
HCL DevOps Loop  2025.12 
(2.0.0)
User Documentation
Release date: 12th  January 
2026



ii

Special notice

Before using this information and the product it supports, read the information in Notices  on page clxi.



Contents
Chapter 1. Release Notes................................................. 5

What's New.......................................................................5
Known issues................................................................. 10

Chapter 2. System Requirements....................................16
Hardware........................................................................ 17
Operating systems and containers...............................17
Host prerequisites..........................................................18
Supported software....................................................... 19

Chapter 3. Getting Started.............................................. 21
Overview of DevOps Loop............................................21
User interface.................................................................21
Accessibility features.................................................... 28

Chapter 4. Administration............................................... 29
Configuring external databases for the capabilities in 
DevOps Loop..................................................................29
Installation of DevOps Loop..........................................30

Installing DevOps Loop on IBM Cloud Kubernetes 
Service (IKS)........................................................... 31
Installing DevOps Loop on Kubernetes Service 
(K8S)........................................................................34
Installation of DevOps Loop on Google Kubernetes 
Engine (GKE)...........................................................41
Installing DevOps Loop on a RHEL system for a 
demo setup.............................................................44
Installation of DevOps Loop in an air-gapped 
environment............................................................ 47
Managing DevOps Loop features after 
installation...............................................................50

License management and user administration........... 51
DevOps Loop licensing information......................52
Enabling the social sign-up and social login for 
DevOps Loop.......................................................... 54
Revoking a license................................................. 55
User access and administration using 
Keycloak.................................................................. 55
About user roles and access permissions........... 57

Backup and restoration of DevOps Loop..................... 58
Backing up DevOps Loop data.............................. 59
Restoring DevOps Loop data.................................60

Private CA and self-signed certificate support............ 61
Configuring trusted certificates in DevOps 
Loop.........................................................................62

Upgrading DevOps Loop................................................64
Integrations in DevOps Loop.........................................65

AI provider integration for Loop Genie - Tech 
Preview....................................................................65

DevOps Loop MCP server............................................. 74
VS Code connection for the DevOps Loop MCP 
server.......................................................................78

Connecting Claude Desktop to the DevOps Loop 
MCP server............................................................. 81

Teamspace management..............................................81
Creating a teamspace............................................82
Adding or inviting members to a teamspace........84
Joining a teamspace as an invited member.........84
Removing a member from a teamspace.............. 85

Uninstalling DevOps Loop............................................. 86
Uninstalling DevOps Loop from IBM Cloud 
Kubernetes Service (IKS)....................................... 86
Uninstalling DevOps Loop from Kubernetes Service 
(K8S)........................................................................87

Chapter 5. Working with Loops....................................... 88
Loop management.........................................................88

Creating a loop....................................................... 89
Viewing loop details...............................................94
Adding members to a loop....................................94
Removing a member from a loop......................... 95
Disabling a loop......................................................95
Enabling a loop.......................................................96

Learning Loop overview................................................ 97
Preloading sample data into a learning loop........ 98

Dashboards and insights...............................................99
Viewing dashboards...............................................99
Editing dashboards.............................................. 100
AI-powered search............................................... 101

Chapter 6. Capabilities of DevOps Loop........................ 103
Plan............................................................................... 103
Code..............................................................................103

Code overview...................................................... 103
User interface....................................................... 105
Switching to your teamspace..............................106
Working with dev containers............................... 107
Dev containers......................................................110
Git authentication for dev containers................. 114
Configuring dev containers..................................120
Extensions.............................................................130
Access applications via automatic port 
forwarding.............................................................137
File management features...................................137

Control.......................................................................... 139
Managing Git authentication for developers...... 139

Build.............................................................................. 140
Configuring an external agent for Build in DevOps 
Loop.......................................................................140
Integrating Build resources with existing loop and 
teamspaces.......................................................... 142

iii



Contents  | iv

iv

Test............................................................................... 143
Integration of Test Hub with Measure................ 143

Release......................................................................... 146
Deploy........................................................................... 147

Installing an external agent for Deploy in DevOps 
Loop.......................................................................147
REST commands for Deploy............................... 148

Measure........................................................................153
Chapter 7. Loop Genie - Tech Preview.......................... 154

Interacting with Loop Genie........................................ 155
Prompt references for Loop Genie............................. 156

Chapter 8. Troubleshooting...........................................159
Security Considerations........................................................clx
Notices..................................................................................clxi
Index..................................................................................... 164



Chapter 1. Release notes for DevOps Loop  2025.12 (2.0.0)
This document includes information about the features introduced, a product overview, and installation instructions, as well 

as contact information of HCL  Customer Support for this version of HCL DevOps Loop.

Product description

DevOps Loop  is a cloud-based continuous integration platform. DevOps Loop  is built on modern, cloud-native technologies 

that enables product teams to plan, code, test, build and deploy the applications efficiently. DevOps Loop  provides a holistic 

view of the progress in the DevOps cycle, allowing teams to track development, monitor workflows, and manage releases 

effectively. For more information, see Overview of DevOps Loop  on page 21.

What's new

You can find information about the features introduced, enhancements, or other changes in DevOps Loop. See What's New 

on page 5.

Product download and installation

If you have purchased the licenses to use the product, you can download the entitled software packages from HCL Harbor 

container registry.

For instructions about installing the product software, see Installation of DevOps Loop  on page 30.

Known issues

For the list of known issues that are identified in this version and the previously published known issues that are still 

applicable, see Known issues  on page 10.

Contacting HCL support

• For technical assistance, contact HCL Customer Support.

• Before you contact HCL support, you must gather the background information that you might need to describe 

your problem. When you describe a problem to an HCL Support  specialist, be as specific as possible and include all 

relevant background information so that the specialist can help you solve the problem efficiently. To save time, know 

the answers to these questions:

◦ What software versions were you running when the problem occurred?

◦ Do you have logs, traces, or messages that are related to the problem?

◦ Can you reproduce the problem? If so, what steps do you take to reproduce it?

◦ Is there a workaround for the problem? If so, be prepared to describe the workaround.

What's New
You can find information about the features introduced, enhancements, or other changes made in HCL DevOps Loop.

5

https://hclcr.io
https://hclcr.io
https://support.hcl-software.com/csm


HCL DevOps Loop 2025.12 (2.0.0)

6

What's New in DevOps Loop  2025.12 (2.0.0)
Release date: 12th  January 2026

The following table lists the new features, enhancements, or other changes made in DevOps Loop:

Feature title Description

GKE platform support You can now install DevOps Loop  on Google Kubernetes Engine, with full support for 

Filestore NFS, DNS configuration, load balancers, and Helm-based installation. See 

Installing DevOps Loop on Google Kubernetes Engine (GKE)  on page 43.

Learning Loop 

enhancements

Learning Loop now provides an automated CI/CD demonstration flow from code changes 

to build, deployment, and a live updated webpage served through a new NgineX web server 

pod with a unique URL for each loop. See Learning Loop overview  on page 97.

Support for DevOps Loop 

MCP server integration

You can now integrate the DevOps Loop MCP server with external MCP clients such as VS 

Code and Claude Desktop to retrieve and update loop resources directly from those tools. 

See Connecting VS Code to the DevOps Loop MCP server  and Connecting Claude Desktop 

to the DevOps Loop MCP server  on page 81.

Enhanced Loop Genie with 

multi-agent workflow engine
Loop Genie now uses a multi-agent workflow engine that can perform multi-step 

automation, run complex tasks, and produce well-formatted responses by using models 

such as Claude Desktop, OpenAI, and Gemini.

Support for a centralized 

Loop Details page

You can now view all loop configuration details in one place through the new Loop Details 

page, including linked resources and team members, with options to add additional test 

projects and repositories. See Loop Genie - Tech Preview  on page 154.

AI provider support for Loop 

Genie

You can now configure AI providers such as Claude Desktop and Gemini in DevOps Loop  to 

enhance the AI capabilities of Loop Genie. See Configuring Claude Desktop integration  on 

page 70, Configuring Gemini integration  on page 71.

UI and accessibility 

enhancements

DevOps Loop  UI is now improved with consistent color schemes, fonts, pagination, and 

alignment which provides a uniform and accessible user experience.

Enhanced search 

capabilities

The Search feature has been enhanced with new capabilities that make it easier to find 

and understand information across your loops. You can now search multiple artifact types 

including issues, builds, tool requests, commits, and deployments. You can also filter 

results by selecting a loop. See AI-powered search  on page 101.

Support for mixed licensing 

tiers

As an administrator, you can now assign users to different licensing tiers: Essential, 

Standard, or Premium with access and feature availability automatically adjusted based on 

the selected tier.

Non-admin users receive a tier during onboarding, and admin users automatically receive 

the highest tier available. See DevOps Loop licensing information  on page 52.



Chapter 1. Release notes for DevOps Loop 2025.12 (2.0.0)

Feature title Description

Plan

UI enhancements for 

query links and work item 

subscriptions

You can now copy query links to the clipboard and more easily subscribe other users to 

work items.

Enhancements to Schema 

Designer

You can now apply new schema revisions directly to your application, including adding and 

editing record-type Fields, Actions, and States.

Code

Viewing metrics in the 

running dev containers

You can now get real-time visibility into key dev container resource metrics to help optimize 

performance. See Working with dev containers  on page 107.

Support for automated SSH 

authentication by using the 

Open with DevOps Code UI 

option

You can now securely clone a Control Git repository by using the DevOps Code UI with SSH 

authentication. See Authenticating with DevOps Code UI  on page 114.

Support for temporary 

GitHub Copilot in dev 

containers

You can now configure a dev container to support GitHub Copilot for AI-powered code 

suggestions and chat assistance. See Installing GitHub Copilot in dev containers  on 

page 129.

Build

Automatic Build agent 

configuration

Build agents are now automatically configured and added to the agent pool during the 

teamspace initialization.

You can find information about the features introduced, enhancements, or other changes made in the previous versions of 

DevOps Loop  in the following sections.

• What's New in DevOps Loop 2025.09 (1.0.3)  on page 7

• What's new in DevOps Loop 2025.06 (1.0.2)  on page 9

• What's new in DevOps Loop 2025.03 (1.0.1)  on page 10

What's New in DevOps Loop  2025.09 (1.0.3)

Release date: 31st  October 2025

The following table lists the new features, enhancements, or other changes made in DevOps Loop.

Feature title Description

Support for installation 

of DevOps Loop  in an 

air-gapped environment

You can install DevOps Loop  in environments without internet access. See Installation of 

DevOps Loop in an air-gapped environment  on page 47.

7



HCL DevOps Loop 2025.12 (2.0.0)

8

Feature title Description

Support for private CA and 

self-signed certificates

You can now configure DevOps Loop  to trust private or self-signed certificates. See Private 

CA and self-signed certificate support  on page 61.

Support for backup and 

restoration of DevOps Loop 

data

You can now back up and restore DevOps Loop  data by using Velero and Minio for disaster 

recovery and upgrades. See Backup and restoration of DevOps Loop  on page 58.

Support for upgrading 

DevOps Loop

You can now upgrade DevOps Loop  with support for restoring configurations and resources 

if needed. See Upgrading DevOps Loop  on page 64.

Support for Learning Loop 

with built-in sample data

You can now use sample data for Build, Control, Deploy, and Plan by enabling Learning 

Loop for training and experimentation without affecting production data. See Learning Loop 

overview  on page 97.

Support for IBM watsonx 

integration for Loop Genie

You can now integrate IBM watsonx in DevOps Loop  to enhance the AI capabilities of Loop 

Genie. See Configuring IBM watsonx integration  on page 72.

Enhanced Loop Genie AI 

assistant - Tech Preview

You can now use Loop Genie as an intelligent, chat-based assistant to manage teamspace 

users, loops, and perform control actions such as creating branches or managing pull 

requests. New features also include voice interaction and improved tracking capabilities. 

See Loop Genie - Tech Preview  on page 154, Prompt references for Loop Genie  on 

page 156.

Support for customizing 

Dashboards

You can now edit dashboards, swap panels, clone panels, and add titles directly within 

DevOps Loop, which provides enhanced customization and visibility. See Dashboards and 

insights  on page 99.

Support for Search across 

issues

You can now search for issues such as epics, defects, and stories across loops and 

teamspaces. Search results include issue metadata, associated URLs, and AI-generated 

summaries with results filtered by your access permissions. See AI-powered search  on 

page 101.

Support for loop enabling or 

disabling functionality

You can now enable or disable loops. Disabling a loop moves it to a Disabled  tab and 

stops associated plugins and webhooks, while re-enabling the loop restores all previously 

disabled functionality. See Disabling a loop  on page 95 and Enabling a loop  on 

page 96.

Support for Build integration Build is now automatically set up during loop and teamspace creation, which streamlines 

resource setup and CI/CD steps.

Support for UI and 

accessibility enhancements

You can now experience improved UI consistency across DevOps Loop, including updated 

color schemes, fonts, pagination, and alignment which provides a uniform and accessible 

user experience.

Support for removing 

members from Teamspaces 

and Loops

You can now remove members from loops, which automatically removes them from all 

associated capabilties of DevOps Loop. After you remove members from loops, you can 



Chapter 1. Release notes for DevOps Loop 2025.12 (2.0.0)

Feature title Description

also remove the members from their teamspaces. See Removing a member from a loop  on 

page 95 and Removing a member from a teamspace  on page 85.

Measure

Support for integration 

with Measure to export test 

execution metrics

You can now integrate Test Hub with Measure by using a webhook and specify additional 

parameters related to the test run so that you can view the summary metrics of the test 

run in the Measure dashboard. The results are categorized based on the type of test – 

Functional, Unit tests, API, and Performance.

Code

Support for launching Dev 

Containers via URL

You can now launch Dev Containers directly from a shared URL in DevOps Code, not just 

from the landing page, enabling quicker access and simplified collaboration.

Support for viewing running 

Dev Containers

A new Running Containers tab is available on the landing page to show active Dev 

Containers in DevOps Code  for improved visibility and management.

Display of Dev Container 

descriptions in UI

Each Dev Container tile on the landing page now displays its description, helping users 

understand the container’s purpose before launching it.

Inclusion of sample 

Dev Containers in new 

teamspaces

Each newly created teamspace is now prepopulated with a set of sample Dev Containers, 

enabling users to explore and start development quickly without manual setup.

Support for Git device code 

authentication

You can now authenticate Git operations using device code authentication  on page 118, 

ideal for secure or restricted environments.

Support for embedding 

preinstalled extensions in 

Dev Container images

As an admin, you can now embed extensions directly into Dev Container images, ensuring 

they are preinstalled at launch - ideal for air-gapped environments without access to online 

extension registries  on page 130.

What's new in DevOps Loop  2025.06 (1.0.2)

The following section lists the new features, enhancements, or other changes made in DevOps Loop:

Feature title Description

Support for teamspace 

creation

You can now create teamspaces for your teams in DevOps Loop and the linked teamspaces 

in all the integrated applications such as DevOps Plan, DevOps Control, DevOps Code, 

DevOps Test Hub, DevOps Deploy, DevOps Measure, and DevOps Release. See Teamspace 

management  on page 81, Creating a teamspace  on page 82, and Adding or inviting 

members to a teamspace  on page 84.

Support for OpenSearch 

dashboards

You can now view the visualization of the data that is gathered through the DevOps 

activities in the integrated applications. See Dashboards and insights  on page 99.

9



HCL DevOps Loop 2025.12 (2.0.0)

10

Feature title Description

Integration of AI providers - 

Tech Preview

You can now integrate AI providers such as OpenAI and Ollama to enable Loop Genie to 

search and summarize the project data in a loop. See AI provider integration for Loop Genie 

- Tech Preview  on page 65, Configuring OpenAI integration  on page 68, Configuring 

Ollama integration  on page 74, and Integration management.

