informix Dynamic Server system. In addition to
any data, the root dbspace contains all system management tables, the phys-
ical log, and at least the initial logical log.

row 1) In a database, a row is a set of related values, called columns, stored

40 HCL Informix 4GL Reference Guide

together in a table. A table holds a collection of rows, each one distinct from
the others in the contents of its key. In other database terminologies, a row is
sometimes called a record or a tuple. See also column, current, cursor, key,
rowid, table.
2) In a screen form, a row is the visible display of the values from one
database row. The row (of data fields on the screen) might or might not be
identical to a row (of values in a table in the database). A single line of
a screen array is sometimes called a row. See also screen array.
3) In a report, a row is the information sent by the report driver function. A
4GL program generates a report by sending rows of data to a report function.
These rows might or might not correspond to database rows. These rows are
also called input records. See also input record.
4) On a screen or in output from a report, a row (or line) is the y-coordinate of
a given position on the vertical axis. The x-coordinate (of the horizontal axis)
is called a column. Several 4GL statements use rows (or lines) and columns in
this sense to identify locations within displays. See also column, screen.

rowid A hidden, automatically generated column in each table of some Informix
databases. It uniquely identifies a row, based on its position within the table.
A rowid number is assigned when each row is added to a table and released
when a row is deleted. Once assigned, the rowid for a specific row cannot be
changed, and the rowid number cannot be reused for that table. See also col-
umn, row, table.

run See execute, interpret.

runtime errors Errors that occur during program execution. See also compile-time errors.

scale The number of digits to the right of the decimal point in the representation of
a number or in a data type specification. The number 3.14 has a scale of two.
See also fixed-point number, floating-point number, precision.

scope of
reference

The portion of the 4GL source code in which the compiler can recognize an
identifier name. The scope of reference (often referred to simply as scope)
refers to the program blocks in which an identifier can be referenced. Outside
its scope, an identifier might not be defined or might even be defined differ-
ently. In 4GL, there are three levels of scope: local (a single program block),
module (all program blocks in a single source module), and global (all pro-
gram blocks within a program). See also define, global variable, identifier, local
variable, module variable, name space, program block, scope, source module, variable.

Glossary 41

screen 1) On a character terminal, the rectangular area on a CRT in which text

is displayed.The screen takes up the entire terminal display and it can
display the output of only one program at a time. See also terminal.
2) On a workstation, the entire display in which text and, possibly, graphical
objects are visible. Under a window manager in a graphical environment, a
physical screen might contain multiple graphical windows.
3) In a 4GL application, the default 4GL window that is displayed in the 4GL
screen. This logical screen is a data structure kept in memory that is a repre-
sentation of a 4GL screen. The logical screen is not directly affected by win-
dow manager operations, though its graphical image on the physical screen
might change. See also 4GL screen, 4GL window, column, row.

screen array In a 4GL form, a screen array consists of consecutive lines that contain
identical fields and field tags. Each line of the screen array is a screen record.
The screen array defines the region of the form that will display program
array values. The DISPLAY ARRAY and INPUT ARRAY statements can manip-
ulate program array values or records within a screen array. See also field, field
tag, program array, row, screen record, scrolling.

screen field See field.

screen form A data-entry form displayed in a 4GL window (or the 4GL screen) and used
to support input or output tasks in a 4GL application. A screen form is
defined in a form specification file. Before a 4GL program can use a screen
form, this file must first be compiled. The form in the current 4GL window is
called the current form. Most user interaction statements use a screen form
for their input and output. See also 4GL window, 4GL screen, active form,
attribute, current, form specification file, reserved lines, user interaction statement.

screen record A named group of fields on a screen form. Screen forms have one default
screen record for each table referred to in the TABLES section, including
FORMONLY. The name of a default screen record is the same as the name of
the table. See also program record, record, screen array, table.

scrolling To move forward and back (or up and down) through a series of items. Refer-
ring to a screen array, scrolling is the action of bringing invisible lines into
view. Displayed data can be scrolled either vertically (to bring different rows
into view) or horizontally (to show different columns). Referring to database
cursors, a sequential cursor can return only the current row and cannot
return to it, but a scroll cursor can fetch any row in the active set. Thus a
scrolling cursor can be used to implement a scrolling screen display. See also
cursor, screen array.

search path The list of directories in which the operating system or a program will look

42 HCL Informix 4GL Reference Guide

for needed files. This path can be set by the user. Often, the user can specify
several different paths to be searched; if one path does not lead to the file, one
of the others might. For executable files, the setting of an environment vari-
able called PATH is used. For Informix database files, the setting of the
DBPATH environment variable is used. See also database, environment variable,
operating system.

self-join A join between a table and itself. A self-join occurs when a table is used two
or more times in a SELECT statement (under different aliases) and joined to
itself.

semaphore A UNIX communication device that controls the use of system resources.

shell A process that handles the user interaction with the operating system. From
the shell, the user can execute operating system commands. A shell is usually
provided to contain activity in a given part of the computer system. In UNIX,
for example, the shell handles command-line input, and standard output and
error reporting. UNIX shells have their own special commands that are not
usable within applications. They even have their own special variables and
scripting facilities that make the user interface customizable. See also com-
mand line, environment variable, operating system, process.

simple data type Any 4GL or SQL data type that has no component values. Simple data types
include integer (SMALLINT, INTEGER); floating-point (FLOAT, SMALLFLOAT,
DECIMAL(p)); fixed-point (DECIMAL(p,s), MONEY); time (DATE, DATETIME,
INTERVAL); and character (CHAR, VARCHAR). Although individual charac-
ters in a string can be accessed, as in a C language character array, the data
types CHAR and VARCHAR are considered simple data types, rather than
structured data types. See also blob, character, data type, fixed-point number,
floating-point number, integer, interval, structured data type.

singleton
transaction

A transaction that is made up of a single SQL statement. The transaction auto-
matically begins before each SQL statement that alters the database executes
and ends when this statement completes. If the single SQL statement fails, the
transaction is rolled back; otherwise it is committed. A database that is not
ANSI compliant and that does not use transaction logging uses singleton
transactions. See also ANSI compliant, commit, roll back, transaction.

source file A file that contains source code for a language; it is used as input to a
compiler or interpreter. See also compile, file, interpret, source module.

Glossary 43

source module A module that contains one or more related 4GL program blocks. A source

SQL

SQLCA record

stack

statement

module is a single ASCII file with the .4gl extension. Several source modules
can be compiled and linked to produce a single executable file. See also com-
pile, executable file, execute, file, file extension, link, module, program block.

Acronym for structured query language. A database query language devel-
oped by HCL and standardized by an ANSI standards committee. Informix
relational database management products are based on an extended imple-
mentation of ANSI-standard SQL. See also cursor, database, prepared statement,
statement identifier.

Acronym for SQL Communications Area. It is a built-in record that
stores information about the most recently executed SQL statement. The
SQLCODE member stores the result code returned by the database server; it
is used for error handling by 4GL and the Informix embedded-language
products. The SQLAWARN member is a string of eight characters whose indi-
vidual characters signal warning conditions. SQLERRD is an array of six inte-
gers that returns information about the results of an SQL statement. See also
database server, error handling, status variable.

A data structure that stores information linearly with all operations
performed at one end (the top). Such types of data structures are often called
LIFO (last-in, first-out) structures. Stack operations include push, which adds
a new piece of data to the top of the stack, and pop, which removes the piece
of information at the top of the stack. 4GL uses one stack to transfer argu-
ments to C functions and another to keep track of open 4GL windows. See
also 4GL window, call stack.

An instruction that 4GL executes. This instruction is a single executable unit
of program code but might cover several lines within the source module. For
example, the FOR statement might have several lines between the line intro-
duced with the FOR keyword and the line introduced with END FOR key-
words. The FOR statement, however, is a single statement because it performs
a single action. During program execution, the statement currently being exe-
cuted is often called the current statement. A statement is distinct from a
command: the LET or PRINT command is executed by the INFORMIX-4GL
Interactive Debugger; the LET or PRINT statement can be compiled and exe-
cuted by 4GL. See also current, source module, statement block.

statement block A group of statements executed together. For example, all statements

44 HCL Informix 4GL Reference Guide

statement
identifier

between the WHILE keyword and the END WHILE keywords constitute a
statement block. All the statements within the AFTER INPUT block of the
INPUT (or INPUT ARRAY statement) are also considered a statement block.
See also control block, program block, statement.

The name that represents a prepared statement created by a PREPARE state-
ment. It is used in the management of dynamic SQL statements by 4GL and
the Informix embedded language products. See also identifier, prepared state-
ment.

status variable The built-in variable that 4GL sets after executing each SQL and form-related
statement. If the statement is successful, status is set to zero. If the value of
status is negative, 4GL terminates program execution unless the program
contains the appropriate error handling. After execution of SQL statements,
4GL copies the value of SQLCA.SQLCODE into status. See also error handling,
SQLCA record.

string A value that consists of one or more characters. You can store strings
in CHAR, VARCHAR, and TEXT variables. Strings can include printable
or nonprintable characters, but 4GL does not provide facilities to display
nonprintable characters. Literal string values in 4GL statements generally
must be enclosed within quotation (" ") marks. See also character, literal,
printable character, quoted string, subscript, substring.

string operators Operators that perform operations on character strings. 4GL string operators
include concatenation (| |) and substring ([]) operators, the CLIPPED oper-
ator that truncates trailing white space, and the USING operator that can
apply formatting masks to character strings. See also associativity, built-in
operator, clipped, concatenate, operator, precedence, subscript.

structured data
type

Any 4GL data type that contains component values. Structured data types
include ARRAY and RECORD. Although individual characters in a string can
be accessed, the data types CHAR and VARCHAR are considered simple data
types, not structured data types. See also array, data type, record, simple data
type.

subquery A query that is embedded as part of another SQL statement.

Glossary 45

subscript An integer value to access a single part or element of certain data structures

like strings and arrays. In 4GL, the subscript operator is an integer value, sur-
rounded by brackets ([]). For example, the syntax "strng[3]" accesses the
third character of the CHAR string variable by specifying a subscript (or
index) of 3; the syntax "pa_customer[5]" accesses the fifth element of the
pa_customer program array. Two subscripts allow you to specify the starting
and ending characters. For example, "strng[3,10]" accesses the third through
tenth characters of strng. See also array, character, program array, string, string
operators, substring.

substring Consecutive characters within a string. To access a substring in a character
expression, put square brackets around a pair of comma-separated unsigned
integers to specify the location of the substring within a character string. For
example, "strng[3,10]" accesses the third through tenth characters of strng.
See also character, subscript, string.

system catalog Database tables that contain information about the database itself, such as the
names of tables or columns in the database, the number of rows in a table,
information about indexes and database privileges, and so forth. See also col-
umn, database, index, table.

system log The UNIX file that the database keeps to record significant events like check-
points, filling of log files, recovery of data, and errors.

table A collection of related database rows. It can be thought of as a rectangular
array of data in which each row describes a set of related information and
each column contains one piece of the information. A table sometimes is
referred to as a file or a relation. See also column, cursor, database, key, row,
rowid.

target The intended result of a build. The Programmer’s Environment can create
executable files from multiple source modules. This process is called a build.
See also executable file, Programmer’s Environment, source module.

termcap An ASCII file in UNIX systems that contains the names and capabilities of all
terminals known to the system. See also terminal, terminfo.

terminal A peripheral device usually centered around a raster screen. Terminals usu-

46 HCL Informix 4GL Reference Guide

ally come with keyboards, and are used by the user of a computer system to
communicate with the computer by typing commands in and looking at the
output on the screen. Terminals are often character-based and are thereby
distinguishable from displays that are usually graphical. Terminals support
monochrome or color output, depending on their designed capabilities and
computer system configuration. See also character, key, screen.

terminfo A database in UNIX systems that contains compiled files of terminal capabil-
ities for all terminals known to the system. See also terminal, termcap.

text 1) In the SCREEN section a 4GL form, any characters outside the fields, such
as labels, titles, and ornamental lines. See also label.
2) In uppercase letters, TEXT is the 4GL and SQL data type that can store up to
231 bytes of character data. See also blob.

text cursor Pointer within a text field that shows the position where typed text will be
entered. Often referred to simply as the cursor. See also cursor, text.

text editor System software used to create and to modify ASCII files. Usually source code
is entered into a source file in a text editor. See also ASCII, source file.

text field A graphical object for displaying, entering, and modifying text, a single line
of character data. For example, form fields are text fields for use in screen
forms. Text fields are used more generally, for example, to accept text in
PROMPT statements. See also field, screen form, text.

tic A UNIX program that compiles terminfo source files or terminfo files that
have been decompiled using infocmp.

tracepoint A named object, specified by a debugger, that the programmer can associate
with a statement, program block, or variable. When the tracepoint is reached,
the debugger displays information about the associated statement, program
block, or variable and executes any optional commands that are specified by
the programmer. A tracepoint must be enabled to take effect. See debugger.

Glossary 47

transaction A collection of one or more SQL statements that must be treated as a single

unit of work. The SQL statements within the transaction must all be
successful for the transaction to succeed. If one of the statements in a transac-
tion fails, the entire transaction can be rolled back (cancelled). If the transac-
tion is successful, the work is committed and all changes to the database from
the transaction are accepted. The transaction log contains the changes made
to the database during a transaction. If a database is not ANSI compliant, it
uses singleton transactions if it does not use a transaction log and it uses
explicit transactions otherwise. If a database is ANSI compliant, it uses
implicit transactions. See also ANSI compliant, commit, explicit transaction,
implicit transaction, log, roll back, singleton transaction.

truncation The process of discarding trailing characters from a string value, or discard-
ing trailing digits from a number. Truncation can produce a warning or error
in data type conversion, if the receiving data type has a smaller length or
scale than the source data type. It can also cause rounding errors. See also data
type conversion, error, scale.

tuple See row.

unary operator An operator that requires only one operand. The unary operator appears
before the operand. In an expression, unary operators always have higher
precedence than binary operators. In 4GL, examples include logical NOT,
unary plus (+), and unary minus (-). 4GL associates most unary operators
from right to left. See also arithmetic operators, associativity, binary operator,
Boolean operators, operand, operator, precedence.

UNIQUE
CONSTRAINT

A specification that a database column (or composite list of columns) cannot
contain two rows with identical values. You can assign a name to a constraint.

user An individual who interacts with a 4GL program. The user is a person or pro-
cess that uses an application program for its intended purpose. Also referred
to as the end user. The documentation for Informix database servers some-
times applies this term to the programmer. See also application program, devel-
oper.

user interaction
statement

A 4GL statement that allows a user to interact with a screen form or a field.
These statements include CONSTRUCT, DISPLAY ARRAY, INPUT, INPUT
ARRAY, MENU, and PROMPT. They suspend execution of the 4GL application
for user input. See also attribute, control block, data entry, query by example, ring
menu, statement.

user interface The portion of a software or hardware system where communication to or

48 HCL Informix 4GL Reference Guide

from a human can occur. In 4GL applications, it is that part of a program that
waits for input from the user of that program and displays messages or other
output based on that user’s input. Typical user interfaces include menus,
prompts, screen forms, and on-line help messages. See also shell.

user name A string that identifies a specific user to a computer. It is common for it to be
based on an actual name, but this is not required. Once created, the user name
is used thereafter during the login process, in establishing ownership, and in
permissions and privileges. See also login, owner.

variable A named storage location that holds a value (which can be modified) of a
specified data type. A program can access and change this value by specify-
ing its name. A 4GL variable (sometimes called a program variable) can trans-
fer information between a 4GL form, report, and program. To use a 4GL
variable, you must first declare it (with the DEFINE statement) to specify its
name and data type. Names of variables must follow the naming rules for
4GL identifiers. See also assign, constant, declare, define, global variable, identifier,
local variable, module variable, name space, screen form.

virtual column A derived column of information that is not stored in the database. For exam-
ple, you can create virtual columns in a SELECT statement by arithmetically
manipulating a single column, such as multiplying its values by some quan-
tity, or by combining columns, such as adding the values from two columns.

warning An exception that indicates an unexpected or abnormal condition that could
lead to an error in processing or data storage. Warnings can be generated
because of language syntax during compilation or because of processing or
data exceptions. At runtime, warnings can be generated by the 4GL program
or by the database server. By default, 4GL continues execution when it
encounters a warning. The developer can change this default behavior with
the WHENEVER WARNING directive. See also database server, exception.

wildcard In a pattern-matching string, a character that means any characters at this
point. A For example, in the pattern "v*.4gl" the asterisk means any num-
ber of characters after the v and preceding the period. See also regular expres-
sion.

window In 4GL, a rectangular area on the screen in which you can take actions without
leaving the context of the background program.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

Index

A
-a option 1-78, 1-81, D-10
Abbreviated years 4-328, 4-329,

6-35, D-15
Abnormal termination 4-123, 4-246
Accelerator keys 4-173, 4-208
Accept key

with CONSTRUCT 4-63
with DISPLAY ARRAY 4-111
with INPUT 4-160
with INPUT ARRAY 4-188

ACCEPT keyword in OPTIONS
statement 4-293

Access privileges
checking 4-252, 5-121
database 4-72
with ASCII files 4-231, 4-367

Accounting parentheses 5-125
ACE report writer 4-231
a-circumflex character, coding E-35
acsc setting 6-22
ACTION Menu (upscol utility) B-6
Activation clause

CASE statement 4-23
CONSTRUCT statement 4-44
DISPLAY ARRAY

statement 4-106
IF statement 4-153

INPUT ARRAY statement 4-197
INPUT statement 4-167
PROMPT statement 4-329
WHILE statement 4-382

Activation key
CONSTRUCT control block 4-47
DISPLAY ARRAY control

block 4-106

INPUT ARRAY control
block 4-205

INPUT control block 4-171
MENU control block 4-256
PROMPT control block 4-329

Active set 4-134, 4-379
Addition (+) operator

in termcap F-14
number expressions 3-64, 5-26
precedence of 3-54
precision and scale 3-44
returned values 5-23
time expressions 3-84, 5-26

AFTER CONSTRUCT block 4-51
AFTER DELETE block in INPUT

ARRAY statement 4-210
AFTER FIELD block

CONSTRUCT statement 4-50,
5-89

INPUT ARRAY statement 4-208
INPUT statement 4-174

AFTER GROUP OF block 4-334,
5-128, 7-34

AFTER INPUT block
INPUT ARRAY statement 4-211
INPUT statement 4-175

AFTER INSERT block, INPUT
ARRAY statement 4-209

AFTER keyword
CONSTRUCT statement 4-51
INPUT ARRAY statement 4-209
INPUT statement 4-167
REPORT statement 4-334, 7-34

AFTER ROW block, INPUT
ARRAY statement 4-210, 5-29,
5-83

2 HCL Informix 4GL Reference Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

Aggregate function

AVG() 5-16, 7-61
COUNT(*) 4-366, 5-16, 7-61, 7-63
GROUP 5-15, 7-36, 7-60
MAX() 5-16, 7-61
MIN() 5-16, 7-61
PERCENT(*) 4-334, 5-16, 7-61
SUM() 5-16, 7-61
two-pass reports 4-334
view columns 3-36, 4-89, 6-26
with BYTE or TEXT

arguments 3-15, 3-40
with NULL values 5-15, 7-61
with reports 4-125, 4-334, 4-364,

7-36
with SQL statements 7-59, I-38

Alias of a column D-28
Alias of a table

CONSTRUCT statement 4-41
in a field clause 3-86, 4-37
in a form 3-89, 6-24
scope of reference 2-18

ALL keyword
MENU statement 4-250
SQL Boolean operator 3-51

ALLOCATE COLLECTION
statement 4-351

ALLOCATE DESCRIPTOR
statement 4-351

ALLOCATE ROW statement 4-351
Allocation of resources 4-82, 4-239
Alphanumeric characters E-13
ALTER INDEX statement,

interrupting 4-302
ALTER TABLE statement

interrupting 4-302
query by example 4-39

Ambiguous selections in
menus 2-24

Ampersand (&) symbol 5-124
AND operator

Boolean operator 3-55, 4-35, 5-33,
5-44

precedence of operators 5-43
with BETWEEN 3-55, 5-40, 6-39,

6-82
Angle (< >) brackets 3-15, 4-57,

5-35, 6-63, 7-57

ansi
option of c4gl command 1-38
option of fglpc command 1-78

ANSI C compiler 1-38
ANSI compliance 2-43

DBANSIWARN D-14
icon Intro-10

-ansi flag 2-43, 4-76, D-10, D-43, G-2
ANSI reserved words G-2
ANSI SQL3 standard G-3
ANSI-compliant database
comment indicators 2-8

database references 3-89
DECIMAL(p) data types 3-25
default attributes 6-84
default values 4-157
error handling 5-111
initializing variables 4-157
interrupting transactions 4-303,

4-305
lettercase of identifiers 2-16
LOAD operations 4-236
opening 4-75
owner naming 3-90, 4-40, 4-83,

4-156, 4-373, 6-24
upscol utility B-9
validation criteria 4-374

ANY keyword
SQL Boolean operator 3-51
WHENEVER statement 2-43,

4-376
ANYERR 4-378, 5-63, 5-64
-anyerr flag 2-44, 2-42, D-10, D-43
AnyError error scope 2-42, 2-44,

D-11
Application

programming interface to C 5-7,
C-1

program, compiling 1-29, 1-35,
1-77

Argument
for 4GL program command

line 5-19, 5-99
in function calls 4-17, 4-376
in report definition 4-332, 4-333,

7-7
passed to a C function C-26
passing by reference 4-19, 4-243,

4-309, 4-339, 5-9

passing by value 4-18, 4-308,
4-338, 5-9

stack C-3, C-16
Arguments, of C functions 2-3
ARG_VAL() 5-18
Arithmetic functions C-40
Arithmetic operators

binary 3-64, 5-23
integer expressions 3-64
list of 3-54
number expressions 3-66, 5-20
time expressions 3-84, 5-21, 5-26,

5-68
unary 3-65, 5-23

Array
of records 5-29, 5-83
program array 5-29, 5-83
screen array 6-74, 6-77

ARRAY data type
declaration 3-13, 4-87
in FOREACH statement 4-135
in MENU statement 4-264
in report parameter list 4-333,

7-10
index 3-55

ARRAY keyword
DEFINE statement 4-87
DISPLAY ARRAY

statement 4-102, 4-105
INPUT ARRAY statement 4-187

Arrow keys
CONSTRUCT statement 4-61
DBESCWT variable D-21
INPUT ARRAY statement 4-219,

4-220, 4-221
INPUT statement 4-181, 4-268
termcap entry F-5
WORDWRAP fields 4-183, 6-71

ARR_COUNT()
syntax and description 5-27
with DISPLAY ARRAY 4-103
with INPUT ARRAY 4-215

ARR_CURR()
syntax and description 5-29, 5-83
with INPUT ARRAY 4-215

ASC keyword 7-24
ASCII characters

and corresponding codes A-1
ASCII operator 4-93, 4-274

Index 3

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

collating sequence 3-70, 4-59,

6-54, A-1
default codeset E-2
from integer codes 5-31
in screen layouts 6-20
printable 3-71
unprintable 3-71

ASCII file
data input 4-231
data output 4-367
error log 5-65, 5-110
form specification 6-5
help file 5-106
Help messages 2-31
source code module 2-10
.4gl source files 1-29, 1-71

ASCII operator
PRINT statement 5-32, 7-62

Asian languages E-6, E-15
Assignment statements 2-11, 4-156,

4-227, 6-25
Asterisk (*) notation

arithmetic operator 5-81, 5-83,
5-84

database columns 3-92, 4-37
exponentiation operator 3-54,

3-64, 5-23
in REPORT prototype 4-332,

4-333, 7-7
multiplication operator 3-54,

3-64, 3-84, 5-23, 5-26
overflow in data conversion C-30
program record members 3-36,

3-92
screen array elements 3-93, 4-98
screen field overflow 4-104,

5-123, 6-18
screen record members 3-87, 3-93,

5-87, 5-97, 6-76
wildcard with CONSTRUCT 4-59
wildcard with MATCHES 5-38
with COUNT function 5-16, 7-61
with PERCENT function 4-334,