Integration of Loop Genie - 

Tech Preview

You can now use the Loop Genie chatbot to answer your queries related to the project in a 

loop. See Interacting with Loop Genie  on page 155.

Revoking licenses You can now revoke licenses for users when they are no longer required in a project. See 

Revoking a license  on page 55.

Integration of Build You can now configure and use DevOps Build  as part of the platform for managing 

continuous integration and build processes.

Support for custom dev 

containers

DevOps Code  now supports custom dev containers. A teamspace owner can configure 

the dev containers accessible to the members. The configuration is based on the Dev 

Containers specification. You can push specifications of Dev containers to a Control Git 

repository to version the containers.

Support for a new landing 

page

DevOps Code  now includes a new landing page. From the landing page, you can select the 

teamspace that you want to work and choose the branch from where you can fetch the 

available dev containers. You can launch, open, or terminate Dev containers directly from 

this landing page.

What's new in DevOps Loop  2025.03 (1.0.1)

The following section lists the features, enhancements, or other changes made in DevOps Loop:

Feature title Description

Integration of DevOps Code You can now use  DevOps Code  (Code)  as part of the platform. Code  is a cloud-based 

integrated development environment for creating and managing your code. See Code  on 

page 103.

Known issues
You can find the known issues that are identified in this version of HCL DevOps Loop.

Known issues in DevOps Loop  2025.12 (2.0.0)

The known issues are as follows:

ID Description

NEXUS00004152 When you receive a clarification question from Loop Genie, the test box might not get enabled, 

preventing you from entering a response.

https://containers.dev/
https://containers.dev/


Chapter 1. Release notes for DevOps Loop 2025.12 (2.0.0)

ID Description

To work around this problem, you must close and restart Loop Genie.

NEXUS00004133 When you use IBM watsonX, it might not provide proper responses for multistep workflows. The 

issue is currently observed only with workflows involving multiple steps. Single-step workflows 

work as expected.

To work around this problem, you must use IBM watsonX only for single-step workflows until the 

issue is resolved.

NEXUS00004078 When loop creation fails, and the API returns a message indicating multiple workflows with the 

same name (for example, "Multiple workflows found with the same name: Space1~LoopM"), two 

or more VSMs might get created with the same name. A duplicate VSM can cause failures in 

subsequent loop creation attempts.

To work around this problem, you must perform the following steps:

1. Go to the Measure  page and identify the duplicated VSM.

2. Delete one of the duplicates, ensuring that only one VSM with that name remains.

3. Return to the Loop home page and click the Retry  button to create the loop again.

NEXUS00003988 When you use Claude Desktop, the application might occasionally encounter connection issues 

due to a session timeout. Claude Desktop does not currently prompt the user to re-authenticate or 

refresh the session automatically.

To work around this problem, you must reconnect the connector to restore the connection. If 

reconnecting fails, you must delete the existing connector and create a new one, and then restore 

the connection.

Known issues from earlier versions

The known issues identified in the earlier versions of DevOps Loop  that are still applicable are as follows:

ID Description Indetified in version Applicable in and until version

NEXUS

00003

212

After a Build server or an agent pod 

restarts, the previously configured 

agents are no longer available in 

Build.

To work around this problem, 

you must reconfigure the agents 

1.0.3 1.0.3

11



HCL DevOps Loop 2025.12 (2.0.0)

12

ID Description Indetified in version Applicable in and until version

manually from the Build UI after 

restarting any pod. For more 

information, refer to Configuring 

agents.

NEXUS

00003

275

When an administrator is added to a 

loop by another administrator before 

logging into Measure for the first 

time or before creating their own 

Loop, the administrator cannot log in 

to Measure.

To work around this problem, you 

must log in to Measure as another 

administrator (for example, the one 

who created the loop) and assign 

the global Product Administrator  role 

to the administrator who cannot log 

in.

1.0.3

NEXUS

00003

375

When you upgrade DevOps Loop 

from version 1.0.2 to version 1.0.3, 

teamspace creation might fail at the 

Build step if the teamspace contains 

existing build resources with naming 

conventions that conflict with 

the resources created during the 

upgrade.

To work around this problem, 

rename the conflicting resources in 

Build and then click the Retry  option.

1.0.3 1.0.3

NEXUS

00001

925

When a user is invited through 

the add user process as part of 

teamspace management, and then 

the user completes the sign-up 

process after clicking the invite 

link received over email, DevOps 

Loop  displays just the confirmation 

1.0.2

https://help.hcl-software.com/devops/loop/1.0.3/docs/build/docs/topics/agent_config.html?hl=configuring%2Cagents
https://help.hcl-software.com/devops/loop/1.0.3/docs/build/docs/topics/agent_config.html?hl=configuring%2Cagents


Chapter 1. Release notes for DevOps Loop 2025.12 (2.0.0)

ID Description Indetified in version Applicable in and until version

message instead of displaying the 

login link.

To work around this problem, the 

user must manually enter the URL to 

log in to the platform.

NEXUS

00002

053

When you navigate to Settings  > 

User Administration  > Users, and if 

you try to filter the user list by using 

the drop-down lists available on the 

page, the result might not display 

correctly.

1.0.2 1.0.3

NEXUS

00002

082

When you perform the following 

steps in DevOps Loop, you might see 

the error page instead of the DevOps 

Measure  home page:

1. Create a teamspace.

2. Create a loop.

3. Navigate to Measure.

An error page is displayed.

To work around this problem, you 

must perform the following tasks:

1. Configure nginx to increase 

its buffer size with the 

following values:

proxy_buffer_size 32k; 

proxy_buffers  8 16k;

Note:  You can 

run the following 

commands to do the 

configuration:

kubectl get 
 pods | grep 
 velocity-router
kubectl edit cm 
 nginx-conf

1.0.2 1.0.3

13



HCL DevOps Loop 2025.12 (2.0.0)

14

ID Description Indetified in version Applicable in and until version

kubectl 
 delete pod 
 <velocity-rout
er-id>

2. Verify whether the issue is 

resolved. If not, go to step 3 

on page 14.

3. Resync the user's access 

by performing the following 

steps:

a. Log in to DevOps 

Measure  and delete 

the user from the 

team that is created 

through teamspace 

or loop by navigating 

to Settings  > Users.

The user can log in 

to Measure  but loses 

access to teams and 

resources associated 

with the teamspace 

or loop in DevOps 

Measure.

b. In DevOps Loop, 

add the user 

again through the 

teamspace and loop 

creation process.

NEXUS

00002

086

When a teamspace owner invites 

an admin user through the invite 

process as part of the teamspace 

creation, and when the invited 

user logs in to DevOps Loop  and 

navigates to DevOps Measure 

through the switcher, the login page 

displays instead of the home page 

of DevOps Measure.

1.0.2 1.0.3



Chapter 1. Release notes for DevOps Loop 2025.12 (2.0.0)

ID Description Indetified in version Applicable in and until version

To work around this problem, you 

must perform one of the following 

tasks:

• Click Login with OIDC.

• Clear your cache, cookies, 

and local browser data.

If the issue is still not resolved, 

resync the user's access by 

performing the following steps:

1. Log in to DevOps Measure 

and delete the user from 

the team that is created 

through teamspace or loop 

by navigating to Settings  > 

Users.

The user can to log in 

to DevOps Measure  but 

loses access to teams and 

resources associated with 

the teamspace or loop in 

DevOps Measure.

2. In DevOps Loop, add the user 

again through the teamspace 

and loop creation process.

15



16

Chapter 2. System Requirements for DevOps Loop  2025.12 
(2.0.0)
This document includes information about hardware and software requirements for HCL DevOps Loop.

Contents

• Hardware  on page 17

• Operating systems and containers  on page 17

◦ Bit version support  on page 18

◦ Operating systems  on page 18

◦ Container Platforms  on page 18

• Host prerequisites  on page 18

◦ Installation  on page 19

◦ Licensing  on page 19

◦ Runtime environment  on page 19

◦ Web browsers  on page 19

• Supported software  on page 19

• Disclaimers  on page 16

Disclaimers

This report is subject to the Terms of Use and the following disclaimers:

The information contained in this report is provided for informational purposes only. While efforts were made to verify the 

completeness and accuracy of the information contained in this publication, it is provided AS IS without warranty of any kind, 

express or implied, including but not limited to the implied warranties of merchantability, non-infringement, and fitness for 

a particular purpose. In addition, this information is based on HCL's current product plans and strategy, which are subject 

to change by HCL without notice. HCL shall not be responsible for any direct, indirect, incidental, consequential, special or 

other damages arising out of the use of, or otherwise related to, this report or any other materials. Nothing contained in this 

publication is intended to, nor shall have the effect of, creating any warranties or representations from HCL or its suppliers or 

licensors, or altering the terms and conditions of the applicable license agreement governing the use of HCL software.

References in this report to HCL products, programs, or services do not imply that they will be available in all countries in 

which HCL operates. Product release dates and/or capabilities referenced in this presentation may change at any time at 

HCL's sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future 

product or feature availability in any way. Discrepancies found between reports and other HCL documentation sources 

may or may not be attributed to different publish and refresh cycles for this tool and other sources. Nothing contained in 

this report is intended to, nor shall have the effect of, stating or implying that any activities undertaken by you will result in 

any specific sales, revenue growth, savings or other results. You assume sole responsibility for any results you obtain or 

decisions you make as a result of this report.

Notwithstanding the Terms of Use users of this site are permitted to copy and save the reports generated from this tool for 

such users own internal business purpose. No other use shall be permitted.



Chapter 2. System Requirements for DevOps Loop 2025.12 (2.0.0)

Hardware
You can find information about the hardware requirements for HCL DevOps Loop.

The following table lists the requirements to run DevOps Loop  on the Kubernetes Service (K8S) or IBM Cloud Kubernetes 

Service (IKS) platform.

Resource Requirement
Notes

Number of worker nodes 3 If you are using Ollama, worker nodes 

must have at least 32Gib memory.

Processor 8 CPUs per node

Memory 64 GiB total

In addition, you might require 200 MB 

for each DevOps Code  Dev Container 

used by a user.

Disk space 256 GiB

In addition, you might require 20 GB for 

each DevOps Code  Dev Container used 

by a user.

Network
1 Gbps

Related information

System Requirements for DevOps Loop 2025.12 (2.0.0)  on page 16

Operating systems and containers
You can find details about the supported operating systems and containers for HCL DevOps Loop.

Contents

• Bit version support  on page 18

• Operating systems  on page 18

• Container Platforms  on page 18

17



HCL DevOps Loop 2025.12 (2.0.0)

18

Bit version support

Bitness Description

64-Exploit The product or part of the product runs as a 64-bit application in the 64-bit platforms listed as 

supported.

Operating systems

Operating system Hardware Bitness Notes

RHEL 8.8 x86-64 64-Exploit

RHEL 8.10 x86-64 64-Exploit

RHEL 9.0 x86-64 64-Exploit

RHEL 9.2 x86-64 64-Exploit

RHEL 9.4 x86-64 64-Exploit

Container Platforms

You can find details about the supported container platforms.

Platform Version
Note

Kubernetes Service (K8S) 1.32 The storage class 

must support 

ReadWriteOnce (RWO) 

and ReadWriteMany 

(RWX).

Related information

System Requirements for DevOps Loop 2025.12 (2.0.0)  on page 16

Host prerequisites
You can find the prerequisites that support the operating capabilities for HCL DevOps Loop.



Chapter 2. System Requirements for DevOps Loop 2025.12 (2.0.0)

Contents

• Installation  on page 19

• Licensing  on page 19

• Runtime environment  on page 19

• Web browsers  on page 19

Installation

Licensing

License Server Version Notes

My HCLSoftware  (MHS) Latest Cloud version

HCL Local License Server 5.1

Runtime environment

Supported software Version Notes

Helm CLI 3.17 Required locally for Helm.

Web browsers

Browser Version

Google Chrome 129 or later

Microsoft Edge 129 or later

Mozilla Firefox 130 or later

Related information

System Requirements for DevOps Loop 2025.12 (2.0.0)  on page 16

Supported software
You can find information about the supported software in HCL DevOps Loop.

19



HCL DevOps Loop 2025.12 (2.0.0)

20

Supported software in DevOps Loop  2025.12 (2.0.0)

Supported software Version

HCL DevOps Plan 3.0.6

HCL DevOps Test Hub 11.0.7

HCL DevOps Deploy 8.2.0.0

HCL DevOps Velocity 5.2.0

HCL DevOps Build 7.1.0.2

Related information

System Requirements for DevOps Loop 2025.12 (2.0.0)  on page 16



Chapter 3. Getting Started
HCL DevOps Loop  is a platform designed to support the full DevOps lifecycle. The Getting Started section introduces key 

concepts and walks through the initial steps to help new users begin working with the platform.

Before exploring the capabilities or performing tasks, ensure that the DevOps Loop  is installed and properly configured. See 

Installation of DevOps Loop  on page 30.

 Overview of DevOps Loop
HCL DevOps Loop  is a unified platform that brings every stage of the software development lifecycle into a continuous 

feedback loop. It connects teams, processes, and applications across planning, coding, testing, releasing, deploying, and 

measuring to deliver software faster, with greater visibility and governance.

DevOps Loop  is built on cloud-native technologies that support CI/CD at scale and enhance automation with Loop Genie. 

This AI-powered assistant that provides search results across applications in the Loop and accelerates workflows and helps 

accelerate delivery.

With dashboards and analytics, DevOps Loop  provides real-time insights into progress, quality, and delays across the 

toolchain. These insights help teams track value creation, enhance decision-making, and continuously improve delivery.

For security and compliance, DevOps Loop  offers role-based access control so administrators can manage permissions and 

enforce governance across projects.

Enterprises can install DevOps Loop  on IBM Red Hat OpenShift, IBM Cloud Kubernetes Service (IKS), and Kubernetes Service 

(K8S) and Air-Gapped environments to achieve flexibility and scalability across environments.

In addition to its platform-wide features, DevOps Loop  includes a suite of integrated capabilities such as Plan, Code, Control, 

Build, Test, Release, Deploy, and Measure  which work together to support every stage of the software development lifecycle.

To learn more about the specific capabilities, see Capabilities of DevOps Loop  on page 103.

User interface
You can find an overview of the HCL DevOps Loop  user interface.

Login page

21



HCL DevOps Loop 2025.12 (2.0.0)

22

The login page provides an option to sign in to the DevOps Loop 

platform.

Home page

After logging in, the Home page provides an option to create Teamspace. You must create a 

Teamspace before start using DevOps Loop. See Teamspace management  on page 81. 



Chapter 3. Getting Started

Within your Teamspace, you can create a loop to begin setting up your DevOps workflow. See Loop management  on 

page 88.

Capability selector

By using the capability selector icon , you can quickly access all DevOps Loop  capabilities, such as Plan, Code, Test, 

Build, Release , Control, Deploy, and Measure from a single menu.

23



HCL DevOps Loop 2025.12 (2.0.0)

24

Plugins

The sidebar provides the  option for you to navigate to the Toolchain Engineering 

page that lists the Featured plugins  and All plugins  sections. You can choose a plugin that is 



Chapter 3. Getting Started

required for a specific solution from the All plugins  section and click  to download the 

plugin.

Dashboards

The Dashboards page provides a centralized view where teams can access, filter, and manage all their DevOps Loop 

dashboards.

25



HCL DevOps Loop 2025.12 (2.0.0)

26

Settings

The sidebar provides you the  option to administer users through the User Administration  page and manage 

integrations through the Integrations  page. See Revoking a license  on page 55 and AI provider integration for Loop Genie 

- Tech Preview  on page 65.

Help

You can click the Help  icon  to quickly access the product information and documentation resources.

You can select Documentation  option in the Help  menu to view getting-started guides and detailed user documentation for 

every capability within DevOps Loop.