5-16, 7-61
Asynchronous message

handling 4-78
AT keyword

DISPLAY statement 4-90

OPEN WINDOW
statement 4-282

At (@) symbol
back currency symbol D-26
database servers 4-37, 4-71
MENU statement 4-256
table or column prefix 2-19, 6-6

ATTRIBUTE keyword
CONSTRUCT statement 4-41,

6-83
DISPLAY ARRAY

statement 4-105, 6-83
DISPLAY FORM

statement 4-113, 6-84
DISPLAY statement 4-99, 6-83
ERROR statement 4-119
INPUT ARRAY statement 4-191,

6-83
INPUT statement 4-166, 6-83
MESSAGE statement 4-274
OPEN WINDOW statement 6-84
OPTIONS statement 4-294, 6-83
PROMPT statement 4-327

Attribute types
AUTONEXT 4-42, 6-34, B-7
BLACK 3-96
BLINK 3-97, 6-37, 6-82, F-11, F-31
BOLD 6-82, F-31
BORDER 4-287, F-7, F-27
CENTURY 4-327, 4-328, 6-33,

6-35
COLOR 3-15, 3-40, 3-58, 6-33,

6-37, 6-92, B-8
COMMENTS 6-33, 6-43
COUNT 4-193
CURRENT ROW

DISPLAY 4-105, 4-192
CYAN 3-96
DEFAULT 6-30, 6-33, 6-45, B-7
DELETE ROW 4-195
DIM 6-82, F-31
DISPLAY LIKE 6-23, 6-33, 6-48
DOWNSHIFT 6-33, 6-49, B-7
FORM 4-298
FORMAT 4-97, 6-50, B-8
GREEN 3-96
INCLUDE 4-373, 6-30, 6-33, 6-53,

B-7
INSERT ROW 4-195

INVISIBLE 3-97, 4-100, 4-113,
6-33, 6-56, 6-82, F-31

LEFT 4-97, 6-37, B-9
MAGENTA 3-96
MAXCOUNT 4-194
NOENTRY 4-41, 6-33, 6-57
NORMAL 4-275, 6-82
PICTURE 6-58
PROGRAM 3-15, 3-40, 4-96, 6-33,

6-60
REQUIRED 6-33, 6-62
REVERSE 3-97, 4-286, 6-33, 6-37,

6-63, 6-82, F-4, F-11, F-31
SHIFT B-7
UNDERLINE 3-97, 6-37, 6-82,

F-11, F-31
UPSHIFT 6-33, 6-64, B-7
VALIDATE LIKE 6-23, 6-33, 6-65
VERIFY 6-33, 6-66
WORDWRAP 6-32, 6-33, 6-67
YELLOW 3-96

Attributes option B-5
ATTRIBUTES section of form

specification
default values 6-80, B-7
field attributes 6-25, 6-27, 6-29,

6-33
field names 6-25, 6-27, 6-29, 6-33
field tags 6-26, 6-39
fields linked to columns 6-23,

6-27
FORMONLY fields 6-25, 6-29
multiple-segment fields 6-31
multiple-table forms 6-11
syntax 6-25, 6-33

AUTONEXT attribute 4-42, 5-79,
6-34, B-7

AVG() aggregate function 5-16,
7-61

a.out file 1-37, 1-88

B
Background process 4-343
Backslash (\) symbol

as escape character 2-4
default Quit key 4-78
escape character 4-227, F-23

4 HCL Informix 4GL Reference Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

in forms 6-20
in output files 4-371
in pathnames 4-72
with LIKE 5-39
with MATCHES 5-38

Backspace key for menus 2-24,
4-266

Backup files 1-47, 1-91
Base-100 digits 3-24
BEFORE DELETE block in INPUT

ARRAY statement 4-201
BEFORE FIELD block

CONSTRUCT statement 4-46
INPUT ARRAY statement 4-205
INPUT statement 4-170

BEFORE GROUP OF block
definition of 7-37
variables 4-334

BEFORE INPUT block
INPUT ARRAY statement 4-200
INPUT statement 4-170

BEFORE INSERT block in INPUT
ARRAY statement 4-203

BEFORE keyword
CONSTRUCT statement 4-46,

5-85
INPUT ARRAY statement 4-203,

4-205, 5-85
INPUT statement 4-170, 5-85
MENU statement 4-252
REPORT statement 4-334, 7-37

BEFORE MENU block 4-252
BEFORE ROW block in INPUT

ARRAY statement 4-201, 5-29,
5-83

BEGIN WORK statement 4-235,
4-236, 4-303

Bell, ringing 4-118, 4-227, 5-31, 6-58
BETWEEN operator 3-51, 5-41,

6-39, 6-82
Binary arithmetic operators 3-55,

3-64, 5-23, 5-24
Binary large objects (BYTE or TEXT

data)
data types 3-12
in Boolean expressions 5-37, 6-39
in screen forms 6-60
passing by reference 4-18, 4-309

Binding
of forms to database 6-26
of variables to screen fields 4-38,

4-97, 4-103, 4-161, 4-189, 6-6
BITFIXED data type 3-7
BITVARYING data type 3-7
BLACK attribute 3-96, 6-37, 6-56,

6-82
Blank characters

between menu options 4-264
CLIPPED operator 3-54, 5-45
DATETIME separator 3-21, 3-29,

3-78, 3-82
default character value 4-163,

4-190, 6-14, 6-30, 6-45
in 4GL statements 2-4
in identifiers 2-14
in input files 4-231
in literal numbers 3-67
in output strings 5-126
INTERVAL separator 3-27, 3-80
padding CHAR values 3-41
PICTURE attribute 6-58
SPACE or SPACES

operator 5-108, 7-64
trailing blank spaces 3-41, 5-45
versus NULL values 6-53
with FORMAT attribute 6-50
WORDWRAP fields 4-182, 6-68,

6-70
WORDWRAP operator 5-136,

7-66
BLINK attribute 3-96, 3-97, 6-37,

6-82, F-11, F-31
BLOB data type 3-7
Blob. See BYTE or TEXT data.
BLUE attribute 3-96, 6-37, 6-82
BOLD attribute 3-96, 6-82, F-31
Boldface type Intro-9
Boolean capabilities F-4, F-24
BOOLEAN data type 3-7
Boolean expression

CASE statement 4-22, 4-26
CONSTRUCT statement 4-34
IF statement 4-153
in 4GL statements 3-60
in SQL statements 3-51
in syscolatt table 6-82, B-9
logical operators 5-35

WHILE statement 4-382
wildcards in searches 5-39
with COLOR attribute 6-38, 6-92

Boolean operators
AND 3-61, 5-33, 5-41
BETWEEN 3-51, 3-54, 5-41
description of 5-33
IN 3-51, 3-54, 5-40
IS NOT NULL 5-37
IS NULL 5-37
LIKE 5-38
MATCHES 5-38
NOT 3-61, 5-33
OR 3-61, 5-33, 5-34

BORDER attribute 4-287
Bordered window, graphics

characters used 6-22, F-27
BOTTOM MARGIN

keywords 7-15, 7-47
START REPORT statement 4-360

Bourne shell 1-4, D-2, D-4
.profile file D-2

Braces ({ }) symbols
comment indicator 2-8, 4-314
in configuration files D-62
screen layout of forms 6-17

Brackets ([]) symbols
array elements 3-54
in string comparisons 5-38
records within screen arrays 3-86,

5-89, 6-79
subsets of BYTE values 3-15
substring operator 3-54
substrings in character

arrays 3-14
substrings of TEXT columns 3-39
to specify program arrays 3-70
to specify screen arrays 6-74, 6-77
to specify search criteria 4-59
to specify substrings 3-70, 4-93,

4-275, 6-27
with SCROLL 4-344

BSD UNIX systems 4-207
Build dependencies 1-20, D-58
Built-in constants

FALSE 5-22
NOTFOUND 2-46
TRUE 5-22

Index 5

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

Built-in functions

Aggregates 5-14
ARG_VAL() 5-18
ARR_COUNT() 5-27
ARR_CURR() 5-29, 5-83
AVG() 5-16
COUNT(*) 5-16
CURSOR_NAME() 5-53
DOWNSHIFT() 5-59
ERRORLOG() 5-65
ERR_GET() 5-61
ERR_PRINT() 5-63
ERR_QUIT() 5-64
FGL_DRAWBOX() 5-70
FGL_GETENV() 5-73
FGL_GETKEY() 5-75
FGL_KEYVAL() 5-76
FGL_LASTKEY() 5-78
FGL_SCR_SIZE() 5-81
LENGTH() 5-92
MAX() 5-16
MIN() 5-16
NUM_ARGS() 5-99
ORD() 5-100
PERCENT(*) 5-16
SCR_LINE() 5-102
SET_COUNT() 5-104
SHOWHELP() 5-106
STARTLOG() 5-110
SUM() 5-16
UPSHIFT() 5-121

Built-in operators
AND 5-33
Arithmetic 5-20
ASCII 5-31
BETWEEN . . . AND 5-41
Boolean 5-33
CLIPPED 5-45
COLUMN 5-47
concatenation 5-50
CURRENT 3-56, 5-51, 6-47
DATE() 3-56, 5-56
DAY() 3-56, 5-58
EXTEND() 3-56, 5-67
FIELD_TOUCHED() 3-51, 5-84
GET_FLDBUF() 3-51, 5-87
INFIELD() 3-51, 5-90
IN() 5-41
IS NOT NULL 5-37

IS NULL 5-37
LIKE 5-38
LINENO 3-51, 5-94
MATCHES 5-38
MDY() 3-56, 5-95
membership 5-97
MOD 5-25
MONTH() 3-56, 5-98
NOT 5-33
OR 5-33
PAGENO 3-51, 5-101
relational operators 5-35
SPACE or SPACES 5-108
substring 5-114
TIME 3-51, 3-56, 5-116
TODAY 3-56, 5-117, 6-47
UNITS 6-46
USING 5-123
WEEKDAY() 3-56, 5-133
WORDWRAP 5-135
YEAR() 3-56, 5-138

Built-in SQL functions 5-5, 5-7
Built-in variables

int_flag 4-78, 4-172, 4-206, 4-256,
4-300

quit_flag 4-78, 4-172, 4-206, 4-256,
4-300

SQLAWARN 2-46, 3-42, 4-75
SQLCA record 2-45, 4-378
SQLCODE 2-45, 2-46, 5-61
SQLERRD 2-46
SQLERRM 2-46
SQLERRP 2-46
status 2-45, 4-373, 4-377, 5-61

BY keyword
CONSTRUCT statement 4-38
DISPLAY statement 4-90
Form specification file 6-15
INPUT statement 4-164, 6-6
REPORT statement 4-334, 7-23
SCROLL statement 4-344

BY NAME clause
CONSTRUCT statement 4-38
DISPLAY statement 4-90
INPUT statement 4-164, 6-6

BYTE data type
ASCII representation 4-232, 4-368
Boolean expressions 5-37, 6-39
data entry 4-185, 4-218

declaration 4-81
description 3-14
display fields 4-96, 4-104, 6-28,

6-60
display width 6-89, 7-57
in expressions 3-58
in program records 3-35, 4-88
in report output 7-57
initializing 4-239
passing by reference 4-18, 4-339
query by example 4-57
selecting a BYTE column 3-15
size limit 3-12
storing data in 3-15
syscolval table 4-373, 6-65

BYTE or TEXT data, description
of 4-86

Byte-based string operations E-16

C
C code 1-8
C compiler 1-8, D-12, D-44
C Compiler version of 4GL 1-3, 1-6
C language

API 5-7
decimal separator D-28
functions 1-36, 1-80, 1-83, 4-16,

5-7, C-8
generated from 4GL code 1-8
keywords G-2

C shell D-2
.cshrc file D-2
.login file D-2

C shell variants 1-45
C symbol

CENTURY 4-328, 6-35
DBCENTURY D-15

c4gl command
effect 1-5
help message 1-43
phases 1-36
setting defaults D-10
specifying a C compiler D-12,

D-44
C4GLFLAGS environment

variable 1-36, 1-38, 1-40, 1-78,
2-42, D-10

6 HCL Informix 4GL Reference Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

C4GLNOPARAMCHK

environment variable D-11
CALL keyword in WHENEVER

statement 4-376, 4-380
CALL statement

description 4-16
with C functions 1-88

Calling routine 4-16, 4-337, 5-9, 7-5
CANCEL keyword

INPUT ARRAY statement 4-202,
4-204

Caret (^) symbol 7-22
with CONSTRUCT 4-60
with MATCHES 5-38
with termcap F-3
with terminfo F-23, F-29
with TOP OF PAGE 7-22

CASCADE keyword 4-316
Case insensitivity 2-3
CASE statement 4-22, 4-26
cat utility 1-80
cc compiler 1-37, D-12, D-44
CC environment variable D-12
CENTURY attribute 4-327, 4-328,

6-33, 6-35
cfglgo command 1-83, 1-87
CHAR data type

data type conversion 3-42, 3-47,
C-30

declaration 3-9, 4-85
description 3-16
display fields 6-50, 6-58, 6-67
display width 4-93, 6-89, 7-57,

7-58
in report output 7-57, 7-58
returned by functions 4-20, 4-339
searching with LIKE 5-39
searching with MATCHES 5-38
subscripts 6-27, 6-30
unprintable characters 3-71

Char data type (of C) C-28
CHAR keyword

DEFINE statement 4-85
PROMPT statement 4-327

Character
data types 3-11, 3-69
position 6-27
set E-2

CHARACTER data type 3-17

Character expression
CLIPPED operator 5-45
data type conversion 3-48
description of 3-69
NULL values 6-30
searching with LIKE 3-55, 5-39,

5-43, 5-134
searching with MATCHES 3-55,

5-38, 5-43
substring 4-275, 6-27
syntax 3-69

Character set E-35
Character string

as Boolean expression 4-36
as DATETIME value 3-22
as INTERVAL value 3-31
concatenation 4-228
determining the length 5-92
printable characters 3-71, E-12

Child process 4-340
Chinese language E-6, E-9
.cshrc file D-2
CLEAR statement 4-28
Client locale E-10
CLIENT_LOCALE environment

variable 2-15, D-8, E-12, E-27
CLIPPED operator 5-46

description of 5-45
DISPLAY statement 4-93
in a string expression 5-92
MESSAGE statement 4-274
PRINT statement 7-57
with concatentation 5-50

CLOB data type 3-7
CLOSE DATABASE

statement 4-72, 4-126
CLOSE FORM statement 4-31
CLOSE statement 4-133
CLOSE WINDOW statement 4-32
Code page 1252 E-27
Code points E-2, E-34
Code set

definition E-3
order of collation E-4, E-14

Code-set conversion
handling E-34
tables E-12

COLLATION category 4-73, 5-16,
5-35, 5-40, 7-62, E-28

COLLATION locale category 3-41
Collation sequence 7-61, E-4, E-14
Colon (:) symbol

after database name 3-89
after label identifiers 4-224
after menu name 4-266
before label identifier 4-152
DATETIME separator 3-21, 3-78,

3-82, 4-59, 5-116
in termcap entries F-3
INTERVAL separator 3-27, 3-31,

3-80, 4-59
ranges with CONSTRUCT 4-59

Color
number codes 6-82
screen displays 4-285
setting INFORMIXTERM D-51

COLOR attribute 6-33, 6-37, 6-92
Column

changing data type 3-42, 4-39
distribution D-40
in screen arrays 6-77
inserting data 4-230, 4-234
name 2-16, E-13
upscol utility 6-81, B-5
with LIKE 4-155, 4-372
with table qualifier 3-89

COLUMN keyword
COLUMN operator 5-47, 7-62
DISPLAY statement 4-93
MESSAGE statement 4-274

COLUMN operator 5-47
COLUMNS environment

variable D-13
COLUMNS keyword in OPEN

WINDOW statement 4-282
Comma (,) symbol

array subscripts 3-13
in LET statement 4-228, 5-50
in substring specifications 4-275
in USING format strings 5-124
separator in lists 3-93, F-23

COMMAND keyword, MENU
statement 4-253, 4-257

Command line
arguments of a 4GL

program 5-19, 5-99
RUN statement 4-340

START REPORT statement 4-359

Index 7

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

to compile a message file B-3
to compile a screen form 6-88
to create a customized

runner 1-87, 1-89
to invoke a 4GL program 1-5,

1-80, 1-82, 1-90, 5-19, 5-99
to invoke compiler 1-5, 1-37, 1-77

Comment indicators 2-8, 4-314,
6-15, 6-20, D-3, E-11, F-3, F-23

COMMENT keyword
OPEN WINDOW

statement 4-285
OPTIONS statement 4-293

Comment line 2-27, 4-61, 4-114,
4-220, 4-288, B-7

COMMENTS attribute 6-43, B-7
COMMIT statement 4-235
COMMIT WORK statement 4-235,

4-236
interrupting transactions 4-303,

4-305
with LOAD 4-235
Comparison operators 3-55, 3-61,

3-85, 4-57, 5-35, 5-36, 5-42, 5-43
Compatible data types 3-46
COMPILE Menu 1-29
Compile option

FORM Menu 1-19, 1-60, 6-86
MODULE Menu 1-14, 1-54
PROGRAM Menu 1-24, 1-66

Compiler
C compiler 3-25
directive statements 4-13, 4-14
maximum number of variables

allowed 4-81
mkmessage 5-106
p-code 4-81

Compiler directives 2-6
Compile-time errors 1-12, 1-53,

6-86
Compiling

command line 1-34, 1-37, 1-76
help messages B-2
in Programmers

Environment 1-11, 1-34, 1-52,
1-76

programs that call C
functions 1-81

screen forms 1-17, 1-58

with ansi flag 1-38, 1-78
Compliance icons Intro-10
Composite characters E-10, E-15
Compound statements 2-7, 2-12,

4-66, 4-116
COMPRESS keyword,

WORDWRAP attribute 4-182,
6-67, 6-70

Concatenation (||) operator
description 5-50
precedence 3-54

condition column of syscolatt 5-40
Conditional comment symbol 2-9
Conditional statements

CASE statement 4-22
COLOR attribute 6-37, 6-92
IF statement 7-46
NEED statement 7-52
syscolatt table 6-82, B-9

CONNECT privilege 1-20, 1-61
CONNECT statement 4-349, 4-367,

D-45
CONNECT statement, and

INFORMIXSERVER
environment variable D-48

Connection
setting

INFORMIXCONRETRY D-44
setting

INFORMIXCONTIME D-45
Constant name 2-18, E-14
Constant, Boolean 3-60
CONSTRAINED keyword in

OPTIONS statement 4-61, 4-294
CONSTRAINT keyword

SET CONSTRAINT
statement 4-238

Constraint name E-13
CONSTRUCT keyword

AFTER CONSTRUCT block 4-51
BEFORE CONSTRUCT

block 4-46
CONSTRUCT statement 4-34
CONTINUE CONSTRUCT 4-53
END CONSTRUCT

statement 4-55
EXIT CONSTRUCT

statement 4-54
Contact information Intro-21

Context of variable
declarations 4-82

CONTINUE keyword
CONTINUE CONSTRUCT 4-53
CONTINUE FOR 4-129
CONTINUE FOREACH 4-137
CONTINUE INPUT

statement 4-177, 4-214
CONTINUE MENU 4-259
CONTINUE WHILE 4-383
description 4-66
WHENEVER statement 4-376,

4-381, 5-111
Control blocks

AFTER GROUP OF 7-34
BEFORE GROUP OF 7-37
CONSTRUCT statement 4-45
description 2-12
DISPLAY ARRAY

statement 4-106
FIRST PAGE HEADER 7-40
IF statement 4-153
in FORMAT section of a

report 7-32
INPUT ARRAY statement 4-197,

4-199
INPUT statement 4-169
MENU statement 4-67, 4-250
ON EVERY ROW 7-42
ON LAST ROW 7-44
PAGE HEADER 4-346, 7-45
PAGE TRAILER 4-346, 7-47

CONTROL keys
INPUT ARRAY statement 4-220
WORDWRAP fields 4-184, 6-72

Conversion errors 2-43
Cooked mode 4-307, 4-341
Correct menu option 1-60
COUNT attribute 4-193
COUNT keyword

INPUT ARRAY statement 4-193
COUNT(*) aggregate

function 4-366, 5-16, 7-61
CPU cost for a query 2-46
CREATE FUNCTION

statement 5-7
CREATE INDEX statement,

interrupting 4-302

8 HCL Informix 4GL Reference Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

CREATE PROCEDURE FROM

statement 4-349, 4-352
CREATE PROCEDURE

statement 4-352
CREATE TRIGGER

statement 4-349
crtcmap utility E-38
.cshrc file D-2
CTYPE category 4-73
Currency symbol

default (= $) 6-45
East Asian E-16
in format strings 5-127
in input files 4-231
in literal numbers 3-67
in output files 4-368

Current
database 4-71, 4-367
file 1-11, 1-51
form 4-35, 4-69, 4-160, 4-188,

4-326
menu option 2-26
option of a menu 1-9, 1-50
window 2-28, 4-29, 4-35, 4-68,

4-160, 4-188
Current field 6-7
CURRENT keyword

Boolean expressions 6-37
CURRENT operator 5-51, 6-47
CURRENT WINDOW

statement 4-68
DISPLAY ARRAY

statement 4-105
INPUT ARRAY statement 4-192
WHERE CURRENT OF

clause 5-54
CURRENT operator 5-51
CURRENT ROW DISPLAY

attribute 4-104, 4-192
CURRENT WINDOW

statement 4-68
Cursor

manipulation statements 4-11
menu cursor 4-248, 4-268
scope of reference 2-18
visual cursor 2-26, 6-7

CURSOR keyword in DECLARE
statement 4-36

Cursor movement
CONSTRUCT statement 4-61
defined in termcap file F-5
defined in terminfo file F-25
DISPLAY ARRAY

statement 4-111
editing keys 4-63, 4-181, 4-219,

4-220
in a screen form 6-34
in a screen record 6-26
INPUT ARRAY statement 4-190
INPUT statement 4-162
MENU statement 2-24, 4-268
NEXT FIELD clause 4-52, 4-177,

4-213
NEXT OPTION clause 4-260
unprintable characters 3-71

Cursor name 5-53, E-14
CURSOR_NAME() 5-53
Customized runners 1-42, 1-64,

1-83
CYAN attribute 3-96, 6-37, 6-82
Cyrillic alphabet E-9
C++

language 2-15
language keywords G-2

D
d symbol in format strings 5-127,

6-51
D symbol, DBDATE D-17
Data

access statements 4-12, 4-13, 4-14
definition statements 4-11, 4-12,

4-13, 4-14
entry 4-181, 4-183, 4-184, 4-293,

6-8
integrity statements 4-12, 4-13,

4-14
manipulation statements 4-11,

4-12, 4-13, 4-14
Data input

INPUT ARRAY statement 4-187
INPUT statement 4-159
LOAD statement 4-230

Data type
C language C-27

character 3-11
compatible 3-47
conversion 2-47, 3-42, C-27
conversion between 3-46, 5-23,

5-57, 5-68
declaration 3-7, 4-81
display width 7-57
fixed point 3-10
flat file format 4-232, 4-369
floating point 3-10, 3-25, 3-37
indirect declaration 4-73, 4-83
keywords 3-6
large 3-12, 4-86, 4-185, 4-218,

4-239, 4-308
large binary 4-85
large types 3-12
number 3-10
simple 3-9
SQL I-32
structured 3-12, 4-86
time 3-11
whole number 3-10

Data types
ARRAY 3-13, 4-87, 6-25
BITFIXED 3-7
BITVARYING 3-7
BLOB 3-7
BOOLEAN 3-7
BYTE 3-12, 3-14, 3-58, 5-37, 6-28,

6-48, 6-60, 6-65, 6-89, 7-57
CHAR 3-11, 3-16, 5-47, 6-46, 6-67,

6-89, 7-57
CHARACTER 3-17
CLOB 3-7
DATE 3-11, 3-17, 3-74, 5-47, 5-123,

6-46, 6-89, 7-57
DATETIME 3-11, 3-18, 3-75, 5-47,

6-46, 6-89, 7-57
DEC 3-23
DECIMAL 3-23, 3-43, 3-66, 5-22,

6-50, 6-89, C-26
declaration 3-8
DISTINCT 3-7
DOUBLE PRECISION 3-25
FLOAT 3-25, 3-66, 5-22, 6-50, 6-89
INT 3-26
INT8 3-7
INTEGER 3-26, 3-66, 5-22, 6-89

Index 9

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

INTERVAL 3-11, 3-27, 3-80, 3-84,

5-21, 5-47, 6-46, 6-89, 7-57
large binary 4-86
LIST 3-7
LVARCHAR 3-7
MONEY 3-32, 3-66, 5-22, 5-47,

5-123, 6-45, 6-89, 7-57
MULTISET 3-7
NCHAR 3-33, 3-41, 5-40, E-4
NUMERIC 3-34
NVARCHAR 3-34, 3-41, 5-40, E-4
OPAQUE 3-7
REAL 3-34
RECORD 3-35, 4-88, 4-190, 6-25
REFERENCE 3-7
ROW 3-7
SERIAL 3-7, 4-83, 4-162, 4-189,

5-47, 6-57, 7-57
SERIAL8 3-7
SET 3-7
SMALLFLOAT 3-37, 3-66, 5-22,

6-50, 6-89
SMALLINT 3-38, 3-66, 5-22, 6-89
TEXT 3-11, 3-12, 3-39, 3-58, 5-37,

5-135, 6-60, 6-67, 6-89, 7-65
VARCHAR 3-11, 3-40, 4-15, 6-67,

6-89
Data validation

INCLUDE attribute 6-54
NOENTRY attribute 6-57
upscol utility 6-80, 6-82, B-7
VALIDATE LIKE attribute 6-65
VERIFY attribute 6-66

Database
administrator (DBA) access

privileges 1-20
ANSI-compliant 4-75, 5-111, 6-23,

6-84
binding to screen forms 6-6
closing 4-72, 4-73, 4-126
connection E-26
creating 2-47
current 3-90, 4-74, 4-367
data integrity 4-235
default 4-73, 4-157, 4-374
engine 3-51, 3-89, 4-71, 4-75, 6-13
exclusive mode 4-75
explicit transactions 4-303, 4-304
lock 4-75

name E-13
naming rules 2-15
opening 4-71
remote 4-71, D-34
schema 6-30
server 3-89, 4-71, 4-372, 6-13
server, specifying default for

connection D-48
singleton transactions 4-303,

4-304
specification 4-72
types of transactions 4-303
with transactions 4-75, 4-136

Database cursor
FOREACH statement 4-132
naming rules 2-15

DATABASE keyword
CLOSE DATABASE

statement 4-72
CREATE DATABASE

statement D-32
DATABASE statement 4-71
DROP DATABASE

statement D-33
START DATABASE

statement D-33
Database name

DATABASE statement 4-71
non-ASCII characters 2-16
table qualifier 3-89, 4-37

DATABASE section of form
specification

creating as FORMONLY 6-29
syntax 6-12
WITHOUT NULL INPUT 6-14,

6-45
DATABASE statement

indirect typing 4-83
syntax and description 4-71
syscolval table 4-156, 4-374
two-pass reports 4-126

DATE data type
arithmetic operations 3-84, 5-26
converting to DATETIME 3-44,

5-67
converting to other data

types 3-47
declaration 3-9, 4-85
default value 6-30, 6-45

description 3-17
display fields 4-163, 4-190, 5-127,

6-46, 6-51
display width 4-93, 6-89, 7-57
formatting 4-328, 5-128, 6-35,

D-15, D-17
in integer expressions 3-84, 5-26
in report output 7-57
in time expressions 3-74
literal values 3-75, 4-231, 4-368,

5-127
time data type 3-11
values 3-74

DATE keyword
DATE data type 3-17
DATE operator 3-51, 5-56, 6-47

DATE operator 5-56
DATE value formatting D-17
DATETIME data type

arithmetic operations 3-83, 5-68
as character string 3-22, 3-45
data type conversion 3-44, 3-47,

5-57, 5-67
declaration 3-9, 3-18, 4-85
default value 6-30, 6-45
description 3-11
display fields 6-46, 6-59
display width 4-93, 6-89, 7-57
in report output 7-57
in time expressions 3-75
literal values 3-78, 4-231
qualifiers 3-19, 3-76, 6-46
values 3-75

DAY keyword
CURRENT operator 5-51
DATETIME qualifier 3-76
DAY() operator 5-58
EXTEND() operator 5-68
INTERVAL qualifier 3-29, 3-80,

5-69
Day of the week 5-134
DAY() operator 5-58
DB2 database 2-4
DB-Access utility 1-68
dbaccessdemo7 script Intro-6
DBANSIWARN environment

variable 2-16, 2-43, 4-76, D-14,
G-2

10 HCL Informix 4GL Reference Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

DBAPICODE environment

variable 3-72
DBASCIIBC environment

variable E-24
DBCENTURY environment

variable 3-18, 3-22, 3-76, 3-79,
D-15

DBCODESET environment
variable E-24

DBCONNECT environment
variable E-24

DBCSOVERRIDE environment
variable E-24

DBDATE environment
variable 3-17, 3-48, 4-36, 4-231,
4-368, 5-57, 5-127, D-17, E-23,
E-28

DBDELIMITER environment
variable 4-233, 4-369, D-19

DBEDIT environment
variable 1-13, 1-28, 1-54, 1-70,
D-20

DBESCWT environment
variable D-21

dbexport utility, specifying field
delimiter with
DBDELIMITER D-19

DBFLTMASK environment
variable 4-36

DBFORM environment
variable D-23

DBFORMAT environment
variable 3-67, 4-36, 5-124, D-25,
E-23, E-29

DBLANG environment
variable 5-57, 5-107, 5-117, B-4,
D-28, E-28

dbload utility, specifying field
delimiter with
DBDELIMITER D-20

DBMONEY environment
variable 3-33, 3-48, 3-67, 4-36,
5-124, D-30, E-23, E-29

DBNLS environment variable 3-17,
3-41, 5-40, D-66, E-14, E-28

DBPATH environment
variable 1-20, 1-32, 1-74, 4-39,
4-72, D-32

DBPRINT environment
variable 4-357, D-35

DBREMOTECMD environment
variable D-36

Dbspace D-37, D-38
DBSPACETEMP environment

variable D-37
DBSRC environment variable D-38
DBTEMP environment

variable 4-242, D-39
DBTIME environment

variable 4-36, D-39
DBUPSPACE environment

variable D-40
DB_LOCALE environment

variable E-26
DEALLOCATE COLLECTION

statement 4-351
DEALLOCATE DESCRIPTOR

statement 4-351
DEALLOCATE ROW

statement 4-351
Deallocation of variables 4-243
Debug option

MODULE Menu 1-55
PROGRAM Menu 1-67

Debugger 1-51, 1-67, 1-75, 1-76,
1-82, 4-123, E-11

Debuggers, of source code 1-41
DEC data type 3-23
decadd() C-40
deccmp() C-41
deccopy() C-42
deccvasc() C-28
deccvdbl() C-38
deccvflt() C-36
deccvint() C-32
deccvlong() C-34
decdiv() C-40
dececvt() C-43
decfcvt() C-43
DECIMAL data type

arithmetic operations 5-23
data type conversion 3-42, 3-47
declaration 3-9, 4-85
description 3-23
display fields 6-50
display width 6-89, 7-57
floating point 3-24

in report output 7-57
internal representation C-26
literal values 3-67
scale and precision 3-24, 3-43

DECIMAL functions for C C-26
Decimal separator 5-129, D-25
Decimal (.) point

DATETIME separator 3-21, 3-78
DBFORMAT values E-29
DECIMAL values 3-23
fixed-point values 3-23
FLOAT values 3-25
floating-point values 3-23, 3-38
in format strings 5-124
in literal numbers C-28
INTERVAL separator 3-27, 3-80
literal numbers 3-67

decimal.h file C-26
Declaration statements 2-11, 2-14
DECLARE statement 4-132, 4-351

declaring a cursor 4-133
query by example 4-36

decmul() C-40
decsub() C-40
dectoasc() C-30
dectodbl() C-39
dectoflt() C-37
dectoint() C-33
dectolong() C-35
dec_t structure C-26
Default

activation key 4-255
attributes 6-80
currency format D-6
database 4-73, 4-156
DATE format D-6
editor 1-28, 1-70
environment settings D-5
error record 5-65
field attributes 3-98, 6-83
field label 6-90
field separator D-6
field width 6-89
Help key 2-30
precision 5-67
report margins 5-136, 7-13, 7-66
reserved line positions 4-114,

4-288
screen layout 6-90

Index 11

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

screen record 6-76
validation criteria 4-374
values 4-157
window attributes 4-285

DEFAULT attribute
field attribute 6-33
syntax and description 6-45
with INITIALIZE statement 6-83
with INPUT 4-162
with INPUT ARRAY 4-190
with WITHOUT DEFAULTS 6-45
with WITHOUT NULL

INPUT 6-45
Default form specification file

creating at system prompt 6-88
generating 1-18, 1-59, 6-86
modifying 1-18, 1-59, 6-86

Default locale Intro-6
DEFAULTS keyword

INPUT ARRAY statement 4-191
INPUT statement 4-163

DEFER statement 4-78
DEFINE section of REPORT

statement 7-10, 7-68
DEFINE statement

in a report 2-17
in FUNCTION statement 4-74,

4-143
in GLOBALS statement 4-74,

4-145
in MAIN statement 4-74
in REPORT statement 4-333
location 2-17
outside program blocks 4-73, 4-82
syntax and description 4-81

Delete key
deleting a line F-6, F-26
disabling 4-300

DELETE keyword
INPUT ARRAY statement 4-201,

4-210
OPTIONS statement 4-293

DELETE ROW attribute 4-195
DELETE statement,

interrupting 4-302
DELIMIDENT environment

variable 2-4, 2-16
Delimited SQL identifiers 2-4

Delimiter
changing in a screen form 6-79
for DATETIME values 3-21
for input file 4-233
for INTERVAL values 3-21, 3-29
for output file 4-369
for screen fields 2-25
in a screen form 6-17
symbols 2-4

DELIMITER keyword
LOAD statement 4-233
UNLOAD statement 4-369

Demonstration application,
listing H-1

Demonstration database,
restoring 1-5

Dependencies, software Intro-5
Deployment E-11
DESC keyword 7-24
DESCRIBE statement 4-351
DESTINATION keyword 4-356
Diacritical marks E-3
DIM attribute 3-96, 6-82, F-11
Dimensions of an array 3-13, 4-86
Direct nesting 2-32
DIRECTION clause 3-12, 3-18, 3-19,

3-36, 3-41, 3-72, 3-75, 5-74, 5-93,
5-114, 5-137, A-1

Directory, msg E-20
Disabled

form fields 6-8
menu options 2-24

DISABLED keyword
ALTER TABLE statement 4-349
SET INDEX statement 4-238

DISCONNECT statement 4-349
DISPLAY ARRAY statement

ARR_CURR() 5-29, 5-83
SET_COUNT() 5-104
syntax and description 4-102

DISPLAY ATTRIBUTE
keywords 4-298

Display characteristics
background colors 5-71
default screen attributes 6-80
field attributes 6-82
formatting output 4-92
output from a report 4-311, 7-19,

7-54

query by example 4-41
screen coordinates 6-15
table of color and intensity

values 6-82
Display field

attributes 2-29, 3-98, 4-43, 4-167,
4-196, 6-83

cursor movement 4-61
default attributes 6-26, 6-48, 6-65,

6-81
default field lengths 6-18, 6-89
delimiters 2-25, 6-17
display label 2-26
dividing character columns 6-30
field names 6-18, 6-25
field tag 6-17, 6-39, 6-92
format 6-17
FORMONLY 6-25, 6-29
Help messages 2-29, 4-43, 4-167,

4-196
labels for 6-20
multiple-line fields 6-18
multiple-segment fields 6-67
names 6-26, 6-29
screen arrays 6-18
screen records 6-76
substring of a character

column 6-27
THRU notation 3-93
verifying field widths 6-18

DISPLAY FORM statement 4-113
DISPLAY keyword

DISPLAY ARRAY
statement 4-102, 4-105

END DISPLAY statement 4-108
EXIT DISPLAY statement 4-108
INPUT ARRAY statement 4-192
OPTIONS statement 4-294

DISPLAY LIKE attribute 6-23, 6-33,
6-48

Display modes
Formatted mode 4-91, 4-96
Line mode 4-91

DISPLAY statement
CLIPPED 5-45
formatting 5-126
syntax and description 4-90

Display width E-16
DISTINCT data type 3-7

12 HCL Informix 4GL Reference Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

Division (/) operator 3-44, 3-64,

3-84, 5-23, 5-26
DM symbols

with DBDATE D-17
with DBFORMAT D-27
with DBMONEY D-31

Documentation
on-line Guides Intro-18
related reading Intro-20
types of Intro-16

Dollar ($) sign
currency symbol D-26
host variable prefix 4-350

Double data type (of C) C-39
DOUBLE PRECISION data

type 3-9, 4-85
Double (--) hyphens 2-8
DOWN keyword

SCROLL statement 4-344
syscolval table B-7

DOWNSHIFT attribute 6-33, 6-49,
6-80, B-7

Downshifting by compiler 2-3
DOWNSHIFT() 5-59
DRDA 2-4
Drop option, PROGRAM

Menu 1-26
Dummy functions 2-13
Dynamic 4GL 2-9, 5-12
Dynamic management

statements 4-11
Dynamic SQL 4-370
Dynamically linked (shared library)

program 1-44

E
East Asian languages E-15
Editing keys

CONSTRUCT statement 4-63
INPUT ARRAY statement 4-220
INPUT statement 4-181, 4-183,

4-184
WORDWRAP fields 4-183, 6-71

Editor
blanks in fields 6-70
specifying with DBEDIT D-20

Eight-bit clean E-2

Ellipsis (…) symbols
in code examples Intro-11
in menu pages 2-23, 4-266

ELSE keyword, IF statement 4-153
Embedded SQL statements 2-5
ENABLED keyword

SET TRIGGER statement 4-238
END keyword 2-12

ATTRIBUTES section of
form 6-26

END CASE statement 4-25
END CONSTRUCT

statement 4-55
END DISPLAY statement 4-108
END FOR statement 4-130
END FOREACH statement 4-138
END FUNCTION

statement 4-144
END GLOBALS statement 4-146
END IF statement 4-153
END INPUT statement 4-178,

4-215
END MAIN statement 4-123
END MENU statement 4-263
END PROMPT statement 4-331
END RECORD declaration 3-35,

4-88
END REPORT statement 7-28
END SQL delimiter 4-350
END WHILE statement 4-383
INSTRUCTIONS section of

form 6-74
SCREEN section of form 6-15
TABLES section of form 6-23

END statement 4-116
Endless loop 4-129, 4-381, 4-383
End-of-data character 3-16, 3-41
End-of-data condition 4-322, 4-379
End-of-file character 3-72
ENTER key

in ON KEY clause 4-48, 4-172
in query by example 4-63

env utility D-4
ENVIGNORE environment

variable D-3, D-41
Environment configuration file

example D-2
Environment variable

case sensitivity D-4

default assumptions D-5
defining in configuration file D-2
definition of D-1
GLS environment variables D-8,

D-65
overriding a setting D-3, D-41
setting at command line D-2
setting in Bourne shell D-4
setting in C shell D-4
setting in configuration file D-2
setting in Korn shell D-4
UNIX environment variables D-9

Environment variables Intro-9
C4GLFLAGS 1-36, 2-42, D-10
C4GLNOPARAMCHK D-11
CC D-12
CLIENT_LOCALE 2-15, D-8,

E-12, E-27
COLUMNS D-13
DBANSIWARN 2-16, 2-43, 4-76,

D-14, G-2
DBAPICODE 3-72
DBCENTURY 3-18, 3-22, 3-76,

3-79, 4-231, D-15
DBDATE 3-17, 3-48, 4-36, 4-231,

4-233, 4-368, 5-57, 5-127, D-17,
E-16, E-23, E-28

DBDELIMITER 4-233, 4-369,
D-19

DBEDIT 1-13, 1-17, 1-28, 1-54,
1-58, 1-70, 6-86, D-20

DBESCWT D-21
DBFLTMASK 4-36
DBFORM D-23
DBFORMAT 3-67, 4-36, 4-233,

5-124, D-25, E-16, E-23, E-29
DBLANG 5-57, 5-107, 5-117, B-4,

D-28, E-28
DBMONEY 3-33, 3-48, 3-67, 4-36,

5-124, D-30, E-23, E-29
DBNLS 3-17, 3-41, D-66, E-14,

E-28
DBPATH 1-20, 1-32, 1-74, 4-39,

4-72, D-32
DBPRINT 4-357, D-35
DBREMOTECMD D-36
DBSPACETEMP D-37
DBSRC D-38
DBTEMP 4-242, D-39

Index 13

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

DBTIME 4-36, D-39
DBUPSPACE D-40
DB_LOCALE E-26
DELIMIDENT 2-4, 2-16
ENVIGNORE D-3, D-41
FET_BUF_SIZE D-42
FGLPCFLAGS D-10, D-43
FGLSKIPNXTPG D-43
GL_DATE 3-18, 3-19, 3-75, 4-231,

5-57
GL_DATETIME 3-79, 4-233
IFX_LONGID 2-16
INFORMIXC D-44
INFORMIXCONRETRY D-44
INFORMIXCONTIME D-45
INFORMIXDIR B-4, D-47
INFORMIXSERVER D-48
INFORMIXSHMBASE D-49
INFORMIXSTACKSIZE D-50
INFORMIXTERM D-51, F-1, F-22
IXOLDFLDSCOPE D-53
LC_COLLATE E-14
LD_LIBRARY_PATH 1-4, 1-45,

D-67
LINES D-55
LPATH 1-45, D-67
ONCONFIG D-56
PATH D-67
PDQPRIORITY D-57
PROGRAM_DESIGN_DBS 1-20,

D-58
PSORT_DBTEMP D-60
PSORT_NPROCS D-61
SERVER_LOCALE E-24
SHLIB_PATH 1-45, D-67
SQLEXEC D-62
SQLRM D-64
SQLRMDIR D-65
SUPOUTPIPEMSG D-63
TBCONFIG D-56
TERM D-69
TERMCAP D-70
TERMINFO D-71, F-22, F-29

Environment-configuration
file D-2, D-3, D-41

en_us.1252@dict E-7
en_us.1252@dict locale E-5, E-14
en_us.8859-1 locale Intro-6, E-7

Equal (=) sign
Boolean expressions 3-55, 5-33,

5-43
CONSTRUCT statement 4-57
environment configuration

separator D-67
FOR statement 4-128
LET statement 4-227

Error
displaying 5-63
log file 5-61, 5-65, 5-110
logging 5-65, 5-110
messages 1-48, 4-120, 5-61, 5-63,

5-64, 5-65, 5-111, B-4
record 5-65, 5-111

Error handling
4GL built-in functions 5-61, 5-64,

5-65
compile-time errors 1-12, 1-53,

6-88
creating an error log 5-110
displaying error messages 5-63,

5-64, 5-65
ERRORLOG() 5-65
logging error messages 5-65
run-time errors 1-82, 5-111
SQLCA global record 2-45
STARTLOG() 5-111
with status variable 5-61, 5-63,

5-64
ERROR keyword

ERROR statement 4-118
WHENEVER statement 4-224,

4-376
Error line 4-61, 4-114, 4-119, 4-220,

4-290, 5-63, 5-64, 5-65
Error messages 4-322
Error messages and

internationalization E-22
Error record 5-111
Error scope 2-41
ERROR statement 4-118, 6-56
ERRORLOG() 5-65
Errors, runtime 2-40
ERR_GET() 5-61
ERR_PRINT() 5-63
ERR_QUIT() 5-64
Escape character

in input files 4-234

in output files 4-371
in quoted strings 2-4
in termcap entries F-3
in terminfo entries F-23

ESCAPE keyword
with LIKE 5-40
with MATCHES 5-40

ESQL/C functions 1-36, 1-80
ESQL/C libraries 1-37, 1-83
EVERY ROW keywords

default format of a report 4-334,
7-28

ON EVERY ROW control
block 7-42

Exceptional conditions 2-40
end of data 4-379
in evaluating expressions 4-378
SQL errors 4-378
warnings 4-75, 4-376

Exceptions
handling with DEFER 2-41
handling with WHENEVER 2-41
WHENEVER statement 4-376

Excess-65 format 3-24
Exclamation (!) point

Boolean expressions 3-55, 5-33,
5-43

invisible MENU options 4-258
PROGRAM attribute 6-60, 6-61

EXCLUSIVE keyword of
DATABASE 4-75

Exclusive mode, DATABASE
statement 4-75

Executable statements 2-6, 4-82,
4-147

EXECUTE IMMEDIATE
statement 4-351

EXECUTE PROCEDURE keywords
in INSERT statement 4-234

EXECUTE PROCEDURE
statement 4-135, 4-381, 5-7

EXECUTE statement 4-315
EXECUTE statement in query by

example 4-36
EXISTS keyword 3-51
Exit code 4-123, 4-341
EXIT keyword 2-12

EXIT CASE statement 4-25

14 HCL Informix 4GL Reference Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

EXIT CONSTRUCT

statement 4-54
EXIT DISPLAY statement 4-108
EXIT FOR statement 4-130
EXIT FOREACH statement 4-137
EXIT INPUT statement 4-178,

4-186, 4-214, 4-222
EXIT MENU statement 4-259,

4-269
EXIT PROGRAM

statement 4-121, 4-246
EXIT REPORT statement 7-50
EXIT WHILE statement 4-383
versus GOTO statement 4-151

Exit option
FORM Menu 1-19, 1-60
MODULE Menu 1-15, 1-56
PROGRAM Menu 1-26, 1-68
UPDATE SYSCOL B-5

EXIT statement 4-121
Exponent

DECIMAL data type C-26, C-28
FLOAT data type 3-26, 3-66, 5-25
SMALLFLOAT data type 3-38,

3-66, 5-25
Exponentiation (* *) operator 3-66,

5-23, 5-25
export utility D-4
Expressions

in form specifications 6-38
in SQL statements 3-51, 5-10
in syscolatt table 6-82

Expressions in 4GL statements
arithmetic expressions 3-64, 5-20
Boolean expressions 3-60, 5-33
character expressions 3-69
data type conversion 3-42, 3-65,

3-77, 5-26, 5-69
expression types 3-49
field operators 5-44, 5-81, 5-83,

5-84, 5-87, 5-90
integer expressions 3-62
number expressions 3-66
operands 3-56
operators 5-11, 5-12, 5-13
parentheses 3-52
resetting status 4-378
time expressions 3-72, 5-68, 5-69

Extended ASCII character sets E-2

EXTEND() operator
implicit 3-48
in arithmetic expressions 3-79,

5-69
syntax and description 5-67

Extensions to SQL syntax D-14
External

editor 6-60, 6-89
functions 5-7
table, query by example 4-40

EXTERNAL keyword
EXTERNAL REPORT

statement 4-364
REPORT statement 4-334, 7-27

F
F symbol

CENTURY 4-328, 6-35
DBCENTURY D-15

FALSE keyword
INPUT ARRAY statement 4-195

FALSE (Boolean constant) 2-18,
3-61, 4-78, 6-37

Feature icons Intro-10
Fetch buffer D-42
FETCH statement

avoiding in PREPARE
statements 4-315

implicit with FOREACH 4-132
interrupting 4-302
NOTFOUND code 2-46
with Update cursors 4-136
with WHENEVER 4-379

FET_BUF_SIZE environment
variable D-42

fgicfunc.h file 1-89
fgiusr.c file 1-84
fglapi.h C-16
fgldb command 1-82
fglgo command 1-5, 1-42, 1-64,

1-80, 4-343, 5-19
fglpc command 1-5, 1-77, 5-54
FGLPCFLAGS environment

variable 1-78, D-10, D-43
FGLSKIPNXTPG environment

variable D-43
fglsys.h file G-1

fglusr.h file G-1
fgl_call() macro C-23
FGL_DRAWBOX() 5-70, 5-71
fgl_end() macro C-24
fgl_exitfm() macro C-24
FGL_GETENV() 5-73
FGL_GETKEY() 5-75
FGL_KEYVAL() 5-76
FGL_LASTKEY function 5-78
FGL_LASTKEY()

syntax and description 5-78
with CONSTRUCT 4-56
with DISPLAY ARRAY 4-110
with INPUT 4-179
with INPUT ARRAY 4-216