Chapter 3. Getting Started

Profile

The Profile   displays the logged-in user’s information and provides the option to log out of DevOps Loop.

To log out, you can click the profile icon , and then click Logout. The following logout page is displayed.

27



HCL DevOps Loop 2025.12 (2.0.0)

28

You can click Login  to log in again.

Accessibility features
Accessibility features help users who have physical disabilities, such as visual and hearing impairment, or limited mobility, to 

use the software products successfully.

Accessibility compliance

The product documentation is published by using Oxygen XML WebHelp Responsive. To understand the accessibility 

compliance status for Oxygen XML WebHelp Responsive, refer to WebHelp Responsive VPAT Accessibility Conformance 

Report.

Accessing UI elements

DevOps Loop  supports navigation in the UI by using different methods such as a mouse, keyboard, or touchpad.

You can use the keyboard keys such as Tab, arrow keys such as UP, DOWN, LEFT, and RIGHT  to navigate to the different 

pages in the Navigation  pane or to the different action labels in the right pane on the UI.

https://www.oxygenxml.com/doc/versions/22.1/ug-author/topics/whr-vpat.html
https://www.oxygenxml.com/doc/versions/22.1/ug-author/topics/whr-vpat.html


Chapter 4. Administration
This section provides information on administration, installation, configuration, and integrations and teamspace 

management.

Configuring external databases for the capabilities in DevOps Loop
You can configure external databases for the capabilities in DevOps Loop  and provide the database URL in the helm chart to 

connect the capabilities to external database.

Overview

You can configure external databases using Helm charts for the capabilities in DevOps Loop. Each product may require 

different settings or secrets, which are defined in Helm chart values and configuration files. This topic summarizes how to 

configure databases for Deploy, Plan, Build, Measure, Release, and Test capabilities.

Plan

To configure an external database for Plan. Refer to Helm chart external database configuration.

Build

Build uses the same MySQL database as Deploy. You must configure the Deploy Helm chart with MySQL. To configure the 

Build Helm chart to use this external database, you must update the following Helm values:

Helm Values for External MySQL

You must use the following values under HELM_OPTIONS:

--set hcl-devops-build.externalDB.enabled=true \
--set hcl-devops-build.externalDB.hostname=<MYSQL_HOST> \
--set hcl-devops-build.externalDB.port=<MYSQL_PORT> \
--set hcl-devops-build.externalDB.database=<DATABASE_NAME> \
--set hcl-devops-build.externalDB.user=<DATABASE_USER> \
--set hcl-devops-build.secret.name=build-secret

You must replace the following placeholders with your actual MySQL configuration:

• <MYSQL_HOST>  – Hostname or IP of the MySQL server

• <MYSQL_PORT>  – MySQL port (default: 3306)

• <DATABASE_NAME>  – Name of the MySQL database (e.g., devops_build)

• <DATABASE_USER>  – MySQL username

Setting the database password

You must create a Kubernetes secret that contains the database password by running the following command:

29

https://help.hcl-software.com/devops/plan/3.0.4/oxy_ex-1/com.ibm.rational.clearquest.install_upgrade.doc/topics/t_helm_chart_external_db.html


HCL DevOps Loop 2025.12 (2.0.0)

30

BUILD_DB_PASSWORD=<DATABASE_PASSWORD>
kubectl create secret generic build-secret -n devops-loop --from-literal=dbpassword="$BUILD_DB_PASSWORD"

“

⚠️  Important:  The BUILD_DB_PASSWORD  must match the password assigned to the MySQL user.

”

Deploy

To configure an external database for Deploy, refer to the Prerequisites  and Parameters  sections of the README file in Helm 

chart. Helm values related to database configuration begin with database.

Measure and Release

To configure an external database for Measure and Release, create a secret named mongodb-url-secret  with a property 

named password  after installing the MongoDB instance. The value should follow this format:

mongodb://<user>:<password>@<host>:<port>/<auth_database>

Example command:

kubectl create secret generic mongodb-url-secret --namespace devops-automation 
 --from-literal=password="${MONGO_URL}"

Set the Helm chart value to reference the secret:

--set ibm-ucv-prod.secrets.database=mongodb-url-secret

For more information, refer to Velocity installation prerequisites.

Test

Support for configuring external databases in Test will be provided in an upcoming release.

Installation of DevOps Loop
To get started working with HCL DevOps Loop, you must first install DevOps Loop.

You can install DevOps Loop  on the following platforms:

• IBM Cloud Kubernetes Service (IKS)

• Kubernetes Service (K8S)

• Air-Gapped Environment

To learn more about the installation of DevOps Loop  on the supported platforms refer to the following topics:

• Installing on IKS by using a newly created cluster  on page 31

• Installing on a K8S cluster that has load balancer resources available  on page 34

• Installing on a K8S cluster with an upstream L7 load balancer  on page 37

https://github.com/HCL-TECH-SOFTWARE/launch-cloud-docs/blob/main/docs/hcl-launch-server-prod-README.md#prerequisites
https://github.com/HCL-TECH-SOFTWARE/launch-cloud-docs/blob/main/docs/hcl-launch-server-prod-README.md#parameters
https://help.hcl-software.com/devops/velocity/3.0.x/user/topics/c_install_kube.html#c_install_kube__prereq_kube


Chapter 4. Administration

• Installing on a K8S cluster that has an upstream L7 load balancer and expects data to be re-encrypted  on page 39

• Installation of DevOps Loop in an air-gapped environment  on page 47

Note:  Before you get started with the installation, if you want to configure the external databases in the production 

environment, see Configuring external databases for the capabilities in DevOps Loop  on page 29.

Installing DevOps Loop  on IBM Cloud Kubernetes Service (IKS)
You can find information about the tasks that you can perform to install HCL DevOps Loop  on IBM Cloud Kubernetes Service 

(IKS) by using a newly created cluster. You can use the Helm chart to perform the installation.

Before you begin

You must have completed the following tasks:

• Read and understood System Requirements for DevOps Loop 2025.12 (2.0.0)  on page 16.

• Installed the following CLI tools:

◦ Kubectl

◦ IBM Cloud CLI

• Installed Helm on the system from which you access the Kubernetes cluster. For more information, refer to Installing 

Helm.

• Set up a Kubernetes cluster. For more information, refer to Getting started with IBM Cloud Kubernetes Service.

• Set up the Secrets Manager in your Kubernetes Service cluster. For more information refer to IBM Cloud Secrets 

Manager.

• Obtained valid public certificates issued by trusted Certificate Authorities (CAs). Also, read and understood about 

managing certificates and secrets. For more information refer to Managing TLS and non-TLS certificates and secrets.

1. Navigate to Cluster Management  > Clusters  > Overview  > Actions  > Connect via CLI  in your IBM Cloud account and 

associate the kubectl context with your cluster.

2. Navigate to Cluster Management  > Clusters  > Ingress  > Ingress Controllers (ALB)  and note down the IP address of 

the public ingress controller.

3. Navigate to Cluster Management  > Clusters  > Ingress  > Domain  and note down the region in the domain name of 

your cluster, which is in the format, <cluster_name-id>.<region>.containers.appdomain.com.

4. Click Create  in the Domain  tab and perform the following steps:

a. Provide a domain name in the format, <custom_name>.<region>.containers.appdomain.com, by 

using the region noted down in the previous step.

b. Provide the IP address of the public ingress controller noted down in step 2  on page 31.

c. Set the domain as the default domain.

31

https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/
https://cloud.ibm.com/docs/containers?topic=containers-getting-started
https://cloud.ibm.com/docs/containers?topic=containers-secrets-mgr
https://cloud.ibm.com/docs/containers?topic=containers-secrets-mgr
https://cloud.ibm.com/docs/containers?topic=containers-secrets#tls


HCL DevOps Loop 2025.12 (2.0.0)

32

Note:  If you do not set this as the default domain, you must delete and re-create the domain to set it as the 

default domain.

5. Make the certificate and key available as a Kubernetes secret in the Kubernetes namespace that you use for DevOps 

Loop.

Note:  If a helm lookup error occurs on a secret, likely the certificate was not imported to the Loop 

namespace.

To correct this error, import the certificate into your namespace: ibmcloud ks ingress secret create --

cluster <cluster_name_or_ID> --cert-crn <crn> --name <secret_name> --namespace <namspace>

You must use the IBM Secrets Manager to manage the life cycle of the certificate. You must also note down the 

name of the secret that contains the TLS certificate and key. For more information, refer to https://cloud.ibm.com/

docs/containers?topic=containers-secrets&interface=ui#tls-custom.

6. Perform the following steps to install Emissary-ingress in your cluster:

a. Run the following commands to set the Ambassador Edge Stack Helm chart:

helm repo add datawire https://app.getambassador.io
helm repo update

b. Run the following commands to create a namespace and install the Ambassador Edge stack:

kubectl create namespace emissary && \
kubectl apply -f https://app.getambassador.io/yaml/emissary/3.9.1/emissary-crds.yaml
kubectl wait --timeout=90s --for=condition=available deployment emissary-apiext -n 
 emissary-system

c. Run the following command to create emissary-ports.yaml:

cat <<EOF > emissary-ports.yaml
service:
  ports:
    - name: https
      port: 443
      targetPort: 8443
      ⚠nodePort: <optional>
    - name: http
      port: 80
      targetPort: 8080
      ⚠nodePort: <optional>
    - name: deploy-wss
      port: 7919
      targetPort: 7919
      ⚠nodePort: <optional>
    - name: control-ssh
      port: 9022
      targetPort: 9022
      ⚠nodePort: <optional>
EOF

d. Install Emissary-ingress by running the following command:

https://cloud.ibm.com/docs/containers?topic=containers-secrets&interface=ui#tls-custom
https://cloud.ibm.com/docs/containers?topic=containers-secrets&interface=ui#tls-custom


Chapter 4. Administration

helm install emissary-ingress --namespace emissary datawire/emissary-ingress -f 
 emissary-ports.yaml && \
kubectl -n emissary wait --for condition=available --timeout=90s deploy 
 -lapp.kubernetes.io/instance=emissary-ingress

7. Note down the domain name for your cluster, which is in the format, 

<custom_name>.<region>.containers.appdomain.com.

You can navigate to Containers  > Cluster Management  > Clusters  > Ingress  > Domains  in the IBM Cloud console or 

run the following command to list the domains in your cluster:

ibmcloud ks ingress domain ls --cluster <CLUSTER_NAME>

8. Perform the following steps to access the HCL Harbor container registry:

a. Get a key to the HCL Harbor container registry.

b. Log in to HCL Harbor container registry  with the HCL  ID and password that are associated with the entitled 

software.

c. Copy the pre-generated CLI secret from the User Profile  page.

d. Create the following three secrets in the target namespace to pull images from the HCL Harbor container 

registry:

kubectl create secret docker-registry hcl-entitlement-key \
    --namespace [namespace_name] \
    --docker-username=<Harbor User ID> \
    --docker-password=<CLI secret> \
    --docker-server=hclcr.io

Note:  Secrets are namespace-specific and they are required to install DevOps Plan.

9. Run the following command to view the README.md  file:

helm show readme oci://hclcr.io/devops-automation-helm/hcl-devops-loop --version 2.0.000

10. Update the following parameters and the other required parameters in the script in the Helm README with the 

correct values:

◦ DOMAIN

◦ TLS_CERT_SECRET_NAME

◦ RWO_STORAGE_CLASS=nfs-client

◦ RWX_STORAGE_CLASS=nfs-client

For DOMAIN and TLS_CERT_SECRET_NAME, you must provide the values noted down in the previous steps.

11. Run the script in the Helm README for K8 installation.

Note:  If the installation fails due to timeout, run the installation script again.

12. Perform the following steps to enable non-HTTP and additional special services:

a. Run the following command to display the IP of the L4 load balancer installed as part of DevOps Loop:

kubectl get svc --namespace emissary emissary-ingress -o 
 jsonpath='{.status.loadBalancer.ingress[0].ip}'

33

https://hclcr.io


HCL DevOps Loop 2025.12 (2.0.0)

34

b. Perform the following steps to create a new domain by using the IP of the L4 load balancer:

i. Navigate to Cluster Management  > Clusters  > Ingress  > Domains  > .

ii. Copy the default domain name.

iii. Click Create.

iv. Enter service-<copied_domain_name>  in Name.

v. Enter the IP of the L4 load balancer in IP address.

vi. Click Create.

You can also run the following command from CLI:

ibmcloud ks ingress domain create --cluster CLUSTER [--crn CRN] [--is-default] [--domain 
 DOMAIN] [--hostname HOSTNAME] [--ip IP] [--output OUTPUT] [--domain-provider PROVIDER] [-q] 
 [--secret-namespace NAMESPACE] [--zone ZONE]

Note:  You must ensure that the domain created in this step is not the default domain.

Results

You have installed DevOps Loop  on IKS by using a newly created cluster.

Installing DevOps Loop  on Kubernetes Service (K8S)
You can find information about the tasks that you can perform to install HCL DevOps Loop  on Kubernetes Service (K8S). You 

can use the Helm chart to perform the installation.

Before you begin

You must have completed the following tasks:

• Read and understood System Requirements for DevOps Loop 2025.12 (2.0.0)  on page 16.

• Installed the Kubernetes CLI tool, Kubectl.

• Installed Helm on the system from which you access the Kubernetes cluster. For more information, refer to Installing 

Helm.

• Set up a Kubernetes cluster. For more information, refer to Kubernetes Documentation.

• Read and understood administering a cluster and managing TLS certificates in a cluster. For more information, refer 

to Administer a Cluster  and Manage TLS Certificates in a Cluster.

• Set up the cert-manager in your Kubernetes cluster. For more information refer to Kubernetes documentation.

About this task

You can select one of the following methods to install DevOps Loop  on K8S:

• Installing on a K8S cluster that has load balancer resources available  on page 34

• Installing on a K8S cluster with an upstream L7 load balancer  on page 37

• Installing on a K8S cluster that has an upstream L7 load balancer and expects data to be re-encrypted  on page 39

Installing on a K8S cluster that has load balancer resources available

Before you begin

https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/
https://kubernetes.io/docs/setup/
https://kubernetes.io/docs/tasks/administer-cluster/
https://kubernetes.io/docs/tasks/tls/managing-tls-in-a-cluster/
https://cert-manager.io/v1.1-docs/installation/kubernetes/


Chapter 4. Administration

You must have completed the following tasks:

• Ensured your cluster supports L4 load balancer resources.

• Ensured that an external fully qualified domain name with a certificate signed by a well-known CA or an intermediary 

is available.

1. Associate the kubectl context with your cluster by using the following commands:

kubectl config set-context <context_name> --namespace=<namespace-name> --cluster=<cluster-name> 
 --user=<user-name>
kubectl config use-context <context-name>

2. Obtain the certificate and key for the domain that you use for DevOps Loop.

3. Make the certificate and key available as a Kubernetes secret in the Kubernetes namespace that you use for DevOps 

Loop.

You should use the cert-manager  or any standard mechanism to manage the life cycle of the certificate. You must 

also note down the name of the secret that contains the TLS certificate and key.

4. Perform the following steps to install Emissary-ingress in your cluster:

a. Run the following commands to set the Ambassador Edge Stack Helm chart:

helm repo add datawire https://app.getambassador.io
helm repo update

b. Run the following commands to create a namespace and install the Ambassador Edge stack:

kubectl create namespace emissary && \
kubectl apply -f https://app.getambassador.io/yaml/emissary/3.9.1/emissary-crds.yaml
kubectl wait --timeout=90s --for=condition=available deployment emissary-apiext -n 
 emissary-system

c. Perform the following step to create emissary-ports.yaml:

cat <<EOF > emissary-ports.yaml
service:
  ports:
    - name: https
      port: 443
      targetPort: 8443
      ⚠nodePort: <optional>
    - name: http
      port: 80
      targetPort: 8080
      ⚠nodePort: <optional>
    - name: deploy-wss
      port: 7919
      targetPort: 7919
      ⚠nodePort: <optional>
    - name: control-ssh
      port: 9022
      targetPort: 9022
      ⚠nodePort: <optional>
EOF

d. Install Emissary-ingress:

35

https://cert-manager.io/


HCL DevOps Loop 2025.12 (2.0.0)

36

helm install emissary-ingress --namespace emissary datawire/emissary-ingress -f 
 emissary-ports.yaml && \
kubectl -n emissary wait --for condition=available --timeout=90s deploy 
 -lapp.kubernetes.io/instance=emissary-ingress

5. Open the ports in your firewall to the external ports and the node ports configured in the previous step.

You can run the following command to determine the node ports if they are configured automatically:

kubectl get svc emissary-ingress --namespace emissary -o jsonpath='{range .spec.ports[*]}{.name}: 
 {.nodePort}{"\n"}{end}'

6. Perform the following steps to access the HCL Harbor container registry:

a. Get a key to the HCL Harbor container registry.

b. Log in to HCL Harbor container registry  with the HCL  ID and password that are associated with the entitled 

software.

c. Copy the pre-generated CLI secret from the User Profile  page.

d. Create the following three secrets in the target namespace to pull images from the HCL Harbor container 

registry:

kubectl create secret docker-registry hcl-entitlement-key \
    --namespace [namespace_name] \
    --docker-username=<Harbor User ID> \
    --docker-password=<CLI secret> \
    --docker-server=hclcr.io

Note:  Secrets are namespace-specific and they are required to install DevOps Plan.

7. Run the following command to view the README.md  file:

helm show readme oci://hclcr.io/devops-automation-helm/hcl-devops-loop --version 2.0.000

8. Update the following parameters and the other required parameters in the script in the Helm README with the 

correct values:

◦ DOMAIN

◦ TLS_CERT_SECRET_NAME

◦ RWO_STORAGE_CLASS=nfs-client

◦ RWX_STORAGE_CLASS=nfs-client

For DOMAIN and TLS_CERT_SECRET_NAME, you must provide the values noted down in the previous steps.

9. Run the script in the Helm README for K8 installation.

Note:  If the installation fails due to timeout, run the installation script again.

10. Perform the following steps to enable non-HTTP and additional special services:

https://hclcr.io


Chapter 4. Administration

a. Configure the DNS to route traffic from a second FQDN that is service-<DOMAIN> to the L4 load balancer that 

you created as a prerequisite.

The DOMAIN value is the same as the value used in the helm chart.

b. Configure your L4 node balancer to forward the ports configured in 4.c  on page 35 and determined in 5  on 

page 36 to your cluster.

Installing on a K8S cluster with an upstream L7 load balancer

Before you begin

You must have completed the following tasks:

• Ensured that the external L7 load balancer and cluster support for L4 load balancer resources are available.

• Ensured that an external fully qualified domain name with a certificate signed by a well-known CA or an intermediary 

is available.

1. Perform the following steps to install Emissary-ingress in your cluster:

a. Run the following commands to set the Ambassador Edge Stack Helm chart:

helm repo add datawire https://app.getambassador.io
helm repo update

b. Run the following commands to create a namespace and install the Ambassador Edge stack:

kubectl create namespace emissary && \
kubectl apply -f https://app.getambassador.io/yaml/emissary/3.9.1/emissary-crds.yaml
kubectl wait --timeout=90s --for=condition=available deployment emissary-apiext -n 
 emissary-system

c. Perform the following step to create emissary-ports.yaml:

cat <<EOF > emissary-ports.yaml
service:
  type: LoadBalancer  ⚠Set to NodePort when using an external L4 load balancer
  ports:
    - name: http
      port: 80
      targetPort: 8080
      ⚠nodePort: <optional>
    - name: deploy-wss
      port: 7919
      targetPort: 7919
      ⚠nodePort: <optional>
    - name: control-ssh
      port: 9022
      targetPort: 9022
      ⚠nodePort: <optional>
EOF

d. If the support for load balancer resources is not available in your cluster, edit the emissary-ports.yaml  to 

change the type to NodePort.

An external L4 load balancer is required in this installation scenario.

37



HCL DevOps Loop 2025.12 (2.0.0)

38

e. Install Emissary-ingress:

helm install emissary-ingress --namespace emissary datawire/emissary-ingress -f 
 emissary-ports.yaml && \
kubectl -n emissary wait --for condition=available --timeout=90s deploy 
 -lapp.kubernetes.io/instance=emissary-ingress

2. Open the ports in your firewall to the node ports configured in the previous step.

You can run the following to determine the node ports if they are configured automatically:

kubectl get svc emissary-ingress --namespace emissary -o jsonpath='{range .spec.ports[*]}{.name}: 
 {.nodePort}{"\n"}{end}'

3. Perform the following steps to access the HCL Harbor container registry:

a. Get a key to the HCL Harbor container registry.

b. Log in to HCL Harbor container registry  with the HCL  ID and password that are associated with the entitled 

software.

c. Copy the pre-generated CLI secret from the User Profile  page.

d. Create the following three secrets in the target namespace to pull images from the HCL Harbor container 

registry:

kubectl create secret docker-registry hcl-entitlement-key \
    --namespace [namespace_name] \
    --docker-username=<Harbor User ID> \
    --docker-password=<CLI secret> \
    --docker-server=hclcr.io

Note:  Secrets are namespace-specific and they are required to install DevOps Plan.

4. Run the following command to view the README.md  file:

helm show readme oci://hclcr.io/devops-automation-helm/hcl-devops-loop --version 2.0.000

5. Update the following parameters and the other required parameters in the script in the Helm README with the 

correct values:

◦ DOMAIN

◦ RWO_STORAGE_CLASS=nfs-client

◦ RWX_STORAGE_CLASS=nfs-client

For DOMAIN, you must provide the values noted down in the previous steps.

6. Add the following parameter to the ADDITIONAL_HELM_OPTIONS section:

--set platform.emissary.l7Depth=<number_of_hops_to_load_balancer>

By default the value is set to 0, which indicates that there is no upstream load balancer. You must set the value to 1 

for a single hop to a direct upstream load balancer.

7. Run the script in the Helm README for K8 installation.

8. Perform the following steps to enable non-HTTP and additional special services:

https://hclcr.io


Chapter 4. Administration

a. If the load balancer resources are available in your cluster, then run the following command to determine the 

IP of the L4 load balancer:

kubectl get svc --namespace emissary emissary-ingress -o 
 jsonpath='{.status.loadBalancer.ingress[0].ip}'

If the load balancer resources are not available, then configure an external L4 load balancer to open the non-

http/https ports in the emissary-ingress.yaml  to direct traffic to your cluster.

b. Configure the DNS to route traffic from a second FQDN that is service-<DOMAIN> to the L4 load balancer that 

you created as a prerequisite.

A certificate is not required for this domain. The DOMAIN value is the same as the value used in the helm 

chart.

Installing on a K8S cluster that has an upstream L7 load balancer and expects data to be 
re-encrypted

Before you begin

You must have completed the following tasks:

• Ensured that the external L7 load balancer, and cluster support for L4 load balancer resources or an external L4 load 

balancer are available.

• Ensured that an external fully qualified domain name with a certificate signed by a well-known CA or a self-signed 

certificate is available as required.

1. Obtain a certificate and key that covers all the nodes in your cluster through a Subject Alternative Name (SAN).

2. Configure your L7 load balancer to trust the certificate for the nodes in your cluster.

Note:  A health check endpoint is available at /automation/healthz  for your load balancer to reference for 

health checks.

3. Make the certificate and key available as a Kubernetes secret in the Kubernetes namespace that you use for DevOps 

Loop.

You must use the cert-manager  or any standard mechanism to manage the life cycle of the certificate. You must also 

note down the name of the secret that contains the TLS certificate and key.

4. Perform the following steps to install Emissary-ingress in your cluster:

a. Run the following commands to set the Ambassador Edge Stack Helm chart:

helm repo add datawire https://app.getambassador.io
helm repo update

b. Run the following commands to create a namespace and install the Ambassador Edge stack:

kubectl create namespace emissary && \
kubectl apply -f https://app.getambassador.io/yaml/emissary/3.9.1/emissary-crds.yaml
kubectl wait --timeout=90s --for=condition=available deployment emissary-apiext -n 
 emissary-system

39

https://cert-manager.io/


HCL DevOps Loop 2025.12 (2.0.0)

40

c. Perform the following step to create emissary-ports.yaml:

cat <<EOF > emissary-ports.yaml
service:
  type: LoadBalancer ⚠ NodePort if no LoadBalancer resources are available in your cluster
  ports:
    - name: https
      port: 443
      targetPort: 8443
      ⚠nodePort: <optional unused if type Nodeport>
    - name: http
      port: 80
      targetPort: 8080
      ⚠nodePort: <optional unused if type Nodeport>
    - name: deploy-wss
      port: 7919
      targetPort: 7919
      ⚠nodePort: <optional unused if type Nodeport>
    - name: control-ssh
      port: 9022
      targetPort: 9022
      ⚠nodePort: <optional unused if type Nodeport>
EOF

d. If no load balancer resources are available in your cluster, edit the emissary-ports.yaml  to change the 

type to NodePort.

An external L4 load balancer is required in this installation scenario.

e. Install Emissary-ingress:

helm install emissary-ingress --namespace emissary datawire/emissary-ingress -f 
 emissary-ports.yaml && \
kubectl -n emissary wait --for condition=available --timeout=90s deploy 
 -lapp.kubernetes.io/instance=emissary-ingress

5. Open the ports in your firewall to the node ports configured in the previous step.

You can run the following to determine the node ports if they are configured automatically:

kubectl get svc emissary-ingress --namespace emissary -o jsonpath='{range .spec.ports[*]}{.name}: 
 {.nodePort}{"\n"}{end}'

6. Perform the following steps to access the HCL Harbor container registry:

a. Get a key to the HCL Harbor container registry.

b. Log in to HCL Harbor container registry  with the HCL  ID and password that are associated with the entitled 

software.

c. Copy the pre-generated CLI secret from the User Profile  page.

d. Create the following three secrets in the target namespace to pull images from the HCL Harbor container 

registry:

kubectl create secret docker-registry hcl-entitlement-key \
    --namespace [namespace_name] \
    --docker-username=<Harbor User ID> \

https://hclcr.io


Chapter 4. Administration

    --docker-password=<CLI secret> \
    --docker-server=hclcr.io

Note:  Secrets are namespace-specific and they are required to install DevOps Plan.

7. Run the following command to view the README.md  file:

helm show readme oci://hclcr.io/devops-automation-helm/hcl-devops-loop --version 2.0.000

8. Update the following parameters and the other required parameters in the script in the Helm README with the 

correct values:

◦ DOMAIN

◦ TLS_CERT_SECRET_NAME

◦ RWO_STORAGE_CLASS=nfs-client

◦ RWX_STORAGE_CLASS=nfs-client

For DOMAIN and TLS_CERT_SECRET_NAME, you must provide the values noted down in the previous steps.

9. Run the script in the Helm README for K8 installation.

10. Perform the following steps to enable non-HTTP and additional special services:

a. If the load balancer resources are available in your cluster, then run the following command to determine the 

IP of the L4 load balancer installed as part of DevOps Loop:

kubectl get svc --namespace emissary emissary-ingress -o 
 jsonpath='{.status.loadBalancer.ingress[0].ip}'

If the load balancer resources are not available, then configure an external L4 load balancer to open the non-

http/https ports in emissary-ingress.yaml  to direct traffic to your cluster.

b. Configure the DNS to route traffic from a second FQDN that is service-<DOMAIN> to the L4 load balancer that 

you created as a prerequisite.

A certificate is not required for this domain. The DOMAIN value is the same as the value used in the helm 

chart.

Installation of DevOps Loop  on Google Kubernetes Engine (GKE)
You can find information about tasks that you can perform to install DevOps Loop  on Google Cloud Platform (GCP) by using 

the Google Kubernetes Engine (GKE) service.

Preparing GCP infrastructure for installing DevOps Loop  on GKE
You must set up the required Google Cloud Platform (GCP) infrastructure including DNS, a global static IP address, and RWX 

Storage, before deploying DevOps Loop  on Google Kubernetes Engine (GKE).

Before you begin

You must have completed the following tasks:

41



HCL DevOps Loop 2025.12 (2.0.0)

42

• Ensured that your GCP environment includes the required roles and APIs:

◦ The service account used for the GKE cluster must have the roles/file.serviceAgent  IAM role.

◦ Enabled the following APIs at the project level:

▪ file.googleapis.com

▪ gkehub.googleapis.com

These APIs and permissions are required for filestore provisioning, CSI driver operations, and 

certificate management within GKE.

1. Perform the following steps to configure DNS and network resources:

a. Create a host name in Cloud DNS for the DevOps Loop  application.

b. Reserve a global static IPv4 address  in the same GCP project.

c. Create a DNS A record that maps the domain name to the global static IP address.

For example:

◦ Name: <host-name>

◦ Type: A

◦ Value: <GLOBAL_STATIC_IP>

Note:  DNS must resolve and must be visible from the public internet or at least from GCP checkers for GKE-

managed certificate provisioning to succeed.

2. Perform the following steps to configure RWX StorageClass  for DevOps Loop:

a. Create a custom RWX StorageClass  with the following requirements:

▪ Minimum 1 TiB storage

▪ Provisioner: filestore.csi.storage.gke.io

▪ VPC: must match the VPC network used by your GKE cluster

Note:  A custom StorageClass  is required so filestore volumes are created within your cluster’s VPC. 

Otherwise, GCP-provided filestore classes attempt provisioning under the default network.

3. Verify available StorageClasses  by running the following command:

kubectl get storageclass

Results

You have prepared the required Google Cloud Platform (GCP) infrastructure for deploying DevOps Loop  on Google 

Kubernetes Engine (GKE).

What to do next

You can now proceed with installing DevOps Loop  on GKE.



Chapter 4. Administration

Installing DevOps Loop  on Google Kubernetes Engine (GKE)
You can install HCL DevOps Loop  on a newly created GKE cluster by using the Helm chart.

Before you begin

You must have completed the following tasks:

• Read and understood System Requirements for DevOps Loop 2025.12 (2.0.0)  on page 16.

• Gained access to the cluster and installed the following tools:

◦ Kubectl

◦ Google Cloud SDK and Google Cloud CLI

• Installed Helm on the system from which you access the Kubernetes cluster. For more information, refer to Installing 

Helm.

• Set up a Kubernetes (GKE) cluster under the platform - Google Kubernetes Engine (GKE) and Image type - Container-

Optimized OS with containerd (cos_containerd). For more information, refer to Create a cluster and deploy a workload 

in the Google Cloud console.

Note:  Ensured that you have enabled the Filestore CSI driver and Cloud Storage Fuse CSI driver while creating 

the cluster to use the GCP CSI driver storage class.

• Prepared the required infrastructure in Google Cloud Platform (GCP). See Preparing GCP infrastructure for installing 

DevOps Loop on GKE  on page 41.

• Ensured that you have the following details:

◦ DOMAIN (FQDN)  – the hostname you created in Cloud DNS for the Loop installation.

◦ STATIC_IP_ADDRESS  – the global static IP mapped to the DNS A record.

◦ NAMESPACE  – the target Kubernetes namespace (for example: devops-loop).

1. Run the following command to download the GKE-Infra-Setup.sh  script from the Helm chart to provision and 

configure the load balancer with a Google managed certificate.

(TMP_DIR=$(mktemp -d) && \
helm pull ibm-helm/ibm-devops-loop --untar --untardir "$TMP_DIR" --version 2.0.000 > /dev/null 2>&1 && \
sh "$TMP_DIR/ibm-devops-loop/scripts/GKE/GKE-Infra-Setup.sh" && \
rm -rf "$TMP_DIR")

This command downloads and copies, and runs the GKE-Infra-Setup.sh  script in your temporary directory.