FGL_SCR_SIZE() 5-81
with CONSTRUCT 4-55
with INPUT ARRAY 4-216

fgl_start() macro C-21
Field

buffer 4-55, 4-110, 4-178, 4-216,
5-87, 5-97

clause 3-86, 5-81, 5-83, 5-84
data type 6-26, 6-29
description 3-98, 6-25, 6-83
editing keys 4-63, 4-181, 4-183,

4-184, 4-293
labels 6-19, 6-90

length 6-18
multiple-segment 6-31, 6-67
names in screen forms 5-90, 6-24,

6-26, 6-29
operators 3-56, 5-44, 5-81, 5-83,

5-84, 5-87, 5-90
qualifier 6-27
single-character 6-19
tags 6-18

Field attributes
interacting with users 2-27
order of precedence 6-83
query by example 4-41

FIELD keyword
AFTER FIELD 4-50
BEFORE FIELD 4-46, 4-170, 4-205
CONSTRUCT statement 4-46,

4-50, 4-52
INPUT ARRAY statement 4-208
INPUT statement 4-174
NEXT FIELD 4-52

Index 15

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

OPTIONS statement 4-294

FIELD ORDER CONSTRAINED
keywords 4-61, 4-296

FIELD ORDER
UNCONSTRAINED
keywords 4-61, 4-296

Field tag
in Boolean expressions 3-58, 6-40,

6-92
in default forms 6-18, 6-90
in the ATTRIBUTES section 6-25,

6-39
in the SCREEN section 6-17, 6-67
naming conventions 6-18
naming rules 2-14

FIELD_TOUCHED() operator 3-51
syntax and description 5-84
with CONSTRUCT 4-53
with DISPLAY ARRAY 4-110
with INPUT 4-178

File
environment configuration D-2
temporary for Dynamic

Server D-37
temporary for SE D-39

File extensions
4ec 1-48
.4be 1-48, 1-91
.4bl 1-48, 1-91
.4bo 1-48, 1-91
.4ec 1-7, 1-35
.4ge 1-12, 1-15, 1-22, 1-35, 1-47,

H-1
.4gi 1-63, 1-71, 1-74, 1-80, 1-90
.4gl 1-7, 1-13, 1-28, 1-35, 1-47,

1-69, 1-77, 1-90, 2-8, 4-148,
D-38, H-1

.4go 1-64, 1-71, 1-77, 1-80, 1-90

.c 1-8, 1-23, 1-35, 1-48, 1-87

.dbs 4-71, 6-12, D-39

.ec 1-8, 1-23, 1-32, 1-35, 1-36, 1-48,
1-87

.erc 1-48, 1-90

.err 1-34, 1-48, 1-52, 1-76, 1-90,
6-88

.fbm 1-48, 1-91

.frm 1-47, 1-91, 4-278, 4-283, 6-86,
6-88, D-23

.h 1-41, 1-88, C-26

.iem B-4, D-28, D-30, E-32

.msg B-4, E-20

.o 1-11, 1-29, 1-35, 1-47

.out 1-37, 1-88

.pbr 1-48, 1-91

.per 1-16, 1-47, 1-91, 4-278, 6-88

.rc D-41

.sql D-32

.src H-1
FILE keyword

LOCATE statement 4-241
OPTIONS statement 4-294, 4-299,

B-2
PRINT statement 7-57
REPORT statement 7-18
START REPORT statement 4-358

Filename E-14
LOAD statement 4-230
UNLOAD statement 4-367

Fill character
ampersand (&) symbol 5-124
parentheses 5-125
pound sign 6-50
pound (#) sign 5-124

finderr script Intro-18
FINISH REPORT statement 4-125,

7-5
FIRST keyword

OPEN WINDOW
statement 4-285, 4-289

OPTIONS statement 4-295
REPORT statement 7-40

FIRST PAGE HEADER control
block 4-354, 7-40, 7-45

Fixed-point numbers 3-26, 3-38,
3-67

FLOAT data type
data type conversion 3-42, 3-47
declaration 3-9, 4-85
description 3-25
display fields 6-50
display width 6-89, 7-58
literal values 3-26, 3-67

Float data type (of C) C-37
Floating-point numbers 2-47, 3-26,

3-38, 3-43, 3-67, C-36
Font requirements E-4

FOR keyword
CONTINUE FOR statement 4-66,

4-129
DECLARE statement 4-132
END FOR statement 4-130
EXIT FOR statement 4-130
FOR statement 4-128
PROMPT statement 4-327
SELECT statement 4-315

FOR statement 4-128
FOREACH keyword in

CONTINUE FOREACH
statement 4-66

FOREACH statement
interrupting 4-302
syntax and description 4-131

Foreground colors 5-71, F-21
Form

binding fields to variables 6-6
binding to the database 6-6
clearing 4-28
closing 4-31, 4-32
declaring 4-279
dimensions 6-15
displaying 4-278, 4-291
fields 3-86, 4-37, 6-7
identifying the current field 5-90
line 2-27, 4-114, 4-288
naming rules 2-14
screen records 6-76
syntax of form specification 6-10

FORM Design Menu 1-15
Form driver 6-5
FORM keyword

CLEAR FORM statement 4-28
CLOSE FORM statement 4-31
DISPLAY FORM statement 4-113
OPEN FORM statement 4-278
OPEN WINDOW statement 4-31,

4-285
OPTIONS statement 4-293, 4-298,

4-307
REPORT statement 7-17
RUN statement 4-341
START REPORT statement 4-355

FORM LINE keywords
OPEN WINDOW

statement 4-285
OPTIONS statement 4-293

16 HCL Informix 4GL Reference Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

Form management blocks,

CONSTRUCT statement 4-44
Form mode 4-359
Form specification file

ATTRIBUTES 6-9, 6-25
DATABASE 6-9, 6-12
DISPLAY FORM statement 3-98,

6-84
INSTRUCTIONS 6-9, 6-74
multiple tables 6-23
OPEN FORM statement 4-278
OPEN WINDOW

statement 4-283
overview 6-5
PERFORM forms 6-91
SCREEN 6-9, 6-15
TABLES 6-9, 6-23

Form specification file, using
correcting errors 1-17
creating 6-88
default form specification

file 6-88
generating 1-15, 1-56
graphics characters 6-21
multiple tables in 6-85

FORM4GL
attribute syntax 6-33
command line syntax 6-88
creating a default form

specification file 6-86
default attributes 6-26
default field tags 6-88
default screen records 6-76
description 6-5
field attributes 6-32
file extensions created by 6-88
from Programmers

Environment 1-18, 1-59
graphics characters in screen

section 6-21
verifying field widths 6-18

Formal arguments
name space 2-19
non-English characters E-14
of reports 3-6
scope of reference 2-18

Format
date data D-17
monetary data D-25

numeric data D-25
FORMAT attribute

syntax and description 6-50
FORMAT keyword

FORMAT attribute 6-50
REPORT statement 4-334

FORMAT section of REPORT
statement

AFTER GROUP OF 7-34
BEFORE GROUP OF 7-37
CLIPPED 7-57
COLUMN 7-45
COLUMN operator 5-47
EVERY ROW 7-29
FIRST PAGE HEADER 7-40
NEED statement 4-276, 7-52
ON EVERY ROW 7-42
ON LAST ROW 7-44
PAGE HEADER 7-45
PAGE TRAILER 7-47
PAUSE statement 4-311, 7-54
PRINT statement 4-324, 7-55
SKIP statement 4-346, 7-68
syntax 7-28
USING 7-57
WORDWRAP 5-135, 7-65

Format strings
in syscolatt table 6-82
with FORMAT attribute 6-50,

6-58, B-8
with PICTURE attribute 6-58
with USING operator 3-69, 5-123

Formatted mode 4-91, 4-96, 4-359,
7-18

Formatting
data 2-27
date values 4-328, 6-35, D-15
number expressions 5-124

Formatting a report
automatic page numbering 7-45
default report format 7-19, 7-29
formatting dates 5-127
formatting numbers 5-124
grouping data 5-15, 7-60
page headers and trailers 7-40,

7-45, 7-47
printing column headings 7-45
setting margins 5-135, 7-15, 7-16,

7-19, 7-20, 7-65

setting page eject character 7-21
setting page length 7-16
skipping to top of page 4-346
starting a new line 4-346, 5-136,

7-57, 7-66
starting a new page 4-276, 4-346,

5-136, 7-21, 7-52, 7-66, 7-68
FORMFEED character in TEXT

values 3-39, 3-71
FORMONLY field 3-16, 4-57, 4-161,

6-29
FORMONLY keyword

ATTRIBUTES section 6-29
CLEAR statement 4-30
CONSTRUCT statement 4-57
DATABASE section 6-23
field clause 3-86, 4-37
INSTRUCTIONS section 6-76

FOUND keyword in WHENEVER
statement 4-376

4gluser.msg file E-20
4GL shared library

implementation 1-43
4GL error handling 2-44
FRACTION keyword

CURRENT operator 5-51
DATETIME qualifier 3-76
INTERVAL qualifier 3-28, 3-80

FREE statement 4-243
French language E-21
FROM keyword

CONSTRUCT statement 4-40
CREATE PROCEDURE FROM

statement 4-352
INPUT ARRAY statement 4-189
INPUT statement 4-165
LOAD statement 4-231
OPEN FORM statement 4-278
PREPARE statement 4-312
SELECT statement 4-369

Function keys 1-64, D-21, F-6, F-26
Function name E-14
FUNCTION statement, argument

data types 3-6
Functions

as arguments 3-58, 4-141
built-in 4GL functions 5-6, 5-13
built-in SQL functions 5-7
C language 1-36, 1-80, 5-7, C-26

Index 17

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

dummy functions 4-142
ESQL/C 1-36, 1-80, 5-7
function calls in expressions 3-58
function calls in reports 7-59
invoking with CALL 4-16
invoking with

WHENEVER 4-376
naming rules 2-14
overview 5-5
prototypes 5-8

-fwritable flag D-44
fwritable option of gcc D-12

G
gb setting 6-22
gcc compiler D-12, D-44
ge setting 6-22
Generate option, FORM

Menu 1-18, 1-59
German language E-21
GET DESCRIPTOR

statement 4-351
GET DIAGNOSTICS

statement 4-351
get_fldbuf() function 3-97
GET_FLDBUF() operator 3-51,

4-53, 4-55, 4-215, 4-216, 5-87
Global

aggregate functions 4-334
Source array 1-64

Global Language Support
(GLS) Intro-6, D-65, E-20

Global string space 2-15, 4-81
Global variables

declared in MAIN 4-246

-globcurs option 1-40, 1-78, 5-55,
1-40, 2-19, 4-313

Glossary of localization terms,
keeping E-21

GL_DATE environment
variable 3-18, 3-19, 3-75, 4-231,
E-23

GL_DATETIME environment
variable 3-79, E-23

GOTO keyword, WHENEVER
statement 4-224, 4-376

GOTO statement 4-151
GRANT statement

with LOAD 4-231
with UNLOAD 4-367

Graphical replacement
conversion E-37

Graphics characters in forms 6-21
Greater than (>) symbol

BYTE values in reports 7-57
COLOR attribute 6-38
relational operator 3-55, 4-57,

5-35, 5-43
REVERSE attribute 6-63

Greek characters E-35
Greek language E-9
GREEN attribute 3-96, 6-37, 6-82
grep utility D-51
GROUP keyword

AFTER GROUP OF control
block 7-34

aggregate functions 4-334, 5-15,
7-36, 7-60

BEFORE GROUP OF control
block 7-37

gs setting 6-22

message number 5-106, B-2
window 2-30, 5-106

Help file
compiling with mkmessage B-2
SHOWHELP() 5-107, B-3

Help key
assigning 4-294
default 2-30
effect 5-107
valid contexts B-2

HELP keyword
CONSTRUCT statement 4-43
INPUT ARRAY statement 4-196
INPUT statement 4-166
MENU statement 4-254
OPTIONS statement 4-294, 4-299,

B-2
PROMPT statement 4-329

Help message
creating and compiling 1-10, 1-51,

B-2
displaying 1-9, 1-50, 4-43, 4-166,

4-196, 5-107
specifying Help file 4-294
using SHOWHELP() 5-106

Heterogeneous nesting 2-34
Hexadecimal numbers 4-233, 4-370
Hidden Comment line 4-290
Hidden menu options 4-260
HIDE keyword, MENU

statement 4-260
High-order bit E-2
hkenv utility D-3
HOLD keyword in DECLARE

statement 4-132
Host system 3-90

declaring 4-82, 4-145
importing 4-147

scope of reference 2-17

Host variables 4-350, 4-370
HOUR keyword

DATETIME qualifier 3-19, 3-76
INTERVAL qualifier 3-29, 3-80

GLOBALS keyword
END GLOBALS statement 4-148
GLOBALS statement 4-145

Globals menu option 1-74
GLOBALS statement

syntax and description 4-145
with DATABASE 4-74, 4-148
with DEFINE 4-146

Header files, decimal.h C-26
HEADER keyword

FIRST PAGE HEADER control
block 7-40

PAGE HEADER control
block 7-45

Help
menu 5-106, B-4
message file 5-106, B-2

Hyphen (-) symbol
comment indicator 2-8, 4-314
DATETIME separator 3-21, 3-29,

3-75, 3-78, 3-82
in window border 6-21, F-7
INTERVAL separator 3-27, 3-83
with CONSTRUCT 4-60
with MATCHES 5-38

H

18 HCL Informix 4GL Reference Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

I
i4gl command 1-5, 1-27, 6-85
i4glc1 compiler 1-7, 1-35, 1-36, 1-41,

1-48, 5-54
i4glc2 compiler 1-7, 1-35, 1-36, 1-41
i4glc3 compiler 1-8, 1-35, 1-41
i4glc4 compiler 1-8, 1-35, 1-36, 1-41
i4gldemo script 1-5, 1-43
ICB statements, nested and

recursive 2-31
Icon modification E-15
Icons

compliance Intro-10
feature Intro-10
platform Intro-10
product Intro-10
syntax diagram Intro-13

Identifier
database cursor 4-133
declaring 2-14
function arguments 4-141
naming conventions 2-14
predefined 2-18, 2-19
report arguments 4-333
report name 4-125, 4-354, 4-364
scope of reference 2-17
source-code module 1-13, 1-65
SQL and 4GL 2-15, E-13
SQL identifiers 2-16, 2-19
user name 2-17

IF statement 4-153
IFX_LONGID environment

variable 2-16, 6-26, 6-75
Implicit names, declaring 4-88
IN keyword

Boolean expressions 3-54, 5-41,
6-38, 6-82

CREATE TABLE statement 4-86
LOCATE statement 4-86, 4-241
OPTIONS statement 4-307
REPORT statement 7-17
RUN statement 4-341
START REPORT statement 4-355

INCLUDE attribute 6-53
INCLUDE keyword in syscolval

table 4-373
Incompatible data types 3-47

INDEX keyword
SET INDEX statement 4-238

Index name 2-16, E-13
Index to an array 3-13
Indirect nesting 2-33
Indirect typing 2-16, 4-73, 4-83,

4-148, 7-11
INFIELD() operator 3-51

field-level Help 4-43, 4-167, 4-196
Help messages 2-29
in ON KEY clause 4-173, 4-208
syntax and description 5-90
with CONSTRUCT 4-56
with INPUT 4-179
with INPUT ARRAY 4-216

INFO statement 4-351
infocmp utility F-27, F-31
Informix Developer Network

(IDN) Intro-20, 1-34
Informix Dynamic 4GL 2-9
.informix environment

configuration file D-2
informix owner name 2-17, 5-10,

D-30
INFORMIX Relay Module D-62
INFORMIX-4GL

as a report writer 7-4
command file names 1-76
program 2-3
screen forms 6-5
versions 1-3

INFORMIXC environment
variable D-44

INFORMIXCONRETRY
environment variable D-44

INFORMIXCONTIME
environment variable D-45

INFORMIXDIR environment
variable B-4, D-23, D-47

Informix-Dynamic Server
database names 2-15
specific data types 4-15

INFORMIX-ESQL/C
functions 1-36, 1-80, 2-10, 5-7

INFORMIX-NET D-62, E-34
INFORMIX-SE

database names 2-15
database server E-13

interrupting SQL
statements 4-302

rolling back transactions 4-304
specific data types 4-15

INFORMIXSERVER environment
variable D-48

INFORMIXSHMBASE
environment variable D-49

INFORMIX-SQL 1-68
Interactive Editor 6-73
screen forms 6-91

INFORMIXSTACKSIZE
environment variable D-50

INFORMIXTERM environment
variable D-51, F-1, F-22

informix.rc file D-2
INITIALIZE statement 4-155
inode number 5-55
INPUT ARRAY statement

ARR_CURR() 5-29, 5-83
SCR_LINE() 5-102
SET_COUNT() 5-104
syntax and description 4-187

INPUT ATTRIBUTE
keywords 4-298

Input Control Block (ICB)
statements 2-31

Input file
dbload utility 4-233
LOAD statement 4-231

INPUT keyword
AFTER INPUT block 4-175, 4-211
BEFORE INPUT block 4-170,

4-200
CONTINUE INPUT 4-177, 4-214
CONTINUE INPUT

statement 4-66
EXIT INPUT statement 4-178,

4-214
INPUT ARRAY statement 4-187
INPUT statement 4-159
OPTIONS statement 4-294
WITHOUT NULL INPUT 6-12

INPUT NO WRAP keywords 4-296
Input record 4-232, 4-308, 5-104, 7-5
INPUT statement

ARR_COUNT() 5-27
syntax and description 4-159

INPUT WRAP keywords 4-296

Index 19

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

Insert

editing mode 4-63, 4-181, 4-220
privilege 4-231

Insert key
defining F-6, F-26
INPUT ARRAY statement 4-206

INSERT keyword
GRANT statement 4-231
INPUT ARRAY statement 4-203,

4-209
LOAD statement 4-234
OPTIONS statement 4-293

INSERT ROW attribute 4-195
INSERT statement

DATETIME or INTERVAL
values 3-45

interrupting 4-302
NOENTRY attribute 6-57
with INPUT 4-160
with INPUT ARRAY 4-188
with LOAD 4-234

INSTRUCTIONS section of form
specification

screen arrays 6-77
SCREEN RECORD

keywords 3-86, 4-37, 5-84,
6-74, 6-75, 6-77

screen records 6-74
syntax 6-74

INT data type 3-26
Int data type (of C) C-32, C-33
INT8 data type 3-7
Integer

division 3-64, 5-25, F-14
expression 3-63
literal 3-65

INTEGER data type
data type conversion 3-42, 3-47
declaration 3-9, 4-85
description 3-26
display fields 6-14
display width 6-89, 7-58
in report output 7-58
literal values 3-67

Intensity attributes 6-82, D-51
Intentional blanks in multiple-

segment fields 4-182, 6-70
Interactive Debugger

Debugger path 1-65, D-38

description of 1-82
documentation Intro-17
invoking 1-51, 1-67

International Language
Supplement E-9

Internationalization
code-set conversion

enabling for UNIX E-38
code-set conversion, description

of E-34
definition E-2
fonts E-19
keyboard layouts E-19
measurement systems E-19
messages E-32
overview of methodologies E-22
paper size E-19
reports E-20
translation checklist E-20

Interprocess connections 4-77
Interrupt key

interrupting SQL
statements 4-80, 4-301, 4-303

with DEFER 4-79
with DISPLAY ARRAY 4-111
with INPUT 4-186
with INPUT ARRAY 4-222
with MENU 4-249, 4-268
with OPTIONS 4-301
with PROMPT 4-330

INTERRUPT keyword
DEFER statement 4-78
MENU statement 4-256
OPTIONS statement 4-80, 4-294,

4-301, 4-303
Interrupt signal 2-41, 4-342, C-19
INTERVAL data type

arithmetic operations 3-84, 5-26,
5-68

as character string 3-31, 3-45,
4-231

data type conversion 3-47
declaration 3-9, 3-27, 4-85
description 3-27
display fields 6-46, 6-59
display width 6-89, 7-58
in report output 7-58
in time expressions 3-84, 5-26
literal 3-29, 3-82

qualifiers 3-28, 3-80, 6-46
time data types 3-11
values 3-75

INTO keyword
EXECUTE PROCEDURE

statement 4-350
EXECUTE statement 4-134
FOREACH statement 4-134
INSERT statement 3-20, 6-6
LOAD statement 4-234
SELECT statement 3-39, 4-36,

4-135, 4-241, 4-314, 4-350
INTO TEMP keywords, SELECT

statement 4-315
int_flag 4-64, 4-78, 4-256, 4-300,

4-302, 4-330
Inverse video 4-286, 6-63, 6-82
INVISIBLE attribute 3-96, 3-97,

4-100, 4-275, 6-56
Invisible menu options 4-257, 4-262
Invoking

4GL Compiler 1-5, 1-35, 1-37, 1-77
4GL programs 1-5, 1-33, 1-67
4GL reports 4-354
FORM4GL 1-18, 1-59, 6-88
Interactive Debugger 1-51, 1-75
Programmers Environment 1-5,

1-9, 1-49
ioctl() call D-12, D-55
IS keyword

CURRENT WINDOW
statement 4-68

IS NULL operator 3-54, 3-55, 5-43
NULL test 5-37, 6-39

ISAM error code 2-46
ISO 8859-1 code set Intro-6
ISO Standard A4 E-19
Italian language 4-101
IXOLDFLDSCOPE environment

variable D-53

J
JA 7.20 supplement E-8
Japanese eras 3-75, 3-79
Japanese language E-6, E-8, E-9
Join columns 4-89, 6-92
Joins E-25

20 HCL Informix 4GL Reference Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

Jump instructions 2-11, 4-66, 4-151,
4-224, 4-379

Jump statements 2-40
Justified data display

left justified 4-103, 5-124, 5-136,
6-37, 7-66, C-30

right justified 4-103, 5-126, 6-50

K
-keep option D-10
Key

activation key 4-255
assigning logical functions 4-300
choosing menu options 4-265
Help 2-29
Help key B-2
Interrupt 4-80, 4-301
scrolling and editing 4-103, 4-220

KEY keyword
ACCEPT KEY 4-293
CONSTRUCT statement 4-47
DELETE KEY 4-221, 4-293
DISPLAY ARRAY

statement 4-106
HELP KEY 4-294
INPUT ARRAY statement 4-205
INPUT statement 4-171
INSERT KEY 4-293
MENU statement 4-256
NEXT KEY 4-293
PREVIOUS KEY 4-294
PROMPT statement 4-329

Keystroke buffer 4-55, 4-110, 4-178,
4-216

Keywords
as identifiers 2-15
of C and C++ G-2
precedence G-1

Kinsoku processing 5-137, 6-68,
7-66, E-15

KO 7.20 supplement E-8
Korean language E-8, E-9
Korn shell 1-4, D-2, D-4

.profile file D-2

L
LABEL statement

syntax and description 4-224
with GOTO 4-151
with WHENEVER 4-380

Language features
built-in functions 5-6
built-in operators 5-11
flat-file input 4-230
functions 5-5
statement types 4-9, 4-13

Language-sensitive files E-30
Language supplement D-23, E-8
Large binary data types 3-12, 4-86,

4-185, 4-218, 4-239
LAST keyword

OPEN WINDOW
statement 4-285, 4-289

OPTIONS statement 4-295
REPORT statement 4-334, 7-44

Latin alphabet E-9
LC_COLLATE environment

variable E-14
LD_LIBRARY_PATH environment

variable 1-4, 1-45, D-67
Leading currency symbol 5-129,

D-25, D-30
Leap year 5-134
LEFT attribute 6-37
LEFT MARGIN keywords 7-16

START REPORT statement 4-360
Left margin of a 4GL window 4-280
Left-brace ([) symbol 2-8
LENGTH keyword

PAGE LENGTH clause 4-360,
7-16

Length of identifiers E-13
LENGTH() 5-92
Less than (<) symbol

BYTE values in reports 7-57
COLOR attribute 6-38
relational operator 3-55, 4-57,

5-35, 5-43
REVERSE attribute 6-63

LET statement
CLIPPED operator 5-45
syntax and description 4-226
USING operator 5-123