After you run the script, wait for certificate provisioning to complete. This process can take 10–60 minutes, 

depending on your cluster and DNS configuration.

2. Perform the following steps to access the IBM Entitled Registry:

43

https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/
https://docs.cloud.google.com/kubernetes-engine/docs/quickstarts/create-cluster
https://docs.cloud.google.com/kubernetes-engine/docs/quickstarts/create-cluster


HCL DevOps Loop 2025.12 (2.0.0)

44

a. Log in to the My IBM Container Software Library  using the ID and password associated with your entitled 

software.

b. Navigate to the Entitlement keys section and select Copy key  to copy your IBM Entitled Registry entitlement 

key to you clipboard.

c. Create a secret in the target namespace named hcl-entitlement-key  to pull images from the HCL 

Harbor container registry:

kubectl create secret docker-registry hcl-entitlement-key \
    --namespace [namespace_name] \
    --docker-username=<Harbor User ID> \
    --docker-password=<CLI secret> \
    --docker-server=hclcr.io

3. Run the following command to add the repository:

helm repo add hclsoftware
https://us-artifactory1.nonprod.hclpnp.com/artifactory/hclsoftware-helm-dev --force-update

4. Run the following command to view the README.md  file:

helm show readme hclsoftware-helm/hclsoftware-devops-loop

5. Update the following parameters in the Helm installation script with the correct values:

◦ ▪ DOMAIN - the FQDN created in Cloud DNS

▪ TLS_CERT_SECRET_NAME – Leave it blank to use the GCP-managed certificate.

▪ RWO_STORAGE_CLASS=standard-rwo  OR premium-rwo  as required.

▪ RWX_STORAGE_CLASS=custom storage class name you have created previously for RWX under the 

filestore csi driver. (e.g.: custom-rwx)

6. Run the script in the Helm README for installing DevOps Loop on GKE.

If the installation fails due to a timeout, run the installation script again.

Results

You have installed DevOps Loop  on Google Kubernetes Engine (GKE).

What to do next

You can add users and manage user access by logging in to the Keycloak instance that is installed with DevOps Loop. See 

User access and administration using Keycloak  on page 55.

Installing DevOps Loop  on a RHEL system for a demo setup

Disclaimer:  In this demo setup, DevOps Loop  is deployed on a RHEL-based system with minimum hardware and 

software specifications. This demo setup is intended solely for evaluation purposes and might not accurately 

represent the performance, reliability, or feature set of the full production environment. The demo setup might not 

include enhanced security configurations typical of production systems. No warranty is implied regarding uptime, 

support, or continuity of access.

You can find information about the tasks that you can perform to install HCL DevOps Loop  on a Red Hat Enterprise Linux 

(RHEL) system for a demo setup.



Chapter 4. Administration

Before you begin

You must have completed the following tasks:

• Ensured that the RHEL system on which you are deploying DevOps Loop  meets the following minimum requirements:

◦ Operating system: RHEL 9.4 or later

◦ Disk space: 300 GB

◦ RAM: 64 GB

◦ CPU: 16 Core

• Downloaded the Installation scripts.

• Obtained the user credentials of the licensed Docker account.

Note:  If you do not provide the licensed docker account credentials, the system might take approximately 6 

hours to become operational.

• Set these environment variables in your shell before you run the RHEL9-K8S-Infra-Setup.sh  script:

◦ export USERNAME=<docker_username>

◦ export PASSWORD=<docker_password>

The  <docker_username>  and <docker_password>  are your Docker Hub credentials.

If the above values are not set, you are prompted with login steps during the script run.

1. Run the RHEL9-K8S-Infra-Setup.sh  script:

./RHEL9-K8S-Infra-Setup.sh

2. Run the following command to create a namespace:

kubectl create namespace devops-loop

3. Perform the following steps to access the HCL Harbor container registry:

a. Log in to the HCL Harbor container registry  using your HCL  ID and password by selecting the LOGIN VIA OIDC 

PROVIDER  authentication method.

b. Copy the CLI secret  by opening your User Profile  from the top right corner of the page.

This value serves as the password for the docker-registry  secret creation command.

c. Create an imagePullSecret  to authenticate and pull images from the HCL Entitled Registry.

Note:  Secrets are namespace-scoped and must be created in each namespace where you plan to 

install DevOps Loop.

Use the following command to create an imagePullSecret  named hcl-entitlement-key:

kubectl create secret docker-registry hcl-entitlement-key \
    --docker-username=<username> \
    --docker-password=<password> \
    --docker-server=hclcr.io
    --namespace devops-loop \

45

../attachments/HCL-scripts.zip
https://hclcr.io


HCL DevOps Loop 2025.12 (2.0.0)

46

For example:

kubectl create secret docker-registry hcl-entitlement-key \
    --docker-username=xxxx@hcl.com \
    --docker-password=AOve4CzW2Hs0yCnuQxxxxxxvX \
    --docker-server=hclcr.io
    --namespace devops-loop \

4. Update the following values in the HCL-devops-Install.sh  script:

◦ LICENSE_SERVER=

◦ LICENSE_ID=

◦ EMAIL_SERVER_HOST=

◦ EMAIL_SERVER_PORT=

◦ EMAIL_FROM_ADDRESS=

◦ EMAIL_SERVER_USERNAME=""

◦ EMAIL_SERVER_PASSWORD=""

5. Run the following command to start the installation script:

./HCL-devops-Install.sh

After the successful installation, the following URLs are displayed:

Application URL: https://<system_IP_address>.nip.io

Keycloak URL to add users: https://<system_IP_address>.nip.io/auth

Note:  To onboard users to DevOps Loop, see User access and administration using Keycloak  on page 55. 

After the user is onboarded, you can add the user to teamspaces and loops.

Note:  If you are installing DevOps Loop  on a computer that is newly set up, then the installation might fail 

sometimes. If the installation fails, to resolve the issue, you must uninstall the application by running the 

uninstall.sh  script and then reinstall it.

Note:  If the installation fails due to timeout, run the installation script again.

6. Optional:  Run the following command to check whether all the pods are running:

kubectl get pods -n devops-loop

7. Open a browser and enter the application URL to get started with DevOps Loop.

8. Run the following command to log out of Docker to remove any cached authentication tokens, after completing the 

DevOps Loop  installation:

docker logout

This command removes the login credentials for https://index.docker.io/v1/  and cleans up Docker credentials 

stored in the cache (for example, /root/.docker/config.json). Logging out is recommended for security, as Docker 

authentication tokens are otherwise retained on the system.



Chapter 4. Administration

Results

You have installed DevOps Loop  on a RHEL system for a demo setup.

Installation of DevOps Loop  in an air-gapped environment
An air-gapped environment is a network or system isolated from the public internet, typically for security or compliance 

reasons. In such environments, all external resources must be imported manually. DevOps Loop  supports air-gapped 

installations by providing scripts and configurations to transfer required resources into your private environment.

Some deployments operate without internet access, requiring all container images, plugins, and dependencies to be 

preloaded into a private registry.

Scripts and configurations for Air-gapped installation

DevOps Loop  provides the airgap.sh  script along with Helm configuration parameters to support air-gapped setups.

Parameter Description Example value

global.imageRegistry Private registry for product images registry.local:5000/devops-loop

global.externalImageRegistry Private registry for unqualified/public 

images. The airgap.sh  script places 

qualified and unqualified images in the 

same image repository, you can separate 

them if required.

registry.local:5000/public

airgap.sh Script to list or copy required images to 

private registry

./airgap.sh -|

Following are the functions of airgap.sh  script:

• List all the container images required by DevOps Loop  (using -l  option).

• Copy images from public registries to your private registry.

Preparing images and resources for an air-gapped installation
Before you begin the air-gapped installation, you must prepare the images and resources. You must collect and transfer all 

container images and required plugins to your private registry or offline storage.

Before you begin

You must have completed following tasks:

• Ensured that you have the administrative privileges on the target Kubernetes namespace and the airgap container 

registry.

• Downloaded the DevOps Loop  Helm chart and it is accessible.

• Downloaded the airgap.sh  script and ensured that it is available in the DevOps Loop  Helm chart.

47



HCL DevOps Loop 2025.12 (2.0.0)

48

• Allocated sufficient disk space to save product images and plugin files for transfer to the air-gapped environment.

Note:  Product images will consume approximately 50 GB  or more of disk space in your internal/air-gapped 

image registry.

About this task

To copy the DevOps Loop  product images from public repositories to your specified internal or air-gapped image registry, 

follow the steps below. The system where you run these steps must have access to both the internet and the internal or air-

gapped registry.

As part of the DevOps Loop  installation, additional components such as MongoDB  (used to store application and 

configuration data) and the MySQL JDBC driver  (required by the DevOps Deploy server) are also needed. In air-gapped 

environments, these components cannot be downloaded automatically and must be prepared manually. The steps below 

guide you through copying the DevOps Loop  images as well as preparing MongoDB and the JDBC driver for installation.

1. Locate the airgap.sh  script in the scripts/airgap folder of the downloaded DevOps Loop  Helm chart.

2. Run the following command to copy the DevOps Loop  images into the internal/airgap image registry:

sh ./ibm-devops-loop/scripts/airgap/airgap.sh -r
         ibm-devops-loop -d registry.local:5000/devops-loop

3. Perform the following steps to prepare MongoDB for an air-gapped installation:

Note:  The DevOps Loop  installation script deploys MongoDB in the same namespace as DevOps Loop. In an 

air-gapped environment, you must download the Helm chart locally and update the script, because it cannot 

fetch the chart from public repositories. The MongoDB server image is already available in your air-gapped 

registry.

a. Download and extract the MongoDB Helm chart version 14.13.0 from Bitnami Helm Charts  into the same 

directory as the expanded ibm-devops-loop  Helm chart.

b. Update the installation script to set MONGO_IMAGE_REPO=registry.local:5000/devops-loop  and replace bitnami/

mongodb  with mongodb  in the helm upgrade --install  command.

4. Perform the following steps to prepare the MySQL JDBC Driver for an air-gapped installation:

Note:  The DevOps Deploy server, installed as part of DevOps Loop, creates a MySQL database to store 

various artifacts. In an air-gapped environment, the installation cannot automatically download the required 

JDBC driver. You must make the drive available manually before starting the DevOps Loop  installation. You 

can also refer to the JDBC Driver section of the DevOps Deploy Prerequisites document. See the link provided 

in Related information.

a. Download the required MySQL JDBC driver to a drive that is accessible in an air-gapped environment.

b. Write a bash script, named script.sh  that copies the JDBC driver from a location accessible from your cluster 

to ${UCD_HOME}/ext_lib/.

https://charts.bitnami.com/bitnami


Chapter 4. Administration

c. Store the script script.sh  in a yaml file describing a Kubernetes ConfigMap.

The Kubernetes ConfigMap is defined for copying the JDBC driver to your Persistent Volume (PV) during the 

chart installation process.

Below is an example ConfigMap yaml file that copies a MySQL .jar file from a web server using wget:

kind: ConfigMap

apiVersion: v1

metadata:

  name: user-script

data:

  script.sh: |

    #!/bin/bash

    echo "Running script.sh..."

    if [ ! -f ${UCD_HOME}/ext_lib/mysql-jdbc.jar ] ; then

      echo "Copying file(s)..."

      wget -L -O mysql-jdbc.jar http://webserver-example/mysql-jdbc.jar

      mv mysql-jdbc.jar ${UCD_HOME}/ext_lib/

      echo "Done copying."

    else

      echo "File ${UCD_HOME}/ext_lib/mysql-jdbc.jar already exists."

    fi

d. Create the ConfigMap in your cluster by running a command, such as:

oc create configmap <map-name> <data-source>

e. Specify the ConfigMap name in Helm using:

ibm-ucd-prod.extLibVolume.configMapName

Results

You have collected all the required DevOps Loop  container images, plugins, and JDBC drivers, and transferred them to your 

airgap image or offline storage, making the environment ready for air-gapped installation.

Related information

DevOps Deploy Prerequisites

Installing DevOps Loop  in an air-gapped environment
After preparing the required images, plugins, and JDBC drivers in your air-gapped registry or offline storage, you can begin 

installing DevOps Loop  in an air-gapped environment by using Helm.

Before you begin

You must have completed the following tasks:

• Preloaded images and resources. See Preparing images and resources for an air-gapped installation  on page 47.

• Ensured that you have administrative privileges on the Kubernetes namespace where DevOps Loop  will be installed.

49

https://github.com/IBM/charts/blob/master/repo/ibm-helm/ibm-ucd-prod.md#prerequisites


HCL DevOps Loop 2025.12 (2.0.0)

50

• Installed and configured Helm on your system.

• Gained access to the airgap image containing the preloaded images.

1. Modify the ADDIITIONAL_HELM_OPTIONS  variable in the DevOps Loop  installation script, to set the following Helm values 

to point to your airgap registry:

--set global.imageRegistry=registry.local:5000/devops-loop
--set global.externalImageRegistry=registry.local:5000/devops-loop
--set platform.velocity.plugins.plan.image=ucv-ext-compass:1.2.2
--set platform.velocity.plugins.control.image=hclcr.io/accelerate/ucv-ext-control:1.1.1
--set platform.velocity.plugins.test.image=hclcr.io/accelerate/ucv-ext-onetest-server:1.0.32
--set platform.velocity.plugins.deploy.image=hclcr.io/accelerate/ucv-ext-launch:5.1.1
--set platform.velocity.plugins.build.image=hclcr.io/accelerate/ucv-ext-build:1.1.2
--set platform.velocity.plugins.yaml.image=hclcr.io/accelerate/ucv-ext-yaml-executor:0.0.13

2. Edit the DevOps Loop  installation script to use the locally downloaded and expanded DevOps Loop  Helm chart.

For OpenShift (OCP)  installations, no further changes to the installation script are required.

For Kubernetes (K8s)  installations, you must locate the helm upgrade --install  command at the end of the 

installation script and replace ibm-helm/ibm-devops-loop  with ibm-devops-loop.

3. Follow the DevOps Loop  installation instructions based on your environment.

Results

You have installed DevOps Loop  in the air-gapped environment.

What to do next

Before installing additional plug-ins, ensure the required images are available in your internal or air-gapped environment:

• If you want to install Measure plug-in images that are not included in the standard DevOps Loop  set, download them 

from their public repositories (such as docker.io  or hclrc.io) and upload them to your internal or air-gapped image 

registry.

• If you want to install Deploy plug-ins that are not included in the standard set, download them from their public 

repositories to local storage, then upload them to the DevOps Deploy server.

Related reference

Installation of DevOps Loop  on page 30

Managing DevOps Loop  features after installation
After you install HCL DevOps Loop, you can manage and customize certain features based on your requirements.

During the installation of DevOps Loop, if you did not use any Helm parameters, you can still use those parameters even after 

installation is complete.

You can use the helm upgrade  command to enable or disable server features after the installation of DevOps Loop  is 

complete.

http://docker.io
http://hclrc.io


Chapter 4. Administration

The sample code is to enable the Egress policy that restricts traffic to private IP addresses by retaining the values of other 

parameters that you used during the installation.

Similarly, you can use the other additional Helm parameters to enable or disable features based on your requirements. See 

Additional Helm parameters  on page 51.

Additional Helm parameters
You can find the information about Helm parameters that you can use during the installation of HCL DevOps Loop.

As a system administrator, you must complete the additional configuration for the capabilities by using Helm parameters. 