Letter case sensitivity 2-3, 2-14, 5-7,
5-127, 6-18

Lettercase conversion 2-3, 5-59,
5-122, 6-49, 6-64

Libraries, shared 1-42
Library functions

decadd() C-40
deccmp() C-41
deccopy() C-42
deccvasc() C-28
deccvdbl() C-38
deccvflt() C-36
deccvint() C-32
deccvlong() C-34
decdiv() C-40
dececvt() C-43
decfcvt() C-43
decmul() C-40
decsub() C-40
dectoasc() C-30
dectodbl() C-39
dectoflt() C-37
dectoint() C-33
dectolong() C-35

LIKE keyword
Boolean expressions 6-82
DEFINE statement 2-16, 4-73,

4-83
DISPLAY LIKE attribute 6-23,

6-48
FORMONLY fields 6-23
INITIALIZE statement 4-156
RECORD data type 3-35, 4-88
string operator 5-38
VALIDATE LIKE attribute 6-23,

6-65
VALIDATE statement 4-373

LINE keyword
OPEN WINDOW

statement 4-285
OPTIONS statement 4-307
REPORT statement 7-17
RUN statement 4-341
SKIP statement 4-346, 7-68
START REPORT statement 4-355

Line mode 4-91, 4-92, 4-359, 7-18
Line mode overlay 4-92, 5-48
Line number

in a program array 5-29, 5-83

Index 21

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

in a screen array 5-102, 6-74, 6-77

LINEFEED characters between
statements 2-4

Linefeed key in ON KEY
clause 4-48, 4-172

LINENO operator 5-94, 7-63
LINES environment variable D-55
LINES keyword

NEED statement 4-276, 7-52
SKIP statement 4-346, 7-68

Link-time errors 4-16
LINUX operating system G-2
LIST data type 3-7
Literal quotation marks 2-4
Literal values

DATE data type 3-75, 4-368
DATETIME data type 3-78, 4-368
in SQL I-39, I-41
integers 3-65
INTERVAL data type 3-82, 4-368
numbers 3-67, 4-368

LOAD statement
interrupting 4-302
specifying field delimiter with

DBDELIMITER D-20
syntax and description 4-230

Local variables 2-17, 4-82, 4-144,
4-246, 4-334, 7-10, 7-68

-localcurs option 1-40, 1-78
Locales

assumption about Intro-6
client E-10, E-27
consistency checking 4-73
server E-10, E-26

Localization
defined E-2
guidelines E-20

Localized collation order 5-40, E-4
LOCATE statement 3-39, 4-239
LOCK TABLE statement with

LOAD 4-235
Logfile names 2-16, E-13
Logging

error messages 5-65, 5-110
transactions 4-130, 4-136, 4-383

Logical characters 3-16, 3-41, 5-114,
E-4, E-16

Logical operators 3-55, 5-33, 5-44
.login file D-2

Long data type (of C) C-34, C-35
LOOKUP attribute of

PERFORM 6-92
Loops

FOR statement 4-128
FOREACH statement 4-131
using CONTINUE 4-67
WHILE statement 4-382

Lossy conversion E-35
Lowercase characters

DOWNSHIFT attribute 6-49, B-7
DOWNSHIFT() 5-59
in field tags 6-18
in identifiers 2-3, 2-14
names of C functions 5-7
SHIFT attribute B-7
UPSHIFT attribute 6-64, B-7
UPSHIFT() 5-121

lp utility D-6
LPATH environment variable 1-45,

D-67
lpr utility D-6
LVARCHAR data type 3-7

M
m symbol in format strings 5-127,

6-51
M symbol, DBDATE D-17
MAGENTA attribute 3-96, 6-37,

6-82
MAIN statement

in source-code modules 1-38
preceded by DATABASE 4-74
syntax 4-245
uniqueness 2-11

make utility D-12, D-44
Makefiles 1-34
Mangled name 5-54
Mantissa

DECIMAL data type 3-24, C-26
FLOAT data type 3-26
SMALLFLOAT data type 3-38

Mapping files E-38
MARGIN keyword

BOTTOM MARGIN clause 4-360,
7-15

LEFT MARGIN clause 4-360, 7-16

RIGHT MARGIN clause 4-360,
7-19, 7-65

TOP MARGIN clause 4-360, 7-20
WORDWRAP operator 5-135,

7-65
MATCHES keyword

Boolean operator 5-38
in syscolatt table 6-82
with COLOR attribute 6-37

MAXCOUNT attribute 4-194
Maximum size

BYTE or TEXT data type 3-12
CHAR or NCHAR data type 3-11
DATE data type 3-11
INTEGER data type 3-10
SMALLINT data type 3-10
VARCHAR or NVARCHAR data

type 3-11
MAX() aggregate function 2-47,

7-61
MDY() operator 5-95
Member

of input record 4-308
of program record 3-35, 4-88

Membership (.) operator 5-97
MEMORY keyword in LOCATE

statement 4-241
Memory management

CLOSE FORM statement 4-31
CLOSE WINDOW

statement 4-32
FREE statement 4-243
Large variables 4-243

Menu
help line 2-23, 2-25, 4-256
line 2-25, 4-114, 4-249, 4-288
option names 2-23
options of Programmer’s

Environment 1-9, 1-33
Menu form files D-23
Menu items E-15
MENU keyword

BEFORE MENU clause 4-252
CONTINUE MENU

statement 4-66, 4-259
END MENU statement 4-263
EXIT MENU statement 4-259
OPEN WINDOW

statement 4-285

22 HCL Informix 4GL Reference Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

OPTIONS statement 4-293

MENU LINE keywords
OPTIONS statement 4-293

Menu options
disabled 2-25, 4-260, 4-268
hidden 2-24, 4-260
invisible 2-24, 4-257

MENU statement 4-248
COMMAND KEY conflict 4-272

Menus of 4GL
in a national language D-23
MENU statement 2-23
menu title 2-23
nested 2-23

Message
files B-2, D-28
line 2-27, 4-114, 4-273, 4-288
numbers in help files 5-106, B-2

Message Compiler B-2, E-11
MESSAGE keyword

MESSAGE statement 4-273
OPEN WINDOW

statement 4-285
OPTIONS statement 4-293

MESSAGE LINE keywords
OPEN WINDOW

statement 4-285
OPTIONS statement 4-293

MESSAGE statement 4-273
Method 5-5
Minus (-) sign

comment indicator 2-8, 4-314
DATETIME separator 3-22
in format strings 5-125
in literal numbers 3-67, C-28
in window border 6-21, F-7
INTERVAL literals 3-29, 3-82
INTERVAL separator 3-32
subtraction operator 3-54, 3-84,

4-289, 4-295, 5-23, 5-26
unary operator 3-54, 3-66

MINUTE keyword
DATETIME qualifier 3-19, 3-76
INTERVAL qualifier 3-29, 3-80

MIN() aggregate function 2-47,
5-16, 7-61

Mismatch handling E-37
mkdir command D-30

mkmessage utility 1-10, 1-51, 4-196,
4-299, 5-107, B-2

MODE keyword
OPTIONS statement 4-307
REPORT statementt 7-17
RUN statement 4-341
START REPORT statement 4-355

Modify option
FORM Menu 1-16, 1-57, 6-86
MODULE Menu 1-11, 1-51
PROGRAM Menu 1-21, 1-63

Modular scope operator 2-22
Module

compiling 1-14, 1-54
option of INFORMIX-4GL

Menu 1-10, 1-50
running multi-module

programs 1-15, 1-55, 1-82
variables 2-17, 4-82, 4-246

MODULE Menu 1-28, 1-69
Modulus (MOD) operator 3-54,

3-64, 3-66, 3-83, 5-23, 5-25, 5-26
MONETARY locale

specification 4-101, 5-129
MONEY data type

data type conversion 3-42, 3-47
declaration 3-9, 4-85
default value 6-45
description 3-33
display width 4-94, 6-89, 7-58
formatting with

DBFORMAT 5-124
in input files 4-231
in output files 4-368
in report output 7-58
literal values 3-67

Monochrome terminals 3-97
Month abbreviations 5-129
MONTH keyword

CURRENT operator 5-51
DATETIME qualifier 3-19, 3-76
EXTEND() operator 5-68
INTERVAL qualifier 3-29, 3-80
MONTH() operator 5-98
UNITS operator 5-119

MONTH() operator 5-98
Multibyte locale 3-16, 3-41, E-16
Multiple-form programs 4-68

Multiple-module programs,
compiling 1-14, 1-29, 1-54, 1-64,
1-71, 1-80

Multiple-segment fields
description of 6-31
in WORDWRAP fields 6-67
with CONSTRUCT 4-62
with INPUT 4-182

Multiple-statement
PREPARE 4-75, 4-322

Multiple-table
forms 6-23
screen records 6-79
views 6-26

Multiplication (*) operator 3-18,
3-44, 3-83, 5-23, 5-26, F-14

MULTISET data type 3-7
myutil object 1-44

N
NAME keyword

CONSTRUCT statement 4-38
DISPLAY statement 4-90
INPUT statement 4-164

Name mangling 5-53
Name scope 2-17
Name space 2-19
Named values 3-57, E-12
Naming conventions

display fields 6-26, 6-27, 6-29
field tags 6-18

Naming rules
4GL identifiers 2-14
databases 4-71
SQL identifiers 2-14

NCHAR data type 3-17, 3-33, 3-41,
5-40, E-4

display width 4-94
NEED statement 4-276, 7-52
Nested and recursive operations

early exits 2-36
Nested input 2-31
nettype field 4-77

Network environment variable
SQLRM D-64
SQLRMDIR D-65

Index 23

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

New option

FORM Menu 1-18, 1-59
MODULE Menu 1-13, 1-53
PROGRAM Menu 1-24, 1-65

NEWLINE character
in TEXT values 3-39, 3-71, 4-231,

4-368
in VARCHAR values 4-231, 4-368
in WORDWRAP fields 4-183,

6-69
input record separator 4-232
output record separator 4-368
report output 7-22, 7-66

Next
key F-6, F-26
menu option 5-106

NEXT FIELD keywords
CONSTRUCT statement 4-52
INPUT ARRAY statement 4-212
INPUT statement 4-176

NEXT keyword
CONSTRUCT statement 4-52
MENU statement 4-260
OPTIONS statement 4-293

Next Page key
DISPLAY ARRAY

statement 4-111
INPUT ARRAY statement 4-206
OPTIONS statement 4-299

NEXTPAGE keyword 4-299
nm utility D-51
NO keyword

OPTIONS statement 4-294
NOENTRY attribute 4-41, 6-57
Non-alphanumeric characters 2-16
Non-ASCII characters 1-8, 2-15,

E-12
Non-composite Thai

characters E-10
Nondestructive backspace 4-219
Non-English characters E-36
Non-executable statements 2-6
Non-local database 3-90
Nonprintable characters E-12
Non-significant characters 2-4
NORMAL attribute 3-96, 6-82
Normal error scope 2-41, 2-44
Normalized form of DECIMAL

values C-26

NOT FOUND keywords in
WHENEVER statement 4-376

NOT keyword
Boolean operator 3-55, 5-33, 5-44
NULL test 3-58, 5-37
range test 5-41
set membership test 5-41
WHENEVER statement 4-379

NOT NULL keywords
COLOR attribute 6-39
FORMONLY fields 6-29, 6-30
IS operator 5-34

NOTFOUND condition
FOREACH statement 4-132
PREPARE statement 4-322

NOTFOUND keyword
contrasted with NOT FOUND

keywords 4-379
global scope 2-18
status after SELECT 2-46
with FOREACH 4-132

NOUPDATE attribute of
PERFORM 6-92

NULL keyword
COLOR attribute 6-38
DATABASE section 6-12
FORMONLY fields 6-30
INCLUDE attribute 6-53
INITIALIZE statement 3-93,

4-157
LET statement 4-226, 4-227

Null values
aggregate functions 2-47, 5-16,

7-61
as default 4-163, 4-190
in ASCII files 4-232, 4-369
in Boolean expressions 4-129,

5-37, 6-39
in comma-separated lists 4-228
in concatenated strings 4-228
in concatenation 5-50
in display fields 6-30, 6-45, 6-53,

6-62
in number expressions 3-66
in reports 5-32, 7-62
in time expressions 3-85, 5-22
LET statement 4-228
searching for NULL 4-57

with arithmetic operators 3-64,
5-22

with logical operators 5-33
with relational operators 3-62,

5-34
with string comparisons 5-38
WITHOUT NULL INPUT 6-14

Number expression
formatting 5-124, 6-50
syntax and description 3-66

Number of rows processed 2-46
Numeric

color codes 5-71
date 3-75
date and time 3-78, 5-20
time interval 3-82, 5-20

NUMERIC data type 3-34
NUMERIC locale

specification 4-101, 5-129
NUM_ARGS() 5-99
NVARCHAR data type 3-34, 3-41,

5-40, E-4
display width 4-94

O
Object file 1-47, 1-64, 1-91, B-4
OF keyword

AFTER GROUP OF control
block 7-34

BEFORE GROUP OF control
block 7-37

DEFINE statement 4-87
REPORT statement 4-334
SKIP statement 4-346, 7-68
TOP OF PAGE clause 7-22
VARIABLE statement 4-87
WHERE CURRENT OF

clause 5-54
OFF keyword

OPEN WINDOW
statement 4-290, 6-44

OPTIONS statement 4-294
ON DELETE CASCADE keywords

ALTER TABLE statement 4-316
CREATE TABLE statement 4-316

ON EVERY ROW control
block 7-42

24 HCL Informix 4GL Reference Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

ON EXCEPTION statement 2-41
ON KEY keywords

CONSTRUCT statement 4-47
DISPLAY ARRAY

statement 4-106
INPUT ARRAY statement 4-205
INPUT statement 4-171, 5-107
PROMPT statement 4-329

ON keyword
CONSTRUCT statement 4-39,

4-47
DISPLAY ARRAY

statement 4-106
INPUT ARRAY statement 4-205
INPUT statement 4-171
OPTIONS statement 4-294
PROMPT statement 4-329
REPORT statement 4-334

ON LAST ROW block 4-125, 4-334,
4-364, 7-44

ONCONFIG environment
variable D-56

onipcstr value in sqlhosts 4-77
On-line

Help for developers Intro-18
Help for users 2-29

On-line Guides Intro-18
onload utility 4-233
OPAQUE data type 3-7
OPEN FORM statement 4-278
OPEN statement 4-315

interrupting 4-302
OPEN WINDOW statement 4-280
Operands of arithmetic

operators 3-44, 3-66, 3-83, 5-26
Operating system

invoking the Compiler from 1-37,
1-77

invoking the Programmers
Environment from 1-27, 1-69,
1-75

Operators in 4GL statements
compared with SQL

operators 3-51
list of 5-12
query by example 4-59

Optical Subsystem statements 4-13
Optimizer directives 4-352

OPTION keyword
GRANT statement 5-121
MENU statement 4-260

Options of 4GL menus 2-23
OPTIONS statement

mkmessage utility B-2
SQL INTERRUPT 4-80, 4-301,

4-303
syntax 4-291

OR keyword 3-55
Boolean operator 5-33, 5-44

OR operator in query by
example 4-59

ORDER BY clause
REPORT statement 7-23, 7-37
SELECT statement 7-31

Order of screen fields 4-162, 4-190,
4-296

ORD() function 5-100
Other menu option 1-74
OTHERWISE keyword, CASE

statement 4-24
Output

from 4GL programs 7-3
record 4-368, 5-110

Output file
STARTLOG() 5-110
UNLOAD statement 4-368

OUTPUT keyword
OUTPUT TO REPORT

statement 4-308
REPORT statement 4-332
START REPORT statement 4-357

OUTPUT section of REPORT
statement

BOTTOM MARGIN 7-15
DIRECTION 3-12, 3-18, 3-19,

3-36, 3-41, 3-72, 3-75, 5-74, 5-93,
5-114, 5-137, A-1

LEFT MARGIN 7-16
LEFT TO RIGHT 3-12, 3-18, 3-19,

3-36, 3-41, 3-72, 3-75, 5-74, 5-93,
5-114, 5-137, A-1

PAGE LENGTH 7-16
REPORT TO 7-17
RIGHT MARGIN 5-135, 7-19,

7-65
syntax 7-12
TOP MARGIN 7-20

TOP OF PAGE 7-21
OUTPUT TO REPORT

statement 4-308, 7-5
Overflow

in a display field 5-123
in data type conversion 3-42,

3-48, C-28, C-33, C-35, C-40
Overriding a Help message 4-43,

4-167, 4-196
Owner naming

CONSTRUCT statement 4-41
DEFINE statement 3-36, 4-37,

4-83, 4-88
in ANSI-compliant database 3-90,

4-374, 6-24, 6-84
in form specification 6-9, 6-24
INITIALIZE statement 4-157
VALIDATE statement 3-90, 4-373

P
P symbol

CENTURY 4-328, 6-35
DBCENTURY D-15

Page eject character 7-21
PAGE HEADER control

block 4-354, 5-101, 7-41, 7-45
PAGE keyword

FIRST PAGE HEADER control
block 7-40

PAGE HEADER control
block 7-45

PAGE LENGTH clause 7-16
PAGE TRAILER control

block 7-47
SKIP statement 4-346, 7-68
START REPORT statement 4-360
TOP OF PAGE clause 4-346, 7-21,

7-68
PAGE LENGTH keywords 7-16

START REPORT statement 4-360
PAGE TRAILER control block 7-47
PAGENO operator 5-101, 7-47, 7-63
Pages

of a help file message B-3
of a report 4-276, 4-346, 4-361,

7-13, 7-63, 7-66
of a screen form 6-16, 6-91

Index 25

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

of menu options 4-266
of program array records 4-111
of reports 5-101, 5-136

Paper size E-19
Parameter-count checking D-11
Parameterizing a statement with

SQL identifiers 4-321
Parentheses (()) symbols

Boolean expressions 5-33
CHAR data types 3-16
function calls 3-54, 5-6
IN operator 6-40
in USING format strings 5-125
INTERVAL values 3-28, 3-80
LOAD column list 4-230
SPACE operator 5-108, 7-64
UNITS operator 3-85, 5-23, 5-119

Partial characters 5-114, E-17
Passing by reference

BYTE or TEXT function
arguments 3-15, 3-39, 4-243,
5-9, C-8

BYTE or TEXT report
arguments 3-15, 4-243, 4-309

PATH environment variable D-67
Pathname

LOAD statement 4-230
non-English characters E-14
specifying with DBPATH D-32
specifying with PATH D-67
UNLOAD statement 4-367

Pattern matching 4-59, 5-39
PAUSE statement 4-311, 7-54
P-code 2-44
P-code runner

customized 1-86, 1-87
Interactive Debugger 1-75
specifying name and

location 1-64
using 1-77

P-code version number 1-78, 1-81,
1-88

PDQPRIORITY environment
variable D-57

People’s Republic of China E-8, E-9
Percent (%) symbol wildcard with

LIKE 5-39
PERCENT(*) aggregate

function 5-16, 7-61

PERFORM forms 6-91
PERFORM (INFORMIX-SQL)

forms with 4GL 6-91
Period (.) symbol

DATETIME separator 3-78, 3-82
DECIMAL values 3-67
FLOAT values 3-26, 3-38
Help message numbers 2-31
in Help files 2-31, 5-106, B-2
in USING format string 5-124
INTERVAL separator 3-80
membership operator 5-97
MONEY values 3-67
prefix separator 3-36, 3-80, 3-89,

6-24
range operator 4-59
RECORD member 3-58
SMALLFLOAT values 3-38

-phase option 1-36
PICTURE attribute 6-58, 6-59, 6-60
Pipe D-63
PIPE key word

START REPORT statement 4-359
PIPE keyword

REPORT statement 7-17
PIPE keyword in REPORT TO

clause 7-17
Pipe (|) symbol 4-233, 4-369, F-24
Planned_Compile option,

PROGRAM Menu 1-25, 1-66
Platform icons Intro-10
Plus (+) sign

addition operator 3-54, 3-84,
4-289, 4-295, 5-23, 5-26

in format strings 5-125
in optimizer directives 4-352
in window border F-7
RECORD declarations 3-35, 4-88
unary operator 3-54, 3-66, 5-125,

C-28
Portugese language 4-101
Positioning

a window 4-282
DISPLAY output 4-92
reserved lines 4-288

POSIX library G-1
Pound (#) sign

comment indicator 2-8, 4-352,
B-2, F-3

in format strings 6-50, 6-58
in USING masks 5-124

prdate() 1-89
Precedence

in 4GL operators 5-44
in arithmetic operations 3-64
in default values 4-162, 4-190
in display attributes 3-98, 4-42,

6-83
in display elements 5-71
of identifiers 2-19

Precision
DATETIME data type 3-76, 5-51,

5-67
DECIMAL data type 3-24, 3-43
FORMAT attribute 6-50
in arithmetic operations 3-43
INTERVAL data type 3-80
MONEY data type 3-32, 3-43

PRECISION keyword 3-25
Predefined identifiers 2-18, 2-19
PREPARE statement

increasing performance
efficiency 4-323

multi-statement text 4-318, 4-321
parameterizing a statement 4-319
parameterizing for SQL

identifiers 4-321
query by example 4-36
question (?) mark as

placeholder 4-312
statement identifier use 4-313
syntax and description 4-312
valid statement text 4-314
variable list 3-37
with DATABASE 4-75
with LOAD 4-230
with UNLOAD 4-367
with . * notation 3-94

Prepared statement
prepared object limit 4-313
valid statement text 4-314

Prepared statement name E-14
Preprocessor, invoking 1-34, 1-37
Previous key F-6, F-26
PREVIOUS keyword

CONSTRUCT statement 4-52
INPUT statement 4-176
OPTIONS statement 4-294

26 HCL Informix 4GL Reference Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

Previous Page key

DISPLAY ARRAY
statement 4-111

INPUT ARRAY statement 4-206
OPTIONS statement 4-299

PREVPAGE keyword 4-299
Print position 4-346
PRINT statement

CLIPPED operator 5-45
in a report 7-55
syntax and description 4-324
USING 5-128

Printable characters 3-71, 5-84, E-12
printenv utility D-4
PRINTER keyword

REPORT statement 7-18
REPORT TO clause 7-17
START REPORT statement 4-357

Printing and DBPRINT D-35
Privilege

Insert 4-231
Select 4-367
table-level 4-231, 4-367

Procedure 5-5
Product icons Intro-10
.profile file D-2
Program

examples that call C
functions 1-88

flow control statements 4-14
organization statements 4-13,

4-14
specification database 1-20, 1-61

Program array
ARR_COUNT() 5-27, 5-29, 5-83
ARR_CURR() 5-29, 5-83
displaying 4-102
SET_COUNT() 5-104

PROGRAM attribute 6-33, 6-60,
6-89

Program block
FUNCTION 4-140
MAIN 4-245
REPORT 7-7
scope of statement labels 4-151,

4-224, 4-380
scope of variables 4-82, 4-334,

7-10
three kinds of 2-10

Program execution
commencing 1-75, 1-81, 5-19, 5-99
from the command line 1-5, 5-19
programs that call C

functions 1-47, 1-83
terminating 5-64
with the Interactive

Debugger 1-82, 1-90
Program features

calling C functions 1-83
calling functions 4-16
commenting 2-8
compiler 1-35, 1-52
compiling through Programmers

Environment 1-11
compiling, at operating system

level 1-77
conditional statements 4-22, 4-26,

4-382
data validation 4-373
error messages 5-61, B-4
help messages 5-106, B-2
identifiers 2-14
letter case sensitivity 6-18
multi-module programs 1-14,

1-54
operating system pipes 4-359,

7-18
owner naming 3-89, 6-24
procedural statements 4-13
program arrays 4-102, 4-105,

4-192
program design database 1-61
reports 7-4
running at command line 1-80
screen interaction

statements 4-291
screen records 6-75
SQL statements 4-9

suspending execution 4-348
transaction logging 4-130, 4-136,

4-383
types of program modules 1-11,

1-23, 1-32, 1-36, 1-64, 1-87
Program flow control

statements 2-6
PROGRAM keyword

EXIT PROGRAM statement 4-121
PROGRAM attribute 4-185, 4-218

Program record
data entry 4-187
declaration 4-88

Programmers Environment
accessing 1-5, 1-9, 1-49
COMPILE FORM Menu 1-17,

1-58
COMPILE MODULE Menu 1-11,

1-52
COMPILE PROGRAM

Menu 1-24, 1-66
compiling a form 1-29, 1-71, 6-86
compiling a program 1-14, 1-29,

1-54, 1-71
correcting errors in a

program 1-12, 1-53
creating a default form 6-86
database name D-58
Debug option, MODULE

Menu 1-55
Debug option, PROGRAM

Menu 1-67
defining a program 1-28, 1-69
definition of 1-4
Drop option, PROGRAM

Menu 1-26
Exit option, FORM Menu 1-19,

1-60
Exit option, MODULE

Menu 1-15, 1-56
Exit option, PROGRAM

Menu 1-26, 1-68
files displayed 1-28, 1-80
FORM Menu 1-15, 1-56
Generate option, FORM

Menu 1-18, 1-59
in C Compiler version of 4GL 1-9
in Rapid Development

System 1-49
INFORMIX-4GL Menu 1-9, 1-50
invoking the Debugger 1-51, 1-67
menu options 1-76
modifying a form specification

file 1-16, 1-57
MODULE Menu 1-10, 1-50
NEW FORM Menu 1-18, 1-59
NEW MODULE Menu 1-13, 1-54
NEW PROGRAM Menu 1-24,

1-65

Index 27

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

Planned_Compile option,

PROGRAM Menu 1-25, 1-66
PROGRAM Menu 1-20, 1-61
Program_Compile option,

MODULE Menu 1-14, 1-54
QUERY LANGUAGE Menu 1-27,

1-68
Run option, MODULE

Menu 1-14, 1-55
Run option, PROGRAM

Menu 1-26, 1-67
Undefine option, PROGRAM

Menu 1-68
Program_Compile option,

MODULE Menu 1-14, 1-54
PROGRAM_DESIGN_DBS

environment variable 1-20,
D-58

Promotable locks 4-132
PROMPT keyword

END PROMPT statement 4-331
OPEN WINDOW

statement 4-285
OPTIONS statement 4-293
PROMPT statement 4-325, 6-36

Prompt line 4-114, 4-288, 4-326
PROMPT LINE keywords

OPEN WINDOW
statement 4-285

OPTIONS statement 4-293
PROMPT statement

CENTURY attribute 6-36
syntax and description 4-325

Prototype
of a function 5-8
of a report 7-8

Pseudo-code Intro-5, 1-3
Psort utility D-61
PSORT_DBTEMP environment

variable D-60
PSORT_NPROCS environment

variable D-61
PUBLIC keyword of GRANT 1-20
PUBLIC keyword of GRANT

statement 1-61
Public owner name 2-17

Q
Qualifiers

database name 3-89, 4-37, 4-83
DATETIME declaration 3-9, 4-85
DATETIME literals 3-20, 3-78,

4-231
INTERVAL declaration 3-9, 4-85
INTERVAL literals 3-29, 3-80,

4-231
of column names 3-89, 4-41, 4-83
of DATETIME values 5-67
of field names 3-86, 3-89, 6-27
of table names 3-89, 4-40, 4-83,

6-24
owner name 3-89, 4-37

Query by example
CONSTRUCT statement 4-34
range operator 4-59

Query optimization
information 4-12

QUERYCLEAR attribute of
PERFORM 6-92

Query-design plan 4-135
Querying the database

joins 3-90, 6-92
query by example 6-56, 6-57

Question (?) mark
as placeholder in PREPARE 4-312
in WORDWRAP fields 6-73
key in MENU statement 2-30
wildcard with CONSTRUCT 4-59
wildcard with MATCHES 5-38

Quit key
with DEFER 4-78
with DISPLAY ARRAY 4-111
with INPUT 4-186
with INPUT ARRAY 4-222
with MENU 4-249, 4-268
with PROMPT 4-330

QUIT keyword, DEFER
statement 4-78

Quit signal 2-41, 4-342
quit_flag built-in variable 4-64,

4-78, 4-256, 4-300, 4-330
Quotation (") marks

around activation keys 4-256
around character pointer 1-85

around character strings 6-46,
6-54

around database
specification 4-71

around DATETIME literals 3-22
around filenames 4-278, 4-355,

7-17, 7-57
around format strings 5-123, 6-50,

6-58
around INTERVAL literals 3-31
around pipe names 7-18
around SQL identifiers 2-15
around time values 6-46
single and double 2-4

Quoted string E-12
Quotient 5-25

R
R symbol

CENTURY 4-328, 6-35
DBCENTURY D-15

r4gl command 1-5, 1-69, 6-85
r4gldemo script 1-5
Range of values

ASCII characters 5-38
COLOR attribute 6-39
DATETIME values 3-77
INCLUDE attribute 6-54
INTERVAL values 3-81
number expressions 3-66, 5-22,

6-39
query by example 4-59
time expressions 6-39
upscol utility 6-82, B-9

Range test 5-41
Rapid Development System (RDS)

version of 4GL 1-3, 1-49, D-11
Raw mode 4-307, 4-341
REAL data type 3-34
Record

membership (.) operator 3-58
SQLCA global record 2-45

RECORD data type 3-35, 3-57, 4-20,
4-88, 4-227

RECORD keyword
data type 3-35, 4-88
defining screen arrays 6-74, 6-77

28 HCL Informix 4GL Reference Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

defining screen records 6-75
END RECORD declaration 3-35,

4-88
SCREEN RECORD

specification 3-94
Rectangles in screen forms 5-72
Recursive input 2-31
Recursive statements 2-35
RED attribute 3-96, 6-37, 6-82
Redirect (>) symbol 1-80
REFERENCE data type 3-7
Reference line D-51
Related reading Intro-20
Relational operators 3-55, 3-61,

3-85, 4-57, 5-35, 5-36, 5-42, 5-43,
E-14

Relay Module D-62, D-64
SQLRM environment

variable D-64
SQLRMDIR environment

variable D-65
Remainder in expressions 3-64
Remote tape devices D-37
REOPTIMIZATION keyword

FOREACH statement 4-135,
4-349

OPEN statement 4-135, 4-349
Report

aggregates 5-14
driver 4-125, 4-362, 7-5
execution statements 4-142, 4-245
operators 3-51, 3-56, 5-13
writer 7-4

REPORT keyword 4-308
END REPORT statement 7-8
EXIT REPORT statement 7-50
FINISH REPORT

statement 4-125, 7-5
OUTPUT TO REPORT

statement 4-308, 7-5
REPORT statement 7-8
STARTREPORT statement 4-354,

4-355, 7-5
TERMINATE REPORT

statement 4-364
Report name E-14
REPORT statement

control blocks 7-32
DEFINE section 7-9, 7-10

displaying a report 7-13
FORMAT section 7-9, 7-28
grouping data 7-33
indirect typing 7-11
NEED statement 7-52
ORDER BY section 7-9, 7-23
ORDER EXTERNAL BY 7-23
OUTPUT section 4-356, 7-9, 7-12
passing arguments to 4-308
PAUSE statement 4-311, 7-54
PRINT statement 4-324, 7-55
SKIP statement 4-346, 7-68
statements in a report

definition 7-48
structure 7-9
syntax and description 4-332
with DATABASE 4-74

REPORT TO keywords 7-17
Reports

aggregate functions 7-36
calculations on groups 5-17, 7-61
counting rows 5-16, 7-61
default layout 7-29
features 7-4
formatting 7-28, 7-32
output of a report 7-12
printing output 4-324, 7-55
prototype 7-8
sending output to a file 7-17
sorting data 7-23

REQUIRED attribute 6-62
Reserved lines

clearing 4-29
Comment line 2-27, 4-61, 4-95,

4-288, 6-43
default locations 2-27, 4-114,

4-288
Error line 2-28, 4-61, 4-95, 4-119,

4-290, 5-63, 5-64
Form line 2-27, 4-114, 4-288
in current window 4-68
Menu help line 2-27
Menu line 2-25, 4-249
Message line 2-27, 4-273, 4-288
positioning 4-288, 4-289, 4-295,

5-72
Prompt line 2-27, 4-288, 4-331

Reserved values 3-26

Reserved words
as identifiers 2-15
list for 4GL G-1
list for SQL G-2

Response time, poor D-22
Restricted shell D-36
Resume option

Help menu 2-29
Help window 5-106

RETURN character in
WORDWRAP reports 7-66

Return key
in ON KEY clause 4-48, 4-172
in query by example 4-63

RETURN keyword
OPTIONS statement 4-299
RETURN statement 4-19, 4-337

RETURN statement 4-19, 4-337
RETURNING keyword

CALL statement 4-19
RUN statement 4-342

REVERSE attribute 3-96, 3-97,
4-119, 6-37, 6-63, F-11

Right brace (}) symbol 2-8
RIGHT keyword

attribute of PERFORM 6-92
OPTIONS statement 4-299

RIGHT MARGIN keywords
OUTPUT section 7-19
START REPORT statement 4-360
WORDWRAP operator 5-135,

7-65
Ring menu 2-23, 2-24, 4-248
rmacs setting 6-22
Role name 2-16
ROLLBACK WORK

statement 4-236
interrupting transactions 4-303,

4-305
with LOAD 4-235
with WHENEVER 4-381

Rounding error 3-24, 3-42, 3-48,
3-68, 5-26, 6-50

Round-trip conversion E-37
ROW data type 3-7
ROW keyword

DISPLAY ARRAY
statement 4-105

EVERY ROW statement 7-29

Index 29

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

INPUT ARRAY statement 4-192,

4-201, 4-210
ON EVERY ROW control

block 7-42
ON LAST ROW control

block 7-44
REPORT statement 4-334

ROWID keyword 2-46, 3-51
ROWS keyword in OPEN

WINDOW statement 4-282
RUN keyword

OPTIONS statement 4-307
Run option

MODULE Menu 1-14, 1-55
PROGRAM Menu 1-26, 1-67

RUN statement 4-340
Runner

command to invoke 1-76
creating a customized 1-87
specifying location of 1-64
using to execute p-code Intro-5,

1-3
Running a 4GL program

command line 1-5, 1-46
that calls C functions 1-47, 1-90
using Debugger 1-76

Russian language E-21

S
SA symbol in format strings 6-58
Scale

DATETIME data type 3-76, 5-51
DECIMAL data type 3-9, 3-24,

3-43, 4-85, C-43
FORMAT attribute 6-50
INTERVAL data type 3-80
MONEY data type 3-9, 3-32, 4-85

Scope of reference
4GL identifiers 2-17
4GL windows 4-281
global variables 2-18, 4-147
identifiers of form entities 2-18
program variables 2-17, 2-19,

4-145, 4-246
screen array 6-79
screen form 2-18, 4-31
screen record 6-76

SQL identifiers 2-19
statement identifier 4-314

Screen
clearing F-5, F-25
default attributes B-8
interaction statements 4-14
menu option 5-106
option of Help menu 2-29

Screen array
clearing 4-30
cursor movement 4-219
declaring 6-77
format of 6-20
identifying the current row 5-29,

5-83, 5-102
scrolling 4-219, 4-344
syntax and description 6-77
testing with FIELD_TOUCHED()

operator 5-81, 5-83, 5-84
Screen form

closing 4-279
current 4-160, 4-188
scope of reference 2-18
specifying from the Programmers

Environment 1-15, 1-56, 6-85
SCREEN keyword

CLEAR SCREEN statement 4-29
CLEAR WINDOW SCREEN

statement 4-29
CURRENT WINDOW

statement 4-68
INSTRUCTIONS section 6-9
referencing the default

window 2-28
REPORT statement 7-19
SCREEN section 6-15
START REPORT statement 4-357

Screen record
clearing 4-30
default screen record 6-76
in field clause 5-87, 5-97
order of components 3-94, 4-40,

4-190, 6-76
scope of reference 6-76
within a screen array 4-344, 6-79

SCREEN RECORD keywords 5-84,
6-74, 6-75, 6-77

SCREEN section of form
specification

display field 6-17
field delimiters 6-80
field labels 6-19
field length 6-89
field tags 6-25, 6-27, 6-29, 6-90
graphics characters 6-21
screen layout 6-17
syntax 6-15

SCROLL keyword
DECLARE statement 4-132
SCROLL statement 4-344

SCROLL statement 4-344
Scrolling keys 4-219
SCR_LINE()

function 5-102
with DISPLAY ARRAY 4-109
with INPUT ARRAY 4-215

SECOND keyword
DATETIME qualifier 3-19, 3-76
INTERVAL qualifier 3-28, 3-80

SELECT keyword
GRANT statement 4-367
INSERT statement 4-234
SELECT statement 5-10

Select privileges 4-367
SELECT statement

copying rows to an ASCII
file 4-367

displaying results 7-4
interrupting 4-302
query by example 4-36
requiring no cursor 5-10
restrictions with INTO

clause 4-314, 4-350
Semicolon (;) symbol

delimiter with PREPARE 4-314
in a field description 6-26
in PRINT statements 7-46, 7-58
statement delimiter 2-5, 2-7, 4-352

Separators E-16
Sequence of characters sent by

function and arrow keys D-21
SERIAL data type

as INTEGER variables 3-7, 3-27,
4-83

display fields 6-57
in input files 4-232

30 HCL Informix 4GL Reference Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

in program records 3-35
in UPDATE statement 3-94
INSERT statement 6-57
SQLCA.SQLERRD[2] 2-46

SERIAL8 data type 3-7
Server locale E-10
SERVER_LOCALE environment

variable E-24
SET AUTOFREE statement 4-351
SET CONNECTION

statement 4-349
SET CONSTRAINT

statement 4-238
SET data type 3-7
SET DEFERRED_PREPARE

statement 4-351
SET DESCRIPTOR statement 4-351
SET INDEX statement 4-238
Set membership test 4-59, 5-41
SET TRIGGER statement 4-238
Setting environment variables D-4
SET_COUNT()

function 5-104
with DISPLAY ARRAY 4-103

sg1 terminal specification F-4, F-21
sg#1 capability 4-42
-shared option 1-44, D-10
Shared library 1-42, 1-43
Shared memory 4-77, D-49, D-56
Sharp (#) symbol. See pound sign.
Shell

and DBREMOTECMD D-36
Bourne shell D-2
C shell D-2
default remote shell D-36
Korn shell D-2

SHLIB_PATH environment
variable 1-45, D-67

SHOW keyword, MENU
statement 4-261

SHOWHELP()
function 5-106, B-3
ON KEY clause 2-29, 4-43, 4-167,

4-196
Signals

Interrupt 4-78
Quit 4-78, 4-303

SIGQUIT signal 4-303
Simple data type 3-9, 4-85

Single-byte locale E-16
Single-character fields 6-90
Single-precision floating-point

number, storage of 3-25
SIZE keyword, form

specification 6-16
SKIP statement 4-346, 7-68
SKIP TO TOP OF PAGE D-43
Slash (/) symbol

database specification 4-71
DATE literals 3-17, 3-44
division operator 3-54, 3-84, 5-23,

5-26
SLEEP statement 4-348
smacs setting 6-22
SMALLFLOAT data type

data type conversion 3-42, 3-47
declaration 3-9, 4-85
description 3-37
display width 6-89, 7-58
FORMAT attribute 6-50
literal values 3-38, 3-67

SMALLINT data type
conversion 3-42
data type conversion 3-47
declaration 3-9, 4-85
description 3-38
display width 6-89, 7-58
in report output 7-58
literal values 3-67

Software dependencies Intro-5
SOME keyword in SQL Boolean

operator 3-51
Sorting data

in a query E-14
in a report 7-23, E-14
PSORT_DBTEMP environment

variable D-60
with a cursor 7-27

Source
compiler 4-374
modules 1-35, 1-77, 1-79
path 1-64

Source code debuggers 1-41
SPACE or SPACES operator 5-108
Spacebar 4-268
Spanish language E-21
SPL expressions 3-51
SPL statements 4-317, 4-351

SQL
built-in functions 5-5, 5-7
INTERRUPT option 4-80, 4-301,

4-303
keyword in OPTIONS

statement 4-294
statement delimiters 2-5, 4-349
version number 1-38, 1-78, 1-81,

1-88
SQL identifiers 2-16, E-13
SQL keyword

OPTIONS statement 4-303
SQL statement delimiter 4-350

SQL language
accessing from the Programmers

Environment 1-27, 1-68
concurrency control 4-132
cursor manipulation

statements 4-11, 4-12, 4-13,
4-14

data access statements 4-12, 4-13,
4-14

data definition statements 2-7,
4-11, 4-12, 4-13, 4-14

data integrity statements 4-12,
4-13, 4-14

data manipulation
statements 2-19, 4-11, 4-12,
4-13, 4-14

data types 3-7
expressions 3-51
interactive query language 1-50,

6-91
interrupting statements 4-80,

4-301, 4-303
operators 3-51
query optimization

statements 4-12, 4-13, 4-14
testing statement execution 2-45
transaction logging 4-136, 4-235
views 4-83

SQL statements
ALTER INDEX I-2
ALTER TABLE I-2
BEGIN WORK I-4
CLOSE I-4
CLOSE DATABASE I-4
COMMIT WORK I-4
CREATE AUDIT FOR I-5

Index 31

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

CREATE DATABASE I-5
CREATE INDEX I-6
CREATE PROCEDURE

FROM I-6
CREATE SYNONYM I-6
CREATE TABLE I-7
CREATE VIEW I-9
DATABASE I-9
DECLARE I-10
DELETE FROM I-10
DROP AUDIT I-11
DROP DATABASE I-11
DROP INDEX I-11
DROP SYNONYM I-11
DROP TABLE I-11
DROP VIEW I-11
EXECUTE I-12
FETCH I-12
FLUSH I-12
FREE I-14
GRANT I-15
INSERT INTO I-16
LOAD FROM I-17
LOCK TABLE I-18
OPEN I-18
PUT I-18
RECOVER TABLE I-18
RENAME COLUMN I-19
RENAME TABLE I-19
REVOKE I-19
ROLLBACK WORK I-20
ROLLFORWARD

DATABASE I-20
SELECT I-20
SET EXPLAIN I-25
SET ISOLATION I-25
SET LOCK MODE I-25
SET LOG I-25
START DATABASE I-25
UNLOAD I-26
UNLOCK TABLE I-26
UPDATE I-26
UPDATE STATISTICS I-27
WHENEVER I-28

SQLAWARN
characters 2-46
global record 4-75, 4-379
SQLAWARN[5] 3-42

SQLCA record
SQLAWARN 1-41, 2-46, D-14
SQLCODE 2-46, 4-302
SQLERRD 2-46, 4-133, 4-234,

4-322
WHENEVER ERROR

condition 4-378
SQLCODE global variable 4-302,

4-378
SQLERROR keyword 4-376, 4-378
SQLEXEC environment

variable D-62
sqlhosts file 4-77
SQLRM environment

variable D-64
sqlrm file D-62
SQLRMDIR environment

variable D-65
SQLWARNING keyword 4-379
Stack argument C-3
START keyword

START DATABASE
statement D-33

START REPORT statement 4-354,
7-5, D-63

STARTLOG() 5-110
Statement

blocks 2-12, 4-128
delimiter 2-7
labels 2-11, 2-18, 4-144, 4-151,

4-224
terminator 2-5

Statement identifier
definition of 4-313
syntax

in PREPARE 4-312
use

in PREPARE 4-313
Statement label 2-18, E-14
Statement segments

asterisk (*) notation 3-92
ATTRIBUTE clause 3-96
field clause 3-86
table qualifiers 3-89
THRU or THROUGH

keywords 3-92
Statement syntax

CALL 4-16
CASE 4-22, 4-26

CLEAR 4-22, 4-26, 4-28
CLOSE FORM 4-31
CLOSE WINDOW 4-32
CONSTRUCT 4-34
CONTINUE 4-66
CURRENT WINDOW 4-68
DATABASE 4-71
DEFER 4-78
DEFINE 4-81
DISPLAY 4-90
DISPLAY ARRAY 4-102
DISPLAY FORM 4-113
END 4-116
ERROR 4-118
EXIT 4-121
FINISH REPORT 4-125
FOR 4-128
FOREACH 4-131
GLOBALS 4-145
GOTO 4-151
IF 4-153
INITIALIZE 4-155
INPUT 4-159
INPUT ARRAY 4-187
LABEL 4-224
LET 4-226
LOAD 4-230
LOCATE 4-239
MAIN 4-245
MENU 4-248
MESSAGE 4-273
NEED 4-276, 7-52, 7-54
OPEN FORM 4-278
OPEN WINDOW 4-280
OPTIONS 4-291
OUTPUT TO REPORT 4-308
PAUSE 4-311, 7-54
PREPARE 4-312
PRINT 4-324, 7-55
PROMPT 4-325
REPORT 4-332, 7-7
RETURN 4-337
RUN 4-340
SCROLL 4-344
SKIP 4-346, 7-68
SLEEP 4-348
SQL 4-349
START REPORT 4-354, 4-355
TERMINATE REPORT 4-364

32 HCL Informix 4GL Reference Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

UNLOAD 4-367
VALIDATE 4-372
WHENEVER 4-376
WHILE 4-382

Statement type
compiler directive 4-13, 4-14
cursor manipulation 4-11, 4-12,

4-13, 4-14
data access 4-12, 4-13, 4-14
data definition 4-11, 4-12, 4-13,

4-14
data integrity 4-12, 4-13, 4-14
data manipulation 4-11, 4-12,

4-13, 4-14
definition and declaration 4-13,

4-14
executable 2-6
non-executable 2-6
program flow control 4-14
query optimization 4-12
report execution 4-14
screen interaction 4-14
storage manipulation 4-13, 4-14

Statements in reports
NEED 4-276
PAUSE 4-311, 7-54
PRINT 4-324
SKIP 4-346

-static option 1-44
STATISTICS keyword D-40
Status code

after data type conversion C-28
after program termination 4-123
of a child process 4-340

status variable 2-45
interrupting SQL

statements 4-302
set to 100 4-132
VALIDATE statement 4-373
WHENEVER statement 4-378
with ERR_GET() 5-61, 5-63
with ERR_PRINT() 5-63
with ERR_QUIT() 5-64

stderr 2-40
stdout 2-40
STEP keyword in FOR

statement 4-129
STOP keyword in WHENEVER

statement 4-381

Storage manipulation
statements 4-13, 4-14

Stored procedure 2-16, 4-381, E-13
Stored Procedure Language

(SPL) 4-314, 4-318
stores7 database Intro-6
Stream-pipe connections 4-77
String comparison 3-55, 5-38, 5-43
String concatenation 3-55
String value

NULL 6-30
substring 6-27

Strings
character E-12
quoted E-12

-strings flag D-44
strings option of gcc D-12
Structure definition file,

function 1-83
Structured

data types 3-12, 4-86
programming 5-5

Structured query language
(SQL) 2-5

stty utility 4-307, 4-341, D-12, D-55
Subroutine 5-5
Subscript

of a character column 6-27
to specify array elements 3-13
to specify substrings 3-39

Substitution conversion E-37
Substring

alignment of bytes E-18
description 5-113
expression 5-114
in a screen field 6-27
of character array elements 3-14
of character variables 4-228, 4-275
of TEXT values 3-39

Subtraction (-) operator
in termcap F-14
number expressions 3-64, 5-26
precedence of 3-54
precision and scale 3-44
reserved lines 4-289, 4-295
returned values 5-23
time expressions 3-84, 5-26

SUM() aggregate function 2-47,
5-16, 5-128, 7-61

SUPOUTPIPEMSG environment
variable D-63

Synonym 2-16, E-13
Syntax conventions

description of Intro-12
icons used in Intro-13

Syntax diagrams, elements
in Intro-13

Syntax of command line to compile
a 4GL source file 1-37, 1-77

syscolatt table
color and intensity values 6-82,

B-8
creating 6-84, B-5
DISPLAY LIKE attribute 6-48
FGL_DRAWBOX()

arguments 5-71
INPUT ARRAY statement 4-192
INPUT statement 4-166
precedence of attributes 6-83
schema 6-81
with FORM4GL 6-26, 6-80

syscolumns table 3-93, 4-39, 4-83,
4-234

syscolval table 4-164
as used by INITIALIZE 6-83
creating 6-84, B-5
data validation 6-83
INITIALIZE statement 4-156,

4-157
INPUT ARRAY statement 4-190
INPUT statement 4-162
schema 6-81
VALIDATE LIKE attribute 6-65
VALIDATE statement 4-374
with FORM4GL 6-26, 6-80

syspgm4gl database 1-20, 1-61,
D-58

systables table 5-10
System calls G-2
System catalog

syscolumns 4-83
systabauth 5-121
systables 5-10, 6-23

System clock
CURRENT operator 5-51
DATE operator 5-56
EXTEND() operator 5-68
TIME operator 5-116

Index 33

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

TODAY operator 5-117

System requirements
database Intro-5
software Intro-5

T
TAB character

in report output 5-136, 7-66
in source code modules 2-4
in TEXT values 3-39, 3-71

TAB key
in ON KEY clause 4-48, 4-172
in query by example 4-63
order of fields 4-61, 4-296
reassigning its function 4-48,

4-172
Table

alias for table name 6-24
changing column data types 3-42
current 6-91
inserting data 4-230
locking 4-235
name 2-16, E-13
qualifiers 3-89, 4-40
reference 3-86, 4-37, 6-25
temporary 4-126, 5-15, 7-27

Table alias
declaring 6-24
naming rules 2-14
qualifiers 3-89
scope of reference 2-18

TABLE keyword in LOCK TABLE
statement 4-235

Table-based localization E-31
TABLES section of form

specification
description 6-9
syntax 6-23

Taiwanese E-8, E-9
Taiwanese eras 3-75, 3-79
TBCONFIG environment

variable D-56
tbload utility 4-371
TEMP keyword, SELECT

statement 4-318
Temporary

files, and dbspace D-37

files, and DBTEMP D-38
tables, and DBSPACETEMP D-37

TERM environment variable D-69
TERMCAP environment

variable D-70, F-8
termcap file 3-99, 4-42

and TERMCAP D-70
description F-2
graphics characters 6-21
rows or columns D-13, D-55

Terminal bell, ringing 4-118
Terminal code D-69
Terminal handling

and TERM D-69
and TERMCAP D-70

and TERMINFO D-71
TERMINATE REPORT

statement 4-364
Termination status 4-123, 4-341,

4-342
TERMINFO environment

variable D-71, F-22, F-29
terminfo file 3-99, 4-42, 6-21, D-71,

F-22
rows or columns D-13, D-55
terminal capability D-51

Text cursor
in a field 6-7
in disabled fields 6-8
with CONSTRUCT 4-35
with DISPLAY ARRAY 4-103
with INPUT 4-162, 4-180
with INPUT ARRAY 4-219
with MENU 4-256

TEXT data type
Boolean expressions 5-37, 6-39
data entry 4-185, 4-218
declaration 4-81
description 3-39
display fields 4-185, 6-60, 6-67
display width 6-89, 7-58
in expressions 3-58, 3-69
in input files 4-231
in program records 3-35, 4-88
in report output 7-58, 7-65
initializing 4-239
non-English characters E-12
passing by reference 4-18, 4-339
query by example 4-57

selecting a TEXT column 3-39
size limits 3-12
storing control characters 3-39
syscolval table 4-373
unprintable characters 3-71
See also BYTE or TEXT data.