Each Helm parameter that is specific to the solution is prefixed by its Helm chart name as follows:

• Plan: hcl-devopsplan-prod

• Test: hcl-devops

• Deploy: hcl-launch-server-prod

• Measure: hcl-velocity

For example, to configure a property in Plan, use the following command:

bash
--set hcl-devopsplan-prod.property=value

You can run the following commands to view the required parameters:

• Plan: helm show readme hcl-helm/hcl-devopsplan-prod # DevOps Plan

• Deploy: helm show readme hcl-helm/hcl-launch-server-prod # DevOps Deploy

• Test: helm show readme hcl-helm/hcl-devops # DevOps Test

• Measure and Release: helm show readme hcl-helm/hcl-velocity # DevOps Velocity

License management and user administration
After you install HCL DevOps Loop, you must consider how the platform manages licenses, users, and authentication.

License management

During installation, you can set the licensing information only by using the License server details in the Helm chart. See 

DevOps Loop licensing information  on page 52.

The Users  tab on the User Administration  page displays the licensing details such as the total number of licenses in the 

active tier and the number of licenses in use. The tab also provides options to revoke and assign licenses.

User administration

As part of administration, you can add users to DevOps Loop  and assign roles in Keycloak. See User access and 

administration using Keycloak  on page 55 and Enabling the social sign-up and social login for DevOps Loop  on 

page 54.

51



HCL DevOps Loop 2025.12 (2.0.0)

52

You can use the default user management provided by the platform and decide what additional controls you might want to 

add. If you manage users and authentication through social login, you can review how to use that server to manage users of 

DevOps Loop.

The admin user can manage users within tenants. Tenant represents an organization within which multiple teamspaces 

can be created and each teamspace can contain multiple loops. Admin users can access the User Administration  page in 

DevOps Loop  by clicking User Administration  under Settings. The User Administration  page displays the name of the tenant 

and teamspaces within the tenant on the left side, while the right side displays the Details  and Users  tabs.

• Details: The tab displays the number of users, number of user licenses, number of teamspaces, and number of loops 

associated with the tenant. The tab also displays the tenant details such as the name of the tenant, the tenant ID, and 

creation date.

• Users: The tab displays a list of users and user details. You can click a user to view their name, email ID, loops that 

are associated with the user, teamspaces that are associated with the user, and assigned roles. The Users  tab 

facilitates license management. As an admin, you can revoke licenses for other users but not for yourself. Upon 

revoking a license, a confirmation message is displayed, and the Revoke  option becomes disabled for that user. The 

Licenses  section in the top bar displays the total number of licenses and the number of licenses that are in use in the 

active tiers. When you assign or revoke licenses for other users, the license information is also updated.

DevOps Loop  licensing information
You can find the details of licensing that HCL DevOps Loop  supports.

DevOps Loop  supports the following 3 tiers of license:

• Essentials  (Tier 1): Plan, Control and Code

• Standard  (Tier 2): Plan, Control, Code, Test, and Deploy

• Premium  (Tier 3): Plan, Control, Code, Test, Deploy, Measure, and Release

Each tier is defined by the number of capabilities that are included in the DevOps Loop  platform.

Licenses are consumed when the admin assigns them, and only released when the admin explicitly revokes them or DevOps 

Loop is uninstalled. License tier re-assignments may take up to 15 minutes to reflect.

By default, non-admin users must be assigned a tier before logging in, while admin users automatically receive the highest 

available tier. This per-user tier assignment allows different access levels to be enforced for different users, providing 

flexibility in license management.

Configuration

When you purchase one of these tiers, you must map the licenses to My HCLSoftware  (MHS). MHS  is a cloud-based web 

application that helps to manage software entitlements and licenses. When you install DevOps Loop, you must specify the 

License server URL and ID, which are configured only through the Helm chart. For more information about managing licenses 

for your product, refer to the following resources:

https://my.hcltechsw.com/
https://my.hcltechsw.com/
https://my.hcltechsw.com/
https://my.hcltechsw.com/


Chapter 4. Administration

• My HCLSoftware

• Managing HCL Local License Server  or Managing HCL Cloud License Server

License allocation

You must run the following command to retrieve information on the licensing allocation:

curl --cacert /path/to/your/certificate.crt https://FQDNhostname:LLSport/v1/licensepools/poolID

Sample output:

{
  "id": "MyPoolID",
  "features": {
    "DevOpsAutomationEssentials": {
      "total": 100,
      "leased": 0,
      "available": 100,
      "name": "DevOps Automation Essentials User"
      }
    }
}

When you run the command to retrieve the current license allocations, depending on the tier that you have opted for, the 

following values are displayed:

• DevOpsAutomationEssentials

• DevOpsAutomationStandard

• DevOpsAutomationPremium

The license feature names that are used by the License server are different from the product name.

Usage

After the Admin user creates a user, when the user logs in to DevOps Loop, then one license of the highest available tier is 

consumed. The user can access the products that are included in the licensing tier that is purchased.

DevOps Loop  provides a user interface to view and manage licensing. You can revoke or assign a user's license through 

the User Administration  page. See License management and user administration  on page 51 and Revoking a license  on 

page 55.

Troubleshooting

You can view the licensing logs for troubleshooting by running the following command:

kubectl logs <licensing_pod_name> -n <namespace>

Where, the namespace  is defined by the Helm installation. You can find the licensing_pod_name  by running the following 

command:

kubectl get pods -n <namespace>

The pod name that contains 'licensing' in the name is listed.

53

https://help.hcl-software.com/hcl-licensing/5.1/install/introduction.html
https://help.hcl-software.com/hcl-licensing/5.1/install/local_license_server.html
https://help.hcl-software.com/hcl-licensing/5.1/install/setting_up_cloud_license_server.html


HCL DevOps Loop 2025.12 (2.0.0)

54

Enabling the social sign-up and social login for DevOps Loop
You can enable social authentication for users to sign up and log in to HCL DevOps Loop  by using a social network account. 

The Keycloak admin can configure this social sign-up in the Keycloak UI.

Before you begin

You must have completed the following tasks:

• Installed DevOps Loop.

• Assigned the role of a Keycloak Administrator.

• Copied the URL of the Keycloak UI, username, and password on completion of the installation of the platform.

• Obtained the credentials to access the dashboard of a social identity provider to configure the delegation of 

authentication to a social media account.

• Read and understood Integrating identity providers.

About this task

The social sign-up link on the Login  page of DevOps Loop  is not visible when you install DevOps Loop  by using the default 

values. The sign-up link is hidden to provide enhanced security to the platform. You can enable the sign-up link on the Login 

page when you want to provide self-registration of users in DevOps Loop.

The following procedure describes steps to be performed to enable the Sign up  link by using Keycloak UI.

1. Log in to the Keycloak Admin Console.

2. Click Identity providers  from the left navigation pane.

3. Select an identity provider under the Social  section.

The configuration page for the selected identity provider is displayed.

4. Enter the configuration details.

The fields in the configuration page depend on the social identity provider that you have selected.

5. Click Add  to apply the changes.

Results

You have enabled the social sign-up link on the Login  page of DevOps Loop.

What to do next

You must add the self-registered users to the Users  group in the Keycloak Admin Console. See User access and 

administration using Keycloak  on page 55.

Related information

Keycloak

https://www.keycloak.org/docs/latest/server_admin/#_identity_broker
https://www.keycloak.org/docs/latest/server_admin/index.html#proc-enabling-user-registration_server_administration_guide


Chapter 4. Administration

Revoking a license
Each user is assigned a license when they log in to the DevOps Loop  for the first time. As an admin, you can revoke the 

assigned license if the user is no longer part of the platform.

1. Log in to DevOps Loop.

2. Click Settings  > User Administration.

The User Administration  page is displayed.

3. Click the Users  tab.

All the users are displayed. You can search for a user by their name or email ID if the list is long.

4. Click the Revoke  slider next to the username.

Alternatively, you can select a user, and then click the REVOKE LICENSE  button.

A confirmation dialog is displayed.

5. Click Yes, Revoke.

A confirmation message is displayed, and the slider changes to Assign  using which you can assign the license again.

Also, the Licenses  section displays the updated number after revoking a license.

Results

You have revoked the assigned license for a user.

 User access and administration using Keycloak
HCL DevOps Loop  uses Keycloak (https://www.keycloak.org/) to manage and authenticate users. You can manage user 

access by logging in to the Keycloak instance that is installed with DevOps Loop.

Keycloak uses the concept of a realm to manage and authenticate users. When you install DevOps Loop, a realm called 

platform  is created for you in Keycloak. All server users belong to this realm and when they log in to DevOps Loop, they log 

into that realm.

As an administrator, it is important to consider the following points about the platform administration:

• To begin with, there is no administrator for DevOps Loop.

Such an administrator is required for accessing additional functions, which include claiming ownership of projects 

and unarchiving them. However, you can assign administrative privileges to any user. You must assign the privilege 

by adding the admin role to the user in Keycloak.

• You must add a user that you want to be the administrator in Keycloak by logging in to the Keycloak Admin Console 

at https://<fully-qualified-dns-name>/auth/.

55

https://www.keycloak.org/


HCL DevOps Loop 2025.12 (2.0.0)

56

Note:  Do not use that admin user to perform non-administration tasks. Instead, add another user.

The default username for the Keycloak administrator is keycloak. The password is randomly generated when the 

software is installed. You can see the password by using the following kubectl  command:

kubectl get secret -n <namespace> <helm name>-keycloak -o jsonpath="{.data.password}" | base64 --decode; 
 echo

• After you add the user that you want to be the administrator for DevOps Loop, you must make that user the 

administrator.

In the Keycloak Admin Console, on the Users  page, you can search and select the user that you want to make an 

administrator. Then, in the Groups  tab, you can add the user to the Admins  group.

• All users must have the Users  group assigned to them to access DevOps Loop.

In the Keycloak Admin Console, on the Users  page, you can search and select a user, and then in the Groups  tab, you 

can add the user to the Users  group.

For more information about assigning user roles, see Groups  in the Keycloak documentation.

Now that you are the platform administrator, it is important to consider the following points about the default user 

management and authentication:

• Minimum password length is 8 characters

• Email verification of new users is turned off

• The Forgot Password feature is turned on by default but no instructions are sent to the user to reset their password

• Forgotten user passwords are changed by you if you do not enable Keycloak to send instructions to reset a password

Note:  If a user is added through the user management of HCL DevOps Plan, then that user must have the Users  or 

Admins  group assigned in the Keycloak Admin Console to get access to DevOps Loop.

You can review the following sections about changing the default authentication controls.

Email settings

The default status of the Forgot Password switch is ON in the devops-automation  realm. However, as an administrator, you 

must enable Keycloak to send an email to the user with instructions to reset their password. If you want to verify an email, 

you must also enable Keycloak to send an email to the user to verify their email address.

You must provide SMTP server settings for Keycloak to send an email. After you log in to the Keycloak Admin Console, see 

Email Settings  in the Keycloak documentation.

Then, to set up the email verification, see Forgot Password  in the Keycloak documentation.

https://www.keycloak.org/docs/latest/server_admin/index.html#groups
https://www.keycloak.org/docs/latest/server_admin/index.html#_email
https://www.keycloak.org/docs/latest/server_admin/index.html#login-page-settings


Chapter 4. Administration

Password policy

The devops-automation  realm has a password policy where the minimum length of a password is 8. As an administrator, you 

can update password policies in Keycloak.

After you log in to the Keycloak Admin Console, see Password Policies  in the Keycloak documentation.

User password

When you create a user, you must create credentials for the user by clicking the Set password  button in the Credentials  tab. 

Then, you must share the username and password with the user. While setting the password, if the Temporary  slider button 

is set to On, then the user must set a new password before logging in to the platform.

If you did not enable Keycloak to send instructions to a user about how to reset a password, you must use the Keycloak 

Admin Console to change their password for them.

After you log in to the Keycloak Admin Console, see User Credentials  in the Keycloak documentation.

User deletion

When a user is inactive or no longer needs to access the platform, you can delete that user.

After you log in to the Keycloak Admin Console, see Deleting Users  in the Keycloak documentation.

About user roles and access permissions
Users have different roles and access levels on the platform and in integrated capabilities, depending on their tasks and the 

settings in each application.

Two types of roles are supported in HCL DevOps Loop: admin and user. Admin users can create teamspaces and loops.

Role Permissions

Admin Admins have full permission for the following features in the 

platform:

• User administration

• Integration

• Teamspace management

• Loop management

• Loop Genie

• Dashboards

User Users have view permission for the following features in the 

platform:

57

https://www.keycloak.org/docs/latest/server_admin/index.html#_password-policies
https://www.keycloak.org/docs/latest/server_admin/index.html#user-credentials
https://www.keycloak.org/docs/latest/server_admin/index.html#_delete-user


HCL DevOps Loop 2025.12 (2.0.0)

58

Role Permissions

• View loops that the user is a part of

• Switch to the application

• Loop Genie

• Dashboards

Notes:

• Loop creator is granted the highest permissions for the resources in the integrated applications that are 

created by the loop. The other invited users are granted basic access. The loop creator can elevate the other 

users' access as required.

• If you are an admin user in the platform but a loop member, in Deploy, you will be given the same privileges 

as the loop creator. For information on roles and permissions in Deploy, see DevOps Loop: Deploy security 

management.

Backup and restoration of DevOps Loop
You must back up HCL DevOps Loop  data before you uninstall the current version of DevOps Loop. You must back up the 

data to avoid data loss or inaccessibility.

A backup creates a copy of your data and stores it in secondary storage. You can use this copy to recover if the original data 

is lost or becomes inaccessible.

A restore copies backed-up data from secondary storage back to its original location, making it available again.

You must back up and restore the data when you perform the following tasks:

• Move the existing environment to a new system.

• Change the name of the release or namespace that you used during the installation of DevOps Loop.

• Minimize the downtime of DevOps Loop  during disaster recovery.

Tools supporting backup and restoration

DevOps Loop  uses the following open source tools to perform backup and restore operations:

• Velero: It is a Kubernetes native backup and restore tool that captures and restores Kubernetes resources, persistent 

volumes, and application state. Velero also supports disaster recovery and migration scenarios between clusters.

• MinIO: It is an S3 compatible object storage system used as the backup storage target for Velero. MiniO stores the 

backups created by Velero and enables you to retrieve them for restore operations.



Chapter 4. Administration

Velero is installed in your Kubernetes cluster and configured to use MinIO or any other S3-compatible storage backend.

Note:  MinIO is provided here as an example S3-compatible storage solution for reference purposes only.