Text editor 1-12, 1-17, 1-34, 1-53,
1-58, 1-76, D-20

Text geometry E-15
Text labels E-15
TH 7.20 supplement E-8
Thai language E-10, E-15
THEN keyword, IF statement 4-153
Thousands separator 5-129, D-25,

D-31, D-42
Threads D-61
THROUGH keyword 3-36, 3-92,

4-81, 6-77
THRU keyword 3-36, 3-92, 4-81,

4-97, 4-165, 6-77
th_th.thai620 E-10
tic utility F-22
tigetstr() D-51
Time data types 3-11, 3-72
Time expressions

as operands 3-85, 5-23
description 3-74
formatting 5-123, D-39

TIME operator 3-51, 5-116
Time units

in data type conversion 3-44
in DATETIME qualifiers 3-19,

3-77
in INTERVAL qualifiers 3-28,

3-81, 6-46
in numeric dates 3-17, 3-75, 5-56
with EXTEND() operator 5-67
with MDY() operator 5-95

Title of a menu 2-23
TO keyword

DATETIME qualifier 3-19, 3-77,
6-46

DISPLAY statement 3-93, 4-90
EXTEND() operator 5-67
FOR statement 4-128
INCLUDE attribute 6-53
INITIALIZE statement 3-93,

4-157

34 HCL Informix 4GL Reference Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

INTERVAL qualifier 3-28, 3-81,
6-46

OUTPUT TO REPORT
statement 4-308, 7-6

REPORT TO clause 4-355, 7-17
SKIP statement 4-346, 7-68
START REPORT statement 4-355
UNLOAD statement 4-367, 4-368
WHENEVER statement 4-224,

4-376
TO PIPE clause D-63
TODAY operator 5-117, 6-47
TOP MARGIN keywords 7-20, 7-41

START REPORT statement 4-360
TOP OF PAGE clause

OUTPUT section 7-22
SKIP statement 4-346, 7-68

TRAILER keyword, REPORT
statement 7-47

Trailing blank spaces
CLIPPED operator 5-45
VARCHAR values 3-41

Trailing currency symbol 5-129,
D-25, D-30

Transaction logging
explicit transactions 4-303, 4-304
For loops 4-130
FOREACH statement block 4-136
interrupting SQL

statements 4-303
LOAD statement 4-236
singleton transactions 4-303,

4-304
while loading data 4-235
WHILE loop 4-383
with LOAD 4-235

Translation E-22
as part of localization E-2, E-20
checklist E-21

TRIGGER keyword
SET TRIGGER statement 4-238

Trigger name 2-16
TRIM operator 5-50
TRUE (Boolean constant) 2-18,

3-61, 4-78, 4-383, 6-37
Truncation of data 2-47, 3-48, 4-103,

4-231, 5-25, 5-73, 6-69, 7-66
Turkish language E-9

Two-pass report 4-125, 4-126,
4-334, 4-364, 5-15, 7-27

TYPE keyword in FORMONLY
fields 6-55

Types of statements
4GL statements 4-13
executable 2-6
non-executable 2-6
SQL statements 4-9

Typover editing mode 4-63, 4-181,
4-220

U
Unary minus (-) symbol 2-9, 3-54,

3-65, 3-67, 3-75, 5-22, 5-125
Unary plus (+) symbol 3-38, 3-54,

3-65, 3-67, 3-75, 5-22, 5-125
UNCOMPRESS keyword,

WORDWRAP attribute 6-70
UNCONSTRAINED keyword in

OPTIONS statement 4-61,
4-294, 4-296

Undefine option, PROGRAM
Menu 1-68

Underflow conversion error 3-42,
C-28, C-40

UNDERLINE attribute 3-96, 3-97,
6-37, 6-82, F-11

Underscore (_) symbol E-13
in field tags 6-18
in identifiers 2-14
wildcard with LIKE 5-39

Units of time
CURRENT operator 5-51
DATE operator 5-56
DATE values 3-17, 3-44, 3-75
DATETIME values 3-22, 3-44
DAY() operator 5-58
EXTEND() operator 5-68
INTERVAL values 3-27, 3-82
MDY() operator 5-95
UNITS operator 5-119
YEAR() operator 5-138

UNITS operator
data type conversion 3-64
in arithmetic expressions 3-85,

5-23, 5-119

precedence 3-54
specifying a default value in a

field 6-46
syntax and description 5-119

UNIX
default print capability in

BSD D-6, D-35
default print capability in System

V D-6, D-35
sending output to a pipe 7-17
shell D-2
terminfo library support in

System V D-51
viewing environment settings in

BSD D-4
viewing environment settings in

System V D-4
UNIX-based servers E-34
UNLOAD statement

interrupting 4-302
specifying field delimiter with

DBDELIMITER D-20
syntax and description 4-367

Unprintable characters 3-71, 5-136
Unsigned values 5-23
Untrappable errors 4-120
UP keyword

SCROLL statement 4-344
syscolval table B-7

Updatable views 6-26
UPDATE

keyword in DECLARE
statement 4-132

statement, interrupting 4-302
UPDATE STATISTICS D-40
UPDATE SYSCOL Menu B-5

UPDATE statement 3-94
Uppercase characters

DEFAULT attribute 6-46
DOWNSHIFT attribute 6-49, B-7
DOWNSHIFT() 5-59
in code set E-14
in field tags 6-18
in identifiers 2-3, 2-14
INCLUDE attribute 6-54
SHIFT attribute B-7
UPSHIFT attribute 6-64, B-7
UPSHIFT() 5-121

Index 35

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

upscol utility 4-157, 4-374, 6-48,

6-81, 6-83, B-5
UPSHIFT attribute 6-33, 6-64, B-7
UPSHIFT() 5-121
USER keyword 3-51, 5-10
USING keyword

EXECUTE statement 4-134
FOREACH statement 4-134
USING operator 5-123

USING operator
DISPLAY statement 4-93
MESSAGE statement 4-274
PRINT statement 5-128, 7-57
syntax and description 5-123

Utility programs
cc 1-37, D-12, D-44
chkenv D-3
DB-Access 1-27
dbaccessdemo7 Intro-6
emacs 6-61
env D-4
export D-4
gcc D-12, D-44
grep D-51
infocmp F-27
ldd 1-43
lp D-6
lpr D-6
make D-12, D-44
mkdir D-30
mkmessage 5-107, B-2
more Intro-19
nm D-51
onload 4-233
printev D-4
Psort D-61
stty D-12, D-55
tbload 4-371
tic F-22
upscol 6-80, B-5
vi 1-76, 6-61, D-6, D-20

U.S. English code set E-3

V
V command-line option 1-38, 1-78,

1-81, 1-88
VALIDATE LIKE attribute 6-23,

6-33, 6-65
VALIDATE Menu (upscol) B-7
Validate option B-5
VALIDATE statement 4-372, 4-378,

6-83
Validation errors 2-42, 4-373, 4-378
VALUES keyword in INSERT

statement 4-234, 6-6
VARCHAR data type

data type conversion 3-47
declaration 3-9, 4-85
display fields 6-58, 6-67
display width 6-89, 7-58
in input files 4-231
in report output 7-58
pattern matching 5-39
substrings 6-27
unprintable characters 3-71

Variables
allocating 4-239
as operands 3-57
binding to database columns 6-6
declaring 4-81, 4-143, 4-246, 7-10
global 2-17, 2-18, 4-146
implicit names 4-88
in DATABASE statement 4-72
in REPORT statement 7-9
indirect typing 4-73, 7-11
local 2-17, 4-144, 4-246, 4-334
modular 2-17, 4-82
naming rules 2-14, E-14
scope of reference 2-17, 4-144,

4-246
status variable 2-45
uninitialized 4-227
visibility 2-19, 4-145

VERIFY attribute 6-33, 6-66
Version numbers of SQL

software 1-38, 1-78, 1-81, 1-88
Versions of 4GL 1-3
Vertical (|) bar

concatenation operator 5-50
default delimiter 4-233, 4-369
field separator in forms 6-80

graphics character F-7, F-28
in termcap specifications F-3
in window border F-7

vi utility 1-76, D-6, D-20
Video attributes 2-27, 3-96
View E-13

in form specification file 6-26
in FROM clause of

CONSTRUCT 4-41
in INSERT clause of LOAD 4-230
in LIKE clause of DEFINE 4-83
name 2-16

Visibility of identifiers 2-19, 4-82,
4-144, 4-145

W
W warning character in

SQLAWARN 2-46, 3-42, 4-75,
D-14

WAITING keyword, RUN
statement 4-343

Warning
conditions 2-46, 3-42, 4-75
messages 1-38

WARNING keyword in
WHENEVER statement 2-46,
4-376

Weekday abbreviations 5-129
WEEKDAY() operator 5-133
Western European languages E-9
WHEN keyword, CASE

statement 4-23
WHENEVER statement

ERROR keyword 4-224, B-4
GOTO action 4-224
syntax and description 4-376
versus GOTO statement 4-151
with ERROR statement 4-120
with LABEL statement 4-224

WHERE clause
aggregate functions 5-16, 7-60
DELETE statement 5-54
pattern matching 4-59
query by example 4-36, 4-59
SELECT statement 4-34, D-28
UPDATE statement 5-54

36 HCL Informix 4GL Reference Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

with COLOR attribute 5-40, 6-38,

6-92, B-9
WHERE keyword

COLOR attribute 3-51, 6-37
Debugger command 4-123
SELECT statement 3-51, 4-38,

4-369
WHILE keyword in CONTINUE

WHILE statement 4-67
WHILE statement 4-382
WHITE attribute 3-96, 6-37, 6-82
White-space characters 2-4, 3-16,

3-39, 3-41, E-4, E-13, E-17
Whole numbers 3-10
Wildcard symbols

in syscolatt table 6-83
with LIKE 5-39, 5-134
with MATCHES 5-38

Window
border F-7, F-27
clearing 4-29
closing 4-32
current 2-28
display attributes 3-98, 6-84
naming rules 2-14
opening 4-280
reserved lines 4-291
scope of reference 2-18
stack 2-28, 4-32, 4-68, 4-281

WINDOW keyword
CLEAR WINDOW

statement 4-29
CURRENT WINDOW

statement 4-68
OPTIONS statement 4-298

WITH FORM clause in OPEN
WINDOW statement 4-284

WITH keyword
DECLARE statement 4-132
FOREACH statement 4-135
GRANT statement 5-121
OPEN statement 4-135
OPEN WINDOW statement 4-31,

4-282
WITHOUT DEFAULTS keywords

INPUT ARRAY statement 4-191,
6-45

INPUT statement 4-163, 6-45
with SET_COUNT() 5-104

WITHOUT keyword
INPUT ARRAY statement 4-191
INPUT statement 4-163
RUN statement 4-343

WITHOUT NULL INPUT
keywords in DATABASE
section 4-163, 4-190, 6-12, 6-45

Word length E-18
WORDWRAP keyword

CONSTRUCT statement 4-62
INPUT statement 4-182
PRINT statement 7-65
WORDWRAP attribute 6-32,

6-33, 6-67
WORDWRAP operator 5-135

WORK keyword
BEGIN WORK statement 4-303,

4-381
COMMIT WORK

statement 4-235, 4-303
ROLLBACK WORK

statement 4-235, 4-303, 4-381
WRAP keyword in OPTIONS

statement 4-63, 4-294
Wrap-down method 5-137

X
X symbol in format strings 6-58
xmc#1

capability 4-42
terminal specification F-23

XOFF key 4-107, 4-172, 4-207, 4-300,
4-330

XOFF signal 4-48, 4-300
XON key 4-107, 4-172, 4-207, 4-300,

4-330
XON signal 4-48, 4-300
XPG3 categories 3-17
X/Open E-9

Y
y symbol

in format strings 5-127, 6-51
in syscolatt table 6-82, B-8

Y2 symbols, DBDATE D-17
Y2K compliance 4-328, 6-35, D-15

Y4 symbols, DBDATE D-17
YEAR keyword

CURRENT operator 5-51
DATETIME qualifier 3-19, 3-76,

6-30
EXTEND operator 5-68
INTERVAL qualifier 3-29, 3-80,

6-46
YEAR() operator 5-138

Years, abbreviated 4-328, 6-35,
D-15

YEAR() operator 5-138
YELLOW attribute 3-96, 6-37, 6-82
YES

keyword in syscolval table B-7
y-umlaut character 1-41

Z
-z option D-10, D-43
ZA function (termcap file) F-12,

F-21
Zero

as divisor 3-64, 5-25, C-40
as MOD operand 5-25
byte (ASCII 0) 3-72, 7-62
DATE to DATETIME

conversion 3-44
DATE value 3-76
default INTERVAL value 3-46,

4-163, 4-190, 6-14, 6-45
default MONEY value 6-45
default number value 4-163,

4-190, 6-30, 6-45
entering SERIAL values 4-232
in Boolean expressions 3-60, 5-33,

6-40
in DBDATE values D-17
in output files 4-368
leading zero in numbers 3-16,

3-43
length of NULL strings 5-50, 5-92
midnight hour 3-77
or more characters, symbol

for 4-59, 5-39
preserving leading zeros 3-16
scale in ANSI-compliant

databases 3-25

Index 37

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @

scale in arithmetic 3-43
status code of SQL 2-46, 4-378,

4-383
terminal capability F-4
terminating C structures 1-85
trailing 3-43
WEEKDAY() value 5-133
zero fill (&) character 5-126

ZEROFILL attribute of
PERFORM 6-92

ZHCN 7.20 supplement E-8
ZHTW 7.20 supplement E-8

	In This Introduction
	About This Guide
	Organization of This Guide
	Types of Readers
	Software Dependencies
	Assumptions About Your Locale
	Accessing Databases from Within 4GL

	Documentation Conventions
	Typographical Conventions
	Icon Conventions
	Feature, Product, and Platform Icons
	Compliance Icons

	Example-Code Conventions
	Syntax Conventions
	Elements That Can Appear on the Path
	How to Read a Syntax Diagram

	Additional Documentation
	Documentation Included with 4GL
	On-Line Error Messages
	Related Reading

	Compiling INFORMIX-4GL Source Files
	1
	In This Chapter
	Two Implementations of INFORMIX-4GL
	Runtime and Compile-Time Requirements
	Differences Between the C Compiler and RDS Versions
	Differences in the Programmer’s Environment
	Differences in Commands
	Differences in Filename Extensions

	The C Compiler Version
	The Five-Phase 4GL Compilation Process
	The Programmer’s Environment
	The INFORMIX-4GL Menu
	The MODULE Design Menu
	The FORM Design Menu
	The PROGRAM Design Menu
	The QUERY LANGUAGE Menu

	Creating Programs in the Programmer’s Environment
	Creating a New Source Module
	Revising an Existing Module
	Compiling a Source Module
	Linking Program Modules
	Executing a Compiled Program

	Creating Programs at the Command Line
	Creating or Modifying a 4GL Source File
	Compiling a 4GL Module
	Compiling and Linking Multiple Source Files
	Using the c4gl Script for Compilation

	c4gl Command
	The -phase Option
	ANSI Compliance
	Array Bounds
	Error Scope
	Intermediate Files
	Informal Functions
	The -globcurs and -localcurs Options
	Using Source Code Debuggers with 4GL Programs
	Shared Libraries
	Compiling with c4gl
	Invoking a Compiled 4GL Program at the Command Line

	Program Filename Extensions

	The Rapid Development System
	The Programmer’s Environment
	The INFORMIX-4GL Menu
	The MODULE Design Menu
	The FORM Design Menu
	The PROGRAM Design Menu
	The QUERY LANGUAGE Menu

	Creating Programs in the Programmer’s Environment
	Creating a New Source Module
	Revising an Existing Module
	Compiling a Source Module
	Combining Program Modules
	Executing a Compiled RDS Program
	Invoking the Debugger

	Creating Programs at the Command Line
	Creating or Modifying a 4GL Source File
	Compiling an RDS Source File
	Concatenating Multi-Module Programs
	Running RDS Programs
	Running Multi-Module Programs
	Running Programs with the Interactive Debugger
	RDS Programs That Call C Functions
	Editing the fgiusr.c File
	Creating a Customized Runner
	Running Programs That Call C Functions

	Program Filename Extensions

	The INFORMIX-4GL Language

	2
	In This Chapter
	Language Features
	Lettercase Insensitivity
	Whitespace, Quotation Marks, Escape Symbols, and Delimiters
	Character Set
	4GL Statements
	Comments
	Comment Indicators
	Restrictions on Comments
	Conditional Comments

	Source-Code Modules and Program Blocks
	Statement Blocks
	Statement Segments
	4GL Identifiers
	Naming Rules for 4GL Identifiers
	Naming Rules for SQL Identifiers
	Scope of Reference of 4GL Identifiers
	Scope and Visibility of SQL Identifiers
	Visibility of Identical Identifiers

	Interacting with Users
	Selecting Menu Options
	Ambiguous Keyboard Selections
	Hidden Options and Invisible Options
	Disabled Menus
	Reserved Lines for Menus
	Screen Forms
	Field Attributes
	Reserved Lines

	4GL Windows
	The Current Window

	On-Line Help
	The Help Key and the Message Compiler
	The Help Window

	Nested and Recursive Statements
	Early Exits from Nested and Recursive Operations

	Exception Handling
	Compile-Time Errors and Warnings
	Runtime Errors and Warnings
	Normal and AnyError Scope
	A Taxonomy of Runtime Errors
	Default Error Behavior and ANSI Compliance

	Changes to 4GL Error Handling
	Error Handling with SQLCA

	Data Types and Expressions

	3
	In This Chapter
	Data Values in 4GL Programs
	Data Types of 4GL
	Character Data Types
	Time Data Types
	Structured Data Types
	Large Data Types
	Descriptions of the 4GL Data Types
	ARRAY
	Array Elements
	Substrings of Character Array Elements

	BYTE
	Restrictions on BYTE Variables

	CHAR
	CHARACTER
	DATE
	DATETIME
	DATETIME Literals and Delimiters
	Character Strings as DATETIME Values

	DEC
	DECIMAL (p, s)
	DECIMAL (p)

	DOUBLE PRECISION
	FLOAT
	INT
	INTEGER
	INTERVAL
	INTERVAL Qualifiers
	INTERVAL Literals and Delimiters
	Character Strings as INTERVAL Values
	Data Entry by Users

	MONEY
	NCHAR
	NVARCHAR
	NUMERIC
	REAL
	RECORD
	Referencing Record Members

	SMALLFLOAT
	SMALLINT
	TEXT
	Restrictions on TEXT Variables

	VARCHAR
	Data Type Conversion
	Converting from Number to Number
	Converting Numbers in Arithmetic Operations
	Converting Between DATE and DATETIME
	Converting CHAR to DATETIME or INTERVAL Data Types
	Converting Between Number and Character Data Types
	Converting Large Data Types

	Summary of Compatible 4GL Data Types
	Notes on Automatic Data Type Conversion

	Expressions of 4GL
	Usage
	Differences Between 4GL and SQL Expressions
	Components of 4GL Expressions
	Parentheses in 4GL Expressions
	Operators in 4GL Expressions
	Operands in 4GL Expressions
	Named Values as Operands
	Function Calls as Operands
	Expressions as Operands

	Boolean Expressions
	Logical Operators and Boolean Comparisons
	Data Type Compatibility
	Evaluating Boolean Expressions

	Integer Expressions
	Binary Arithmetic Operators
	Unary Arithmetic Operators
	Literal Integers
	Arithmetic Operators
	Literal Numbers

	Character Expressions
	Arrays and Substrings
	String Operators
	Non-Printable Characters

	Time Expressions
	Numeric Date
	DATETIME Qualifier
	DATETIME Literal
	INTERVAL Literal
	Arithmetic Operations on Time Values
	Relational Operators and Time Values

	Field Clause
	Usage
	References

	Table Qualifiers
	Usage
	Owner Naming
	Database References

	References

	THRU or THROUGH Keywords and .* Notation
	Usage
	References

	ATTRIBUTE Clause
	Usage
	Color and Monochrome Attributes
	Precedence of Attributes

	References

	INFORMIX-4GL Statements

	4
	In This Chapter
	The 4GL Statement Set
	Types of SQL Statements
	SQL Dynamic Management Statements
	SQL Query Optimization Statements
	SQL Data Access Statements
	SQL Data Integrity Statements
	SQL Stored Procedure Statements
	SQL Client/Server Connection Statements
	SQL Optical Subsystems Statements

	Other Types of 4GL Statements
	4GL Definition and Declaration Statements
	4GL Storage Manipulation Statements
	4GL Program Flow Control Statements
	4GL Compiler Directives
	4GL Screen Interaction Statements
	4GL Report Execution Statements

	Statement Descriptions
	CALL
	Usage
	Arguments
	The RETURNING Clause
	Restrictions on Returned Character Strings
	Invoking a Function Without CALL
	The Comma and Double-Pipe Symbols