To install Velero and MiniO in your cluster, you must run the following script:

./ibm-devops-loop/scripts/backup-restore/install-minio.sh

./ibm-devops-loop/scripts/backup-restore/install-velero.sh

After installing MinIO, run the port-forward commands to make it accessible on your local machine:

```bash
kubectl port-forward --address 0.0.0.0 pod/minio -n loops-minio 9000:9000 9090:9090

Then, use the MinIO Web UI (http://localhost:9090) to create a bucket (for example, "loops-backup") to store Velero backups.

Backing up DevOps Loop  data
You can back up DevOps Loop  by using Velero and Minio to support disaster recovery and upgrade scenarios.

Before you begin

You must have completed the following tasks:

• Ensured that all DevOps Loop  services are running and in a healthy state.

• Gained administrative privileges.

• Installed Velero and configured with an S3-compatible storage backend (MinIO or AWS S3). See Tools supporting 

backup and restoration  on page 58.

• Locally saved the Helm values for your current DevOps Loop  deployment.

About this task

DevOps Loop  utilizes both block and file storage, allowing the back up process to support CSI snapshots and fs-volume 

backups.

“

Important:If DevOps Loop  pods that use file storage for fs-volume backups are not labeled, Velero will not 

include their data in the backup, which could result in incomplete or inconsistent backup data.

”

1. Run the following command to label DevOps Loop  pods that use file storage for fs-volume backups:

./ibm-devops-loop/scripts/backup-restore/annotate-pods.sh

59

http://localhost:9090


HCL DevOps Loop 2025.12 (2.0.0)

60

Note:  If your DevOps Loop  deployment only uses block storage volumes (CSI snapshots), you can skip this 

step.

2. Export the Helm configuration of your DevOps Loop  deployment to a local file by running the following command:

helm get values devops-loop -n devops-loop > devops-loop-values-backup.yaml

3. Run a Velero backup of the DevOps Loop  namespace, including PVCs, PVs, and Secrets, using the following 

command:

velero backup create devops-loop-backup \
  --include-namespaces devops-loop \
  --include-resources persistentvolumeclaims,persistentvolumes,secrets \
  -n velero

4. Run the following command to verify the backup status to ensure it completed successfully:

velero backup describe devops-loop-backup --details

5. Optional  Backup any external databases with their native backup tools to ensure data consistency.

6. Optional: Check the status and logs of your restore jobs to troubleshoot any issues:

⚠ Check backup status
velero get backup
 

⚠ Describe specific backup
velero describe backup <backup-name>
 

⚠ View backup logs
velero backup logs <backup-name>

Results

You have created a backup of the DevOps Loop  namespace and Helm values for disaster recovery or upgrade scenarios.

Restoring DevOps Loop  data
You can restore DevOps Loop  from a backup created with Velero and Helm values after a disaster recovery event or a failed 

upgrade.

Before you begin

You must have completed the following tasks:

• Ensured that the Kubernetes environment hosting DevOps Loop  is running and accessible.

• Gained administrative privileges

• Installed Velero and configured with an S3-compatible storage backend (MinIO or AWS S3). See Tools supporting 

backup and restoration  on page 58.

• Locally saved the Helm values for your current DevOps Loop  deployment.

About this task



Chapter 4. Administration

DevOps Loop  utilizes both block and file storage, allowing the restore process to support CSI snapshots and fs-volume 

backups.

“

Important:If DevOps Loop  pods that use file storage were not labeled during backup, their data will not be 

restored, which could result in incomplete or inconsistent recovery.

”

1. Run the following command to restore the DevOps Loop  namespace from the Velero backup:

velero restore create --from-backup devops-loop-backup

2. Verify that the restore is completed successfully by running the following command:

velero restore describe devops-loop-backup --details

3. Reinstall or upgrade DevOps Loop  using the saved Helm values if necessary:

helm upgrade --install devops-loop devops-loop-chart -n devops-loop -f devops-loop-values-backup.yaml

Note:  If persistent volumes are larger than the default Helm chart sizes, override them using --set  options 

during reinstall.

4. Optional: Restore any external databases used by DevOps Loop  using their native restore tools to ensure data 

consistency.

5. Restart DevOps Loop  to ensure all services reflect the restored state:

kubectl rollout restart deployment devops-loop -n devops-loop

6. Optional: Check the status and logs of your restore jobs to troubleshoot any issues:

⚠ Check all restores
velero get restore
 

⚠ Describe a specific restore
velero describe restore <RESTORE_NAME>
 

⚠ View restore logs
velero restore logs <RESTORE_NAME>

Results

You have restored the DevOps Loop  namespace, including all CSI snapshots and fs-volume backups, and any external 

databases (if applicable).

Private CA and self-signed certificate support
A private Certificate Authority (CA) is an organization-specific service that issues and manages digital certificates for use 

within an enterprise’s private network. These certificates secure communication between internal applications and services.

61



HCL DevOps Loop 2025.12 (2.0.0)

62

By default, self signed or privately signed certificates are not automatically trusted by clients because they are not included 

in the public trust stores used by operating systems and browsers.

DevOps Loop  supports configuring and trusting such private CA or self-signed certificates so that secure connections to 

internal systems can be established.

During installation or upgrade, DevOps Loop  reads CA certificates from a Kubernetes secret specified by the Helm parameter 

global.privateCaBundleSecretName. These certificates are then added to internal trust store of DevOps Loop  so that 

integrations and plugins can establish encrypted, trusted connections to systems that use private CA or self-signed 

certificates.

You can also reference the same secret using global.ibmCertSecretName  when using self-signed certificates to simplify 

configuration.

Related information

Configuring trusted certificates in DevOps Loop  on page 62

Configuring trusted certificates in DevOps Loop
You can configure DevOps Loop  to use private CA and self-signed certificates by creating or updating a Kubernetes secret 

with a PEM certificate bundle.

Before you begin

You must have completed the following tasks:

• Ensured that you have the administrator privileges to the Kubernetes namespace where DevOps Loop  will be 

installed.

• Ensured that the private CA is available in a PEM format (.pem).

Note:  In the scenarios below, mycacrt.pem  is used as a sample PEM file name for a private CA or combined certificate 

bundle. You must replace mycacrt.pem  with the actual name and path of your PEM file.

Perform any of the following actions based on the scenario:

Scenario Action Notes

No certificate provided 

(auto-generate self-signed)

Perform the following steps:

a. Set SELF_SIGNED=true  in the DevOps Loop  installation 

script.

The script generates key.pem  and cert.pem  valid for 

365 days with SAN for $DOMAIN.

No manual secret 

creation is required. The 

certificate is generated 

automatically.



Chapter 4. Administration

Scenario Action Notes

The script creates a Kubernetes secret named in 

devops-loop-tls-secret  containing ca.crt=cert.pem, 

tls.crt=cert.pem, and tls.key=key.pem.

The script also sets 

global.hclCertSecretName=devops-loop-tls-secret, 

so that it is used to terminate TLS for the DevOps 

Loop  instance.

Using a private CA certificate 

bundle

Perform the following steps:

a. Combine multiple CA/intermediate certificates if 

needed:

cat rootCA1.pem rootCA2.pem > mycacrt.pem

b. Create the secret:

kubectl create secret generic privateca-secret 
 --from-file=ca.crt=/path/to/mycacrt.pem -n 
 devops-loop

c. Edit the ADDITIONAL_HELM_OPTIONS  variable in the 

DevOps Loop  installation script to add:

--set 
 global.privateCaBundleSecretName=privateca-se
cret –set 
 hcl-devops-prod.ingress.cert.selfSigned=true

The helm value

hcl-devops-prod.ingress.cert.selfSigned=true

is needed to work-around an issue with the latest 

shipping version of DevOps Test when using TLS 

certificates signed by a private CA.

Used when internal 

services are signed by a 

private CA. The ca.crt 

key is mandatory.

Updating an existing CA or 

self-signed certificate

Perform the following steps:

a. To prevent the need to manually restart pods, create 

a new secret with the updated certificate in the 

secret:

kubectl create secret generic 
 privateca2-secret \
--from-file=ca.crt=/path/to/mycacrt.pem -n 
 devops-loop
       

63



HCL DevOps Loop 2025.12 (2.0.0)

64

Scenario Action Notes

b. Edit the ADDITIONAL_HELM_OPTIONS  variable in the 

DevOps Loop  installation script to add:

--set 
 global.privateCaBundleSecretName=privateca2-s
ecret –set 
 hcl-devops-prod.ingress.cert.selfSigned=true

The helm value

hcl-devops-prod.ingress.cert.selfSigned=true

is needed to work around an issue with the latest 

shipping version of DevOps Test when using TLS 

certificates signed by a private CA.

Results

You have configured DevOps Loop  to use the specified trusted certificates.

What to do next

You must run the DevOps Loop  installation script. See Installation of DevOps Loop  on page 30.

Upgrading DevOps Loop
After you complete certain backup and pre-upgrade steps, you can upgrade DevOps Loop  to a newer version using Helm.

Before you begin

You must have completed the following tasks:

• Performed a backup of DevOps Loop. For detailed steps, see Backup and restoration of DevOps Loop  on page 58.

• Ensured that you have access to the Kubernetes cluster and Helm CLI.

• Verified that the Helm chart repository is reachable from the environment.

Perform the following steps to upgrade DevOps Loop:

1. Run the following commands to set environment variables for the upgrade:

HELM_NAME=devops-loop
NAMESPACE=devops-loop
VERSION=2.0.000

2. Run the following command to initialize the additional Helm options:

export ADDITIONAL_HELM_OPTIONS="--set option1=value1 --set option2=value2"

3. Run the following command to retrieve the existing Helm values:

helm get values ${HELM_NAME} --namespace ${NAMESPACE} > user_input_values.yaml



Chapter 4. Administration

4. Retrieve the existing Helm values again to verify the configuration by running the following command:

ADDITIONAL_HELM_OPTIONS=${ADDITIONAL_HELM_OPTIONS:-}
helm get values ${HELM_NAME} --namespace ${NAMESPACE}

5. Run the following command to upgrade DevOps Loop:

ADDITIONAL_HELM_OPTIONS=${ADDITIONAL_HELM_OPTIONS:-}
helm get values ${HELM_NAME} --namespace ${NAMESPACE} > user_input_values.yaml
helm upgrade "${HELM_NAME}" oci://hclcr.io/devops-automation-helm/hcl-devops-loop --namespace 
 ${NAMESPACE} --version=${VERSION} -f user_input_values.yaml ${ADDITIONAL_HELM_OPTIONS}

6. Verify that all DevOps Loop  pods and components are running the following command:

kubectl get pods -n devops-loop

Results

You have upgraded DevOps Loop.

Integrations in DevOps Loop
DevOps Loop  provides a set of integrations to extend the platform’s capabilities and connect your loops to external systems 

and intelligent tools. These integrations enable you to automate tasks, enhance productivity, and interact with loop resources 

from outside the DevOps Loop  interface.

AI provider integration

DevOps Loop  supports AI-assisted features through external AI providers such as OpenAI, Claude Desktop, Gemini, 

IBM watsonx, and Ollama. When configured, these integrations enable Loop Genie to generate summaries, insights, and 

contextual information across work items, build results, deployments, and other supported capabilities.

MCP server integration

The MCP server (Model Context Protocol Server) allows external MCP-compatible tools such as VS Code (Copilot)  and 

Claude Desktop  to connect directly to DevOps Loop. Through this integration, you can query, retrieve, and modify loop 

resources from supported external tools. For more information, see DevOps Loop MCP server  on page 74.

AI provider integration for Loop Genie - Tech Preview

Disclaimer:

This release contains access to the AI provider configurations for Loop Genie feature in HCL DevOps Loop  as a 

Tech Preview. The Tech Preview is intended for you to view Loop Genie's capabilities by integrating with major LLM 

providers such as OpenAI, Claude Desktop, Gemini, IBM watsonx, and Ollama and provide your feedback to the 

65



HCL DevOps Loop 2025.12 (2.0.0)

66

product team. You are permitted to use the information only for evaluation purposes and not for use in a production 

environment. HCL  provides the information without obligation of support and "as is" without warranty of any kind.

You can configure AI providers such as OpenAI, Claude Desktop, Gemini, IBM watsonx, and Ollama  with DevOps Loop. 

Configuring any one of these providers activates Loop Genie for your environment. Only one provider can be active at a time.

Loop Genie relies on external AI providers to power natural language understanding, multi-agent orchestration, and 

conversational task execution. By configuring an AI provider, you enable Loop Genie to process prompts, retrieve and 

summarize data, and perform supported actions across your DevOps Loop environment.

Loop Genie becomes available once at least one AI provider is configured and active. Switching providers immediately 

changes which LLM Loop Genie uses for processing prompts. All provider configurations remain saved even when disabled.

With at least one AI provider configured, Loop Genie can:

• Interpret natural language prompts

• Execute multi-step, multi-capability queries

• Retrieve data such as issues, repositories, branches, and commit history

• Perform supported automation tasks (For example: create work items, create branches, list repositories, edit files, 

manage pull requests)

• Produce structured, readable output

• Provide context-aware responses within a conversational thread.

You can manage integrations that are configured in HCL DevOps Loop  by editing, deleting, enabling, or disabling them as 

required.

You can use the following options on the Integrations  page:

Actions Description

Search for an integration You can search for an integration that is added by entering the name in the 

Search plugin  field when the list of integrations is lengthy.

Enable or disable a provider You can enable or disable an AI provider by clicking the toggle button in the 

Provider  column.

At any point in time, only one provider can be enabled. Other providers in the list 

are disabled automatically.

Edit an integration
You can modify the integration details by clicking  in the Actions  column.

View an integration
You can view the integration details by clicking  in the Actions  column.



Chapter 4. Administration

Actions Description

Delete an integration
You can delete an integration when it is no longer required by clicking  in the 

Actions  column.

Prerequisites for setting up AI providers for Loop Genie
When you want to configure an AI provider such as OpenAI, IBM watsonx, Gemini, Claude or Ollama with HCL DevOps Loop, 

ensure that the prerequisites are met.

Requirements for OpenAI integration

Ensure the following steps are completed before integrating OpenAI with DevOps Loop:

1. Create an OpenAI account: Sign up on OpenAI’s platform and obtain API access.

2. Generate an API key: Navigate to the OpenAI dashboard and create a secret API key for authentication.

3. Install OpenAI library: Use Python or another programming language to install the OpenAI package.

Requirements for Claude Desktop integration

Ensure the following steps are completed before integrating Claude Desktop with DevOps Loop:

1. Create an Claude account: Sign up on Claude’s platform and obtain API access.

2. Generate an API key: Navigate to the Claude dashboard and create a secret API key for authentication.

3. Install Claude library: Use Python or another programming language to install the Claude Desktop AI package.

Requirements for Gemini integration

Ensure the following steps are completed before integrating Gemini with DevOps Loop:

1. Create an Gemini account: Sign up on Gemini’s platform and obtain API access.

2. Generate an API key: Navigate to the Gemini dashboard and create a secret API key for authentication.

3. Install Gemini library: Use Python or another programming language to install the Gemini package.

Requirements for IBM watsonx integration

Ensure that you have the following details:

1. API Key

2. Project ID

3. Endpoint URL

Requirements for Ollama integration

Ensure the following steps are completed before integrating Ollama with DevOps Loop:

67



HCL DevOps Loop 2025.12 (2.0.0)

68

1. Install Ollama: Download the installer and install it.

You must have read and understood the system requirements for each model of Ollama. for more information, refer 

to https://ollama.com.

2. Download a model: Download the required large language model (LLM) such as Llama 2 or Mistral.

3. Set up Python environment: Create and activate a virtual environment and install dependencies.

Note:

If you are using the Ollama instance that is bundled with DevOps Loop, you must follow these steps:

a. Enable the instance in the Helm chart by setting the value to true  in the values.yaml  file:

llama:
    enabled: true
        

b. Specify the required large language model (LLM) name in the Helm chart by providing the values in 

the values.yaml  file:

llama:
    ollama:
        models:
        pull:
            - <model name>
            - <model name>
        run:
            - <model name>
            - <model name>

Where, the pull command is used to download a model, and the run command is used to run the 

model.

Configuring OpenAI integration
You can configure the OpenAI integration in HCL DevOps Loop  to connect to the provider and use Loop Genie services.

Before you begin

You must have completed the following tasks:

• Ensured that you have administrative privileges in DevOps Loop.

• Completed the steps to prepare your OpenAI account for integration with DevOps Loop. See Requirements for OpenAI 

integration  on page 67.

1. Click Settings  > Integrations.

The Integrations  page is displayed.

2. Click .

The New Integration  pane is displayed with the Overview  tab.

3. Enter a name to identify the integration in Name.

https://ollama.com/


Chapter 4. Administration

4. Select Open AI  from the Provider  list.

5. Select one of the following options in the Credential Type  list:

◦ API Key: Go to step 6  on page 69.

◦ Password: Go to step 7  on page 69.

6. Enter the API key of the AI provider account to authenticate the connection in API Key.

7. Enter the details in the following fields:

◦ Username

◦ Password

◦ Confirm Password

8. Click Next.

The Configure  tab is displayed.

9. Perform the following steps in the Configure tab to set the parameters:

a. Enter the API Endpoint  URL used by your OpenAI account.

b. Select Chat  in Mode  to set the mode of communication.

c. Select an LLM to be used from the Model  list.

d. Enter the Organization ID  configured in your OpenAI account for your organization.

e. Enter the Project ID  configured in your OpenAI account for your organization.

f. Enter one or more Stop Sequences  to define where the model should stop generating text. For example: 

"stop"  or "end".

g. Use the Temperature  slider to control the creativity of the response:

▪ Lower values produce more precise, consistent answers.

▪ Higher values produce more creative or varied output.

h. Set the Max Length  slider to define the maximum number of tokens the model can generate.

i. Use the Top P  slider to adjust the diversity of the output:

▪ Lower values focus on the most likely words.

▪ Higher values allow more varied responses.

j. Set the Frequency Penalty  slider to reduce repetition of words or phrases.

▪ Higher values result in less repetitive output.

k. Set the Presence Penalty  slider to encourage the model to introduce new topics rather than repeating 

previous ones.

l. Set the Best Of  slider to choose how many internal responses the model generates before returning the best 

one.

10. Click Save  to apply the configuration.

Results

You have configured the OpenAI integration with DevOps Loop.

69



HCL DevOps Loop 2025.12 (2.0.0)

70

Configuring Claude Desktop integration
You can configure the Claude Desktop integration in HCL DevOps Loop  to enable Loop Genie services by connecting to the 

Claude Desktop provider.

Before you begin

You must have completed the following tasks:

• Ensured that you have administrative privileges in DevOps Loop.

• Completed the steps to prepare your Claude Desktop account for integration with DevOps Loop. See Prerequisites for 

setting up AI providers for Loop Genie  on page 67.

1. Click Settings  > Integrations.

The Integrations  page is displayed.

2. Click .

The New Integration  pane is displayed with the Overview  tab.

3. Enter a name to identify the integration in Name.

4. Select Claude  from the Provider  list.

5. Select one of the following options in the Credential Type  list:

◦ API Key: Go to step 6  on page 70.

◦ Password: Go to step 7  on page 70.

6. Enter the API key of your Claude account to authenticate the connection in API Key  and go to step 8  on page 70.

7. Enter the details in the following fields:

◦ Username

◦ Password

◦ Confirm Password

8. Click Next.

The Configure  tab is displayed.

9. Perform the following steps in the Configure  tab to set the parameters:

a. Enter the API Endpoint  URL used by your Claude account.

▪ URL = https://api.anthropic.com

b. Select Chat  in Mode  to set the mode of communication.

c. Select an LLM to be used from the Model  list.

d. Enter the Organization ID  configured in your Claude account for your organization.

e. Enter the Project ID  configured in your Claude account for your organization.

f. Enter one or more Stop Sequences  to define where the model should stop generating text. For example: 

"stop"  or "end".

g. Use the Temperature  slider to control the creativity of the response:

▪ Lower values produce more precise, consistent answers.

▪ Higher values produce more creative or varied output.

https://api.anthropic.com


Chapter 4. Administration

h. Set the Max Length  slider to define the maximum number of tokens the model can generate.

i. Use the Top P  slider to control the diversity of the generated output:

▪ Lower values focus on the most likely words.

▪ Higher values allow more varied responses.

j. Set the Frequency Penalty  slider to reduce repetition of words or phrases.

▪ Higher values result in less repetitive output.

k. Set the Presence Penalty  slider to encourage the model to introduce new topics rather than repeating 

previous ones.

l. Set the Best Of  slider to choose how many internal responses the model generates before returning the best 

one.

10. Click Save  to apply the configuration.

Results

You have configured the Claude Desktop integration with DevOps Loop.

Configuring Gemini integration
You can configure Gemini integration in HCL DevOps Loop  to connect to the provider and use Loop Genie services.

Before you begin

You must have completed the following tasks:

• Ensured that you have administrative privileges in DevOps Loop.

• Completed the steps to prepare your Gemini account for integration with DevOps Loop. See Requirements for Gemini 

integration  on page 67.

1. Click Settings  > Integrations.

The Integrations  page is displayed.

2. Click .

The New Integration  pane is displayed with the Overview  tab.

3. Enter a name to identify the integration in Name.

4. Select Gemini  from the Provider  list.

5. Select one of the following options in the Credential Type  list:

◦ API Key: Go to step 6  on page 71.

◦ Password: Go to step 7  on page 71.

6. Enter the API key of your Gemini account to authenticate the connection in API Key  and go to step 8  on page 72.

◦ Name = Google_API_Key

◦ Value = AIzaSyDySjxBpUlHqUhdIvh6VnXbxOYBJ5wout4

7. Enter the details in the following fields:

71



HCL DevOps Loop 2025.12 (2.0.0)

72

◦ Username

◦ Password

◦ Confirm Password

8. Click Next.

The Configure  tab is displayed.

9. Perform the following steps in the Configure  tab to set the parameters:

a. Enter the API Endpoint  URL used by your Gemini account.

▪ URL = https://generativelanguage.googleapis.com

b. Select Chat  in Mode  to set the mode of communication.

c. Select an LLM to be used from the Model  list.

d. Enter the Organization ID  configured in your Gemini account for your organization.

e. Enter the Project ID  configured in your Gemini account for your organization.

f. Enter one or more Stop Sequences  to define where the model should stop generating text. For example: 

"stop"  or "end".

g. Use the Temperature  slider to control the creativity of the response:

▪ Lower values produce more precise, consistent answers.

▪ Higher values produce more creative or varied output.

h. Set the Max Length  slider to define the maximum number of tokens the model can generate.

i. Use the Top P  slider to adjust the diversity of the output:

▪ Lower values focus on the most likely words.

▪ Higher values allow more varied responses.

j. Set the Frequency Penalty  slider to reduce repetition of words or phrases.

▪ Higher values result in less repetitive output.

k. Set the Presence Penalty  slider to encourage the model to introduce new topics rather than repeating 

previous ones.

l. Set the Best Of  slider to choose how many internal responses the model generates before returning the best 

one.

10. Click Save  to apply the configuration.

Results

You have configured the Gemini integration with DevOps Loop.

Configuring IBM watsonx integration
You can configure the IBM watsonx integration in HCL DevOps Loop  to connect to the provider and use Loop Genie services.

Before you begin

You must have completed the following tasks:

https://generativelanguage.googleapis.com


Chapter 4. Administration

• Ensured that you have administrative privileges in DevOps Loop.

• Ensured that you have details such as API Key, Project ID and Endpoint URL.

1. Navigate to Settings > Integrations.

The Integrations  page is displayed.

2. Click .

The New Integration  pane is displayed with the Overview  and Configure  tabs.

3. Perform the following steps in the Overview  tab:

a. Enter a name to identify the integration in the Name  field.

b. Select Watson X  in the Provider  list.

c. Select the API key in the Credentials  list.

d. Enter the API Key in the API Key  field.

e. Click Next.

The Configure  tab is displayed.

4. Perform the following steps in the Configure  tab:

a. Enter the API Endpoint URL in the API Endpoint  field.

b. Enter the release version of the IBM watsonx.ai model in the Version  field to specify the model to which 

DevOps Loop  should connect.

c. Select a Model  from the list.

d. Enter the project ID in the Project ID  field.

e. Enter the string to be used to stop the generation of text by AI in the Stop Sequences  field.

For example, you can set "stop" or "end" as the stop sequence.

f. Select a Decoding  method from the list to control how the model generates output.

The following options are available:

▪ Greedy:  Produces the most likely next token at each step for straightforward output.

▪ Sample:  Randomly selects from probable next tokens, resulting in more varied and creative 

responses.

g. Use the Repetition Penalty  slider to control how much the model discourages repeating the same tokens in 

its output:

73



HCL DevOps Loop 2025.12 (2.0.0)

74

For example: A higher value, for example, 1.5, makes more different responses. A lower value, for example, 

1.0, allows natural repetition of words.

h. Specify the minimum number of tokens in the Min Token  for the response.

i. Specify the maximum number of tokens in the Max Token  for the response.

j. Click Save.

Results

You have configured the IBM watsonx integration with DevOps Loop.

Configuring Ollama integration
You can configure the Ollama integration in HCL DevOps Loop  to connect to the provider and use Loop Genie services.

Before you begin

You must have completed the following tasks:

• Ensured that you have administrative privileges in DevOps Loop.

• Completed the steps to prepare your Ollama account for integration with DevOps Loop. See Requirements for Ollama 

integration  on page 67.

1. Click Settings  > Integrations.

The Integrations  page is displayed.

2. Click .

The New Integration  pane is displayed with the Overview  tab.

3. Enter a name to identify the integration in Name.

4. Select Ollama  from the Provider  list.

5. Click Next.

The Configure  tab is displayed.

6. Enter the URL of the AI provider in API Endpoint.

7. Select Chat  in Mode  to set the mode of communication.

8. Select an LLM to be used from the Model  list.

9. Click Save.

Results

You have configured Ollama integration with DevOps Loop.

DevOps Loop  MCP server
The DevOps Loop  MCP (Model Context Protocol) server provides a standardized interface that allows external MCP 

clients to communicate with a loop. Through this server, MCP-compatible clients such as Visual Studio Code (via MCP 



Chapter 4. Administration

extensions) and Claude Desktop can query, retrieve, and modify loop resources from within their development or AI-assisted 

environments.

The MCP server enables secure, controlled access to DevOps Loop resources without requiring users to switch interfaces. 

The MCP server enforces a 30-minute idle timeout. After 30 minutes of inactivity, your session expires and you might need to 

sign in again to continue using MCP tools. After the initial setup, MCP client configurations are stored persistently, allowing 

external tools to reconnect automatically in future sessions.

By offering well-defined MCP tools, the server allows clients to run queries, fetch loop details, and invoke supported 

operations from external MCP clients while fully adhering to your DevOps Loop  access permissions.

MCP tools available in DevOps Loop

After an MCP client is connected to DevOps Loop, it can access a set of tools offered by DevOps Loop. These tools provide 

controlled access to loop resources across loop server, Plan, tenant server, and analytics services. Each tool specifies its 

required inputs and expected output.

Table  1. Loop-related tools

MCP Tools Description Inputs Output

loop_get_all_loops Fetch all loops in a 

teamspace.

teamspace_id List of loops that you are 

a member of

loop_get_all_loop_users Fetch all users in a loop. loop_id, teamspace_id List of users who are part 

of the loop

loop_add_user_to_loop Add a user to a loop. loop_id, teamspace_id, user 

(email)

Confirmation that the 

user was added to the 

loop

loop_add_test_project_to_loop Add a test project to a 

loop.

teamspace_id, 

loop_id, project_name, 

project_description

Details of the test project 

created in the loop

loop_add_control_repo_to_loop Add a control repository 

to a loop.

teamspace_id, loop_id, 

repo_name

Details of the control 

repository added to the 

loop

Table  2. Plan-related tools

Tools Description Inputs Output

plan_get_proje

cts

List all projects in DevOps 

Plan for a loop.

teamspace_id, loop_name List of projects in the loop

plan_get_compo

nents

List components in DevOps 

Plan for a loop.

teamspace_id, loop_name List of components in the 

loop

75



HCL DevOps Loop 2025.12 (2.0.0)

76

Table  2. Plan-related tools  (continued)

Tools Description Inputs Output

plan_get_workite

m_types

Retrieve available work item 

types for a loop.

teamspace_id, loop_name List of available work item 

types

plan_get_work_it

ems

Retrieve work items with 

optional filters.

teamspace_id, loop_name, project_name, 

filters

List of work items matching 

the filters

plan_get_applica

tions

List applications in a 

teamspace.

teamspace_id, loop_name List of applications in the 

teamspace

plan_create_wor

k_item

Create a new work item. teamspace_id, loop_name, title, 

project_name, optional fields

Details of the created work 

item

plan_delete_wor

k_item

Delete a work item by ID. teamspace_id, loop_name Confirmation that the work 

item was deleted

Table  3. Loop tenant-related tools

Tools Description Inputs Output

loop_get_all_tenants Fetch all tenants. None List of all tenants

loop_get_all_teamspace_

users

Fetch all users in a 

teamspace.

teamspace_id List of users in the teamspace

loop_get_all_teamspaces Fetch all teamspaces. None List of all teamspaces

loop_invite_user_to_team

space

Invite a user to a 

teamspace.

teamspace_id, user 

(email)

Confirmation that the user was invited to the 

teamspace

Table  4. Deploy-related tools

Tools Description Inputs Output

list_applications Fetch all applications. None Lists all applications.

list_application_pr

ocesses

Fetch all processes defined in a 

specified application.

Application_id, application name Lists all processes defined in a 

specified application.

list_application_e

nvironments

Fetch all environments defined 

in a specified application.

Application_id or application 

name

Lists all environments defined in 

a specified application

list_application_s

napshots

Fetch all snapshots defined in a 

specified application.

Application_id or application 

name

Lists all snapshots defined in a 

specified application.

get_deployment_s

tatus

Fetch all the deployment status 

of an application

None Returns the deployment status of 

an application

deploy_snapshot_

to_environment

Deploy an application snapshot 

to a specified environment.

Application_id, snapshot_id, 

process_id, and environment_id

Deploys an application snapshot 

to a specified environment.



Chapter 4. Administration

Table  5. Loop analytics-related tools

Command Description Inputs Output

analytics_search_wo

rk_items

General search for 

work items with 

filtering.

teamspace_id, loop_id, optional 

filters

List of work items matching the filters

analytics_get_work_i

tem_status

Retrieve status for 

work items.

teamspace_id, loop_id, filters List of work item statuses

analytics_count_wor

k_items

Count work items 

based on filters.

teamspace_id, loop_id, filters Count of work items matching the filters

analytics_get_story_

points

Retrieve story point 

analytics.

teamspace_id, loop_id, owner, 

date filters

Story point analytics data

analytics_get_recent

_and_old_work_it

ems

Retrieve recent or 

oldest work items.

teamspace_id, loop_id, optional 

filters

List of work items ordered by time

analytics_search_co

mmits

Search commits by 

creator, date, repo, 

etc.

teamspace_id, loop_id, filters List of commits matching the filters

analytics_search_pul

l_requests

Attribute-based PR 

search.

teamspace_id, loop_id, filters List of pull requests matching the filters

analytics_count_pull

_requests

Count PRs by 

creator, repo, status, 

or month.

teamspace_id, loop_id, filters Count of pull requests matching the filters

analytics_get_recent

_and_old_pull_reque

sts

Retrieve 

time-ordered PRs.

teamspace_id, loop_id, filters List of pull requests ordered by time

analytics_search_bui

lds

General search for 

builds.

teamspace_id, loop_id, filters List of builds matching the filters

analytics_count_bui

lds

Count builds by 

creator, status, or 

month.

teamspace_id, loop_id, filters Count of builds matching the filters

analytics_get_recent

_and_old_builds

Retrieve recent or 

oldest builds.

teamspace_id, loop_id, filters List of builds ordered by time

analytics_search_de

ployments

Search deployments 

with filters.

teamspace_id, loop_id, filters List of deployments matching the filters

77



HCL DevOps Loop 2025.12 (2.0.0)

78

Table  5. Loop analytics-related tools  (continued)

Command Description Inputs Output

analytics_count_depl

oyments

Count deployments 

by status, creator, or 

month.

teamspace_id, loop_id, filters Count of deployments matching the filters

analytics_get_recent

_and_old_deployme

nts

Retrieve recent or 

oldest deployments.

teamspace_id, loop_id, filters List of deployments ordered by time

VS Code connection for the DevOps Loop MCP server
You can connect Visual Studio Code  (VS Code) with GitHub Copilot to the DevOps Loop MCP server to run MCP-based 

queries that retrieve and update loop resources directly from VS Code. After you connect the VS Code, the MCP server 

connection is saved and remains available across VS Code sessions.

You can connect VS