	References

	CASE
	The WHEN Blocks
	The OTHERWISE Block
	The EXIT CASE Statement and the END CASE Keywords
	Improper Use of Boolean Expressions with CASE
	References

	CLEAR
	Usage
	The CLEAR FORM Option
	The CLEAR WINDOW Option
	The CLEAR WINDOW SCREEN Option
	The CLEAR SCREEN Option
	The CLEAR Field Option

	References

	CLOSE FORM
	Usage
	References

	CLOSE WINDOW
	Usage
	References

	CONSTRUCT
	Usage
	The CONSTRUCT Variable Clause
	The ATTRIBUTE Clause
	The HELP Clause
	The CONSTRUCT Input Control Blocks
	The NEXT FIELD Clause
	The CONTINUE CONSTRUCT Statement
	The EXIT CONSTRUCT Statement
	The END CONSTRUCT Keywords
	Using Built-In Functions and Operators
	Search Criteria for Query by Example
	Positioning the Screen Cursor
	Using WORDWRAP in CONSTRUCT
	Editing During a CONSTRUCT Statement
	Completing a Query

	References

	CONTINUE
	Usage
	CONTINUE in CONSTRUCT, INPUT, and INPUT ARRAY Control Blocks
	CONTINUE in FOR, FOREACH, and WHILE Loops
	CONTINUE in MENU Control Blocks

	References

	CURRENT WINDOW
	Usage
	References

	DATABASE
	Usage
	The Database Specification
	The Default Database at Compile Time
	The Current Database at Runtime
	The EXCLUSIVE Keyword
	Testing SQLCA.SQLAWARN
	Effects of the Default Database on Error Handling
	Additional Facts About Connections

	References

	DEFER
	Usage
	Interrupting Screen Interaction Statements
	Interrupting SQL Statements

	References

	DEFINE
	Usage
	The Context of DEFINE Declarations
	Indirect Typing
	Declaring the Names and Data Types of Variables
	Variables of Large Data Types
	Variables of Structured Data Types

	References

	DISPLAY
	Usage
	Sending Output to the Line Mode Overlay
	Sending Output to the Current 4GL Window
	Sending Output to a Screen Form
	The ATTRIBUTE Clause
	Displaying Numeric and Monetary Values
	Displaying Time Values

	References

	DISPLAY ARRAY
	Usage
	The ATTRIBUTE Clause
	The ON KEY Blocks
	The EXIT DISPLAY Statement
	The END DISPLAY Keywords
	Using Built-In Functions and Operators
	Scrolling During the DISPLAY ARRAY Statement
	Completing the DISPLAY ARRAY Statement

	References

	DISPLAY FORM
	Usage
	Form Attributes
	Reserved Lines

	References

	END
	Usage
	References

	ERROR
	Usage
	The Error Line
	The ATTRIBUTE Clause
	System Error Messages

	References

	EXIT
	Usage
	Leaving a Control Structure
	Leaving a Function
	Leaving a Report
	Leaving the Program

	References

	FINISH REPORT
	Usage
	References

	FOR
	Usage
	The TO Clause
	The STEP Clause
	The CONTINUE FOR Statement
	The EXIT FOR Statement
	The END FOR Keywords
	Databases with Transactions

	References

	FOREACH
	Usage
	Cursor Names
	The USING Clause
	The INTO Clause
	The WITH REOPTIMIZATION Keywords
	The FOREACH Statement Block
	The END FOREACH Keywords

	References

	FUNCTION
	Usage
	The Prototype of the Function
	The FUNCTION Program Block
	Executable Statements
	Data Type Declarations
	The Function as a Local Scope of Reference
	Returning Values to the Calling Routine
	The END FUNCTION Keywords

	References

	GLOBALS
	Usage
	Declaring and Exporting Global Variables
	Importing Global Variables

	References

	GOTO
	Usage
	References

	IF
	Usage
	References
	Usage
	The LIKE Clause

	References

	INPUT
	The Binding Clause
	The ATTRIBUTE Clause
	The HELP Clause
	The INPUT Control Block
	The CONTINUE INPUT Statement
	The EXIT INPUT Statement
	The END INPUT Keywords
	Using Built-In Functions and Operators
	Keyboard Interaction
	Cursor Movement in Simple Fields
	Multiple-Segment Fields
	Using Large Data Types
	Completing the INPUT Statement
	References
	The Binding Clause
	The ATTRIBUTE Clause
	The HELP Clause
	The INPUT ARRAY Input Control Blocks
	The CONTINUE INPUT Statement
	The EXIT INPUT Statement
	The END INPUT Keywords
	Using Built-In Functions and Operators
	Using Large Data Types
	Keyboard Interaction
	Completing the INPUT ARRAY Statement

	References

	LABEL
	Usage
	References

	LET
	Usage
	The Comma and Double-Pipe List Separator Symbols

	References

	LOAD
	The Input File
	The DELIMITER Clause
	The INSERT Clause
	Data Integrity Issues with LOAD
	Performance Issues with LOAD
	References

	LOCATE
	Usage
	The List of Large Variables
	The IN MEMORY Option
	The IN FILE Option
	Passing Large Variables to Functions
	Freeing the Storage Allocated to a Large Data Type

	References

	MAIN
	Usage
	Variables Declared in the MAIN Statement
	DEFER and DATABASE Statements and the MAIN Program Block

	References

	MENU
	Usage
	The MENU Control Blocks
	Invisible Menu Options
	The CONTINUE MENU Statement
	The EXIT MENU Statement
	The NEXT OPTION Clause
	The HIDE OPTION and SHOW OPTION Keywords
	Nested MENU Statements
	The END MENU Keywords
	Identifiers in the MENU Statement
	Choosing a Menu Option
	Scrolling the Menu Options
	Completing the MENU Statement
	COMMAND KEY Conflicts

	References

	MESSAGE
	Usage
	The Message Line
	The ATTRIBUTE Clause

	References

	NEED
	Usage
	References

	OPEN FORM
	Usage
	Specifying a Filename
	The Form Name
	Displaying a Form in a 4GL Window

	References

	OPEN WINDOW
	Usage
	The 4GL Window Stack
	The AT Clause
	The WITH ROWS, COLUMNS Clause
	The WITH FORM Clause
	The OPEN WINDOW ATTRIBUTE Clause

	References
	Usage
	Features Controlled by OPTIONS Clauses
	Positioning Reserved Lines
	Cursor Movement in Interactive Statements
	The OPTIONS ATTRIBUTE Clause
	The HELP FILE Option
	Assigning Logical Keys
	Interrupting SQL Statements
	Setting Default Screen Modes

	References

	OUTPUT TO REPORT
	Usage
	References

	PAUSE
	Usage
	References

	PREPARE
	Usage
	Statement Identifier
	Statement Text
	Preparing a SELECT Statement
	Statements That Can or Must Be Prepared
	Statements That Cannot Be Prepared
	Using Parameters in Prepared Statements
	Preparing Statements with SQL Identifiers
	Preparing Sequences of Multiple SQL Statements
	Runtime Errors in Multistatement Texts
	Using Prepared Statements for Efficiency

	References

	PROMPT
	The PROMPT String
	The Response Variable
	The FOR Clause
	The ATTRIBUTE Clauses
	The HELP Clause
	The ON KEY Blocks
	The END PROMPT Keywords
	The Position of the Prompt Line
	References

	REPORT
	Usage
	The Report Prototype
	The Report Program Block
	Two-Pass Reports
	The Exit Report Statement
	The END REPORT Keywords

	References

	RETURN
	Usage
	The List of Returned Values
	The Data Types of Returned Values

	References

	RUN
	Usage
	Screen Display Modes
	The RETURNING Clause
	The WITHOUT WAITING Clause

	References

	SCROLL
	Usage
	References

	SKIP
	Usage
	References

	SLEEP
	Usage
	References

	SQL
	Usage
	Host Variables
	Returned Values
	Referencing and Declaring Cursors
	Excluded Statements
	Additional Restrictions
	Optimizer Directives and Comment Indicators

	References

	START REPORT
	Usage
	The TO Clause
	Dynamic Output Configuration
	The WITH Clause
	Report Drivers

	References

	TERMINATE REPORT
	Usage
	References

	UNLOAD
	Usage
	The Output File
	The DELIMITER Clause
	Host Variables
	The Backslash Escape Character

	References

	VALIDATE
	Usage
	The LIKE Clause
	The syscolval Table

	References

	WHENEVER
	Usage
	The Scope of the WHENEVER Statement
	The ERROR Condition
	The ANY ERROR Condition
	The NOT FOUND Condition
	The WARNING Condition
	The GOTO Option
	The CALL Option
	The CONTINUE Option
	The STOP Option

	References

	WHILE
	Usage
	The CONTINUE WHILE Statement
	The EXIT WHILE Statement
	The END WHILE Keywords

	References

	Built-In Functions and Operators

	5
	In This Chapter
	Functions in 4GL Programs
	Built-In 4GL Functions
	Built-In and External SQL Functions and Procedures
	C Functions
	ESQL/C Functions
	Programmer-Defined 4GL Functions
	Invoking Functions
	Passing Arguments and Returning Values
	Invoking SQL Functions

	Operators of 4GL
	Syntax of Built-In Functions and Operators
	Aggregate Report Functions
	The GROUP Keyword
	The WHERE Clause
	The MIN() and MAX() Functions
	The AVG() and SUM() Functions
	The COUNT (*) and PERCENT (*) Functions
	Differences Between the 4GL and SQL Aggregates
	References

	ARG_VAL()
	Usage
	Using ARG_VAL() with NUM_ARGS()

	Reference
	Arithmetic Operators
	Usage
	Unary Arithmetic Operators
	Binary Arithmetic Operators
	Exponentiation (**) Operator
	Modulus (MOD) Operator
	Multiplication (*) and Division (/) Operators
	Addition (+) and Subtraction (-) Operators

	References

	ARR_COUNT()
	Usage
	References

	ARR_CURR()
	Usage
	References

	ASCII
	Usage
	The ASCII Operator in PRINT Statements

	References
	Boolean Operators
	Logical Operators
	Boolean Comparisons
	Relational Operators
	The NULL Test
	The LIKE and MATCHES Operators
	Set Membership and Range Tests
	Data Type Compatibility
	Evaluating Boolean Expressions
	Operator Precedence in Boolean Expressions

	CLIPPED
	Usage
	Reference

	COLUMN
	Usage
	COLUMN in DISPLAY Statements
	COLUMN in PRINT Statements

	References
	Concatenation (||) Operator
	Usage
	References

	CURRENT
	Usage
	References

	CURSOR_NAME()
	Usage

	DATE
	Usage
	References

	DAY()
	Usage
	References

	DOWNSHIFT()
	Usage
	Reference

	ERR_GET()
	Usage
	References

	ERR_PRINT()
	Usage
	References

	ERR_QUIT()
	Usage
	References

	ERRORLOG()
	Usage
	References

	EXTEND()
	Usage
	DATETIME Qualifiers
	Using EXTEND with Arithmetic Operators

	Reference

	FGL_DRAWBOX()
	Usage

	FGL_GETENV()
	Usage
	References

	FGL_GETKEY()
	Usage
	References

	FGL_KEYVAL()
	Usage
	Using FGL_KEYVAL() with FGL_GETKEY() or FGL_LASTKEY()

	References

	FGL_LASTKEY()
	Usage
	Using FGL_LASTKEY() with FGL_KEYVAL()
	AUTONEXT Fields

	References

	FGL_SCR_SIZE()
	Usage
	References

	FGL_SETCURRLINE ()
	Usage
	References

	FIELD_TOUCHED()
	Usage
	References

	GET_FLDBUF()
	Usage
	References

	INFIELD()
	Usage
	References

	LENGTH()
	Usage
	Using LENGTH() in SQL Expressions
	LENGTH() in Multibyte Locales

	References

	LINENO
	Usage
	Reference

	MDY()
	Usage
	Reference
	Membership (.) Operator
	Usage

	MONTH()
	Usage
	References

	NUM_ARGS()
	Usage
	Reference

	ORD()
	References

	PAGENO
	Usage
	Reference

	SCR_LINE()
	Usage
	References

	SET_COUNT()
	Usage
	References

	SHOWHELP()
	Usage
	The Help Menu
	The Help File That SHOWHELP() Displays

	Reference

	SPACE
	Usage
	References

	STARTLOG()
	Usage
	Specifying the Error Log File

	References
	Substring ([]) Operator
	Usage
	Invalid Operands in Substring Expressions

	Reference

	TIME
	Usage
	References

	TODAY
	Usage
	References

	UNITS
	Usage

	UPSHIFT()
	Usage
	Reference

	USING
	Usage
	Formatting Number Expressions
	Formatting DATE Values
	Examples of the USING Operator

	WEEKDAY()
	Usage
	References

	WORDWRAP
	Usage
	Tabs, Line Breaks, and Page Breaks with WORDWRAP
	Kinsoku Processing

	References

	YEAR()
	Usage
	References

	Screen Forms

	6
	In This Chapter
	4GL Forms
	Form Drivers
	Form Fields
	Appearance of Fields
	Navigation Among Form Fields
	Disabled Form Fields

	Structure of a Form Specification File
	DATABASE Section
	Usage
	Database References in the DATABASE Section
	The FORMONLY Option
	The WITHOUT NULL INPUT Option

	SCREEN Section
	Usage
	The SIZE Option
	The Screen Layout
	Display Fields
	Field Delimiters
	Field Length
	Field Tags

	Literal Characters in Forms
	Data Entry of Commas in Integer Fields
	Graphics Characters in Forms
	Rectangles Within Forms

	TABLES Section
	Usage
	Table Aliases
	Usage
	Fields Linked to Database Columns
	Usage
	FORMONLY Fields
	Usage
	The Data Type Specification
	The NOT NULL Keywords

	Multiple-Segment Fields
	WORDWRAP Fields
	Subscripted Fields

	Field Attributes
	Field Attribute Syntax

	AUTONEXT
	Usage

	CENTURY
	COLOR
	Usage
	Specifying Logical Conditions with the WHERE Option
	Specifying Ranges of Values and Set Membership
	Data Type Compatibility
	Data Type Conversion in 4GL Boolean Expressions
	The Display Modes

	Related Attributes

	COMMENTS
	Usage
	The Position of the Comment Line

	Related Attribute

	DEFAULT
	Usage
	Literal Values
	Built-In 4GL Operators and Functions as Values

	Related Attributes

	DISPLAY LIKE
	Usage
	Related Attribute

	DOWNSHIFT
	Usage
	Related Attribute

	FORMAT
	Usage
	Formatting Number Values
	Formatting DATE Values

	Related Attribute

	INCLUDE
	Usage
	Ranges of Values
	FORMONLY Fields

	Related Attributes

	INVISIBLE
	Usage
	Related Attribute

	NOENTRY
	Usage
	Related Attribute

	PICTURE
	Usage
	Editing Keys During Data Entry

	Related Attribute

	PROGRAM
	Usage
	Default Editors
	The Command String

	REQUIRED
	Usage
	Related Attribute

	REVERSE
	Usage
	Related Attribute

	UPSHIFT
	Usage
	Related Attribute

	VALIDATE LIKE
	Usage
	Related Attribute

	VERIFY
	Usage
	Related Attributes

	WORDWRAP
	Usage
	Data Entry and Editing with WORDWRAP
	Data Display with WORDWRAP
	Displaying Program Variables with WORDWRAP
	The COMPRESS and UNCOMPRESS Options
	WORDWRAP Editing Keys
	Non-WORDWRAP Displays

	INSTRUCTIONS Section
	Nondefault Screen Records
	Default Screen Records
	The List of Member Fields
	Screen Arrays
	Field Delimiters

	Default Attributes
	Precedence of Field Attribute Specifications
	Default Attributes in an ANSI-Compliant Database

	Creating and Compiling a Form
	Compiling a Form Through the Programmer’s Environment
	Compiling a Form at the Command Line
	Default Forms

	Using PERFORM Forms in 4GL

	INFORMIX-4GL Reports

	7
	In This Chapter
	Features of 4GL Reports
	Producing 4GL Reports
	The Report Driver
	The Report Definition
	The Report Prototype
	Components of the Report Definition

	DEFINE Section
	Usage

	OUTPUT Section
	Usage
	The BOTTOM MARGIN Clause
	The LEFT MARGIN Clause
	The PAGE LENGTH Clause
	The REPORT TO Clause
	The RIGHT MARGIN Clause
	The TOP MARGIN Clause

	ORDER BY Section
	Usage
	The Sort List
	The Sequence of Execution of GROUP OF Control Blocks
	The EXTERNAL Keyword

	FORMAT Section
	EVERY ROW
	Usage

	FORMAT Section Control Blocks
	Statements Prohibited in FORMAT Section Control Blocks

	AFTER GROUP OF
	Usage
	The Order of Processing AFTER GROUP OF Control Blocks
	The GROUP Keyword in Aggregate Functions

	BEFORE GROUP OF
	Usage
	The Order of Processing BEFORE GROUP OF Control Blocks

	FIRST PAGE HEADER
	Usage
	Displaying Titles and Headings
	Restrictions on the List of Statements

	ON EVERY ROW
	Usage
	Group Control Blocks

	ON LAST ROW
	Usage

	PAGE HEADER
	Usage

	PAGE TRAILER
	Usage
	Restrictions on the List of Statements

	Statements in REPORT Control Blocks
	Statements Valid Only in the FORMAT Section

	EXIT REPORT
	Usage
	References

	NEED
	Usage
	References

	PAUSE
	Usage
	References
	Usage
	The FILE Option
	The Character Position
	The Expression List
	Aggregate Report Functions
	The ASCII Operator
	The COLUMN Operator
	The LINENO Operator
	The PAGENO Operator
	The SPACE or SPACES Operator
	The WORDWRAP Operator

	References

	SKIP
	Usage
	Restrictions on SKIP Statements

	List of Appendixes
	The ASCII Character Set

	A
	INFORMIX-4GL Utility Programs

	B
	The mkmessage Utility
	Programmer-Defined Help Messages
	Message Source Files
	Creating Executable Message Files
	Customized Error Messages

	The upscol Utility
	Adding or Updating Under the Validate Option
	Adding or Updating Under the Attribute Option

	Using C with INFORMIX-4GL

	C
	Using the Argument Stack
	Passing Values Between 4GL Functions
	Receiving Values from 4GL
	Library Functions for Popping Numbers
	Library Functions for Popping Character Strings
	Library Functions for Popping Time Values
	Library Functions for Popping BYTE or TEXT Values

	Passing Values to 4GL
	The Return Library Functions
	The Push Library Functions

	Calling a C Function from a 4GL Program
	Compiling and Executing the Program

	Calling a 4GL Function from a C Program
	Including the fglapi.h File
	Initializing the Argument Stack
	Invoking the 4GL Function
	Using Interrupt Signals
	Compiling and Executing the C Program
	Compiling a C Program That Calls C Compiler Functions
	Compiling a C Program That Calls 4GL RDS Functions

	Macros for Calling 4GL Functions
	fgl_start()
	fgl_call()
	fgl_exitfm()
	fgl_end()

	Decimal Functions for C
	deccvasc()
	Example

	dectoasc()
	Example

	deccvint()
	Example

	dectoint()
	Example

	deccvlong()
	Example

	dectolong()
	Example

	deccvflt()
	Example

	dectoflt()
	Example

	deccvdbl()
	Example

	dectodbl()
	Example

	decadd(), decsub(), decmul(), and decdiv()
	deccmp()
	deccopy()
	dececvt() and decfcvt()
	Examples

	Environment Variables

	D
	Where to Set Environment Variables
	How to Set Environment Variables
	Default Environment Variable Settings
	List of Environment Variables
	Informix Environment Variables
	C4GLFLAGS
	C4GLNOPARAMCHK
	CC
	COLUMNS
	DBANSIWARN
	DBCENTURY
	DBDATE
	DBDELIMITER
	DBEDIT
	DBESCWT
	DBFORM
	DBFORMAT
	Restrictions on the Decimal Separator in SQL Operations

	DBLANG
	DBMONEY
	DBPATH
	Searching Local Directories
	Searching Networked Computers for Databases
	Specifying a Server Name

	DBPRINT
	DBREMOTECMD
	DBSPACETEMP
	DBSRC
	DBTEMP
	DBTIME
	DBUPSPACE
	ENVIGNORE
	FET_BUF_SIZE
	FGLPCFLAGS
	FGLSKIPNXTPG
	INFORMIXC
	INFORMIXCONRETRY
	INFORMIXCONTIME
	INFORMIXDIR
	INFORMIXSERVER
	INFORMIXSHMBASE
	INFORMIXSTACKSIZE
	INFORMIXTERM
	IXOLDFLDSCOPE
	LINES
	ONCONFIG
	PDQPRIORITY
	PROGRAM_DESIGN_DBS
	PSORT_DBTEMP
	PSORT_NPROCS
	SQLEXEC
	SUPOUTPIPEMSG
	SQLRM
	SQLRMDIR

	GLS Environment Variables
	Default Values of CLIENT_LOCALE and DB_LOCALE
	Default Value of DBLANG
	Environment Configuration Files for Asian Locales

	UNIX Environment Variables
	PATH
	TERM
	TERMCAP
	TERMINFO

	Developing Applications with Global Language Support

	E
	Internationalization and Localization
	Global Language Support Terms
	Code Sets and Logical Characters
	Collation Order
	Single-Byte and Multibyte Characters
	Locales
	Global Language Support
	Requirements for International Application Development
	Language Supplements
	Locales Supported by 4GL
	Client Locales and Database Server Locales
	Setting Environment Variables for Specific Locales

	Requirements for All Locales
	The 4GL Compilers
	The 4GL Character Set
	Non-English Characters
	SQL and 4GL Identifiers
	Collation Sequence
	Locale Restrictions
	The Forms Compiler
	The Message Compiler

	East Asian Language Support
	Logical Characters
	Partial Characters

	General Guidelines
	Internationalization Guidelines
	Localization Guidelines
	Localization Methodology Overview
	Application Help and Error Messages
	Date, Time, and Currency Formats
	Informix System Error Messages
	Code-Set Conversion

	Configuring the Language Environment
	Environment Variables That Support GLS
	DBAPICODE
	DB_LOCALE
	Default Values of GLS Environment Settings
	CLIENT_LOCALE
	DBLANG
	DBDATE
	DBNLS
	DBMONEY
	DBFORMAT

	Storing Localization Information
	File-Based Localization
	Table-Based Localization
	Setting Up a Table
	Querying the Table

	Localizing Prompts and Messages
	Creating Message Files
	Accessing Message Files

	Handling Code-Set Conversion
	What Is Code-Set Conversion?
	What Code-Set Conversion Is Not
	When You Do Not Need Code-Set Conversion

	What Data Values Are Converted
	Mismatch Processing
	Enabling Code-Set Conversion
	Determining the Code Sets Used by the Client and Database
	Specifying the Conversion Filenames

	Modifying termcap and terminfo

	F
	termcap
	Format of a termcap Definition
	Terminal Names
	Boolean Capabilities
	Numeric Capabilities
	String Capabilities

	Extending Function Key Definitions
	Specifying Characters for Window Borders
	If Your termcap File Contains sg#1 Capabilities
	Terminals Without Graphics Capabilities

	Adding Color and Intensity
	Color and Intensity Attributes
	The ZA String Capability
	Stack Operations
	Examples

	terminfo
	Format of a terminfo Entry
	Terminal Names
	Boolean Capabilities
	Numeric Capabilities
	String Capabilities

	Extending Function Key Definitions
	Specifying Characters for Window Borders
	If Your terminfo File Contains xmc#1 Capabilities
	Terminals Without Graphics Capabilities

	Color and Intensity

	Reserved Words

	G
	Reserved Words of 4GL
	Reserved Words of ANSI SQL
	The Demonstration Application

	H
	custform.per
	orderform.per
	state_list.per
	stock_sel.per
	d4_globals.4gl
	d4_main.4gl
	d4_cust.4gl
	d4_orders.4gl
	d4_stock.4gl
	d4_report.4gl
	d4_demo.4gl
	helpdemo.src
	SQL Statements That Can Be Embedded in 4GL Code
	Statements That Cannot Be Embedded

	I
	Embedded SQL Statements
	Embedded SQL SEGMENTS
	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X
	Y
	Z

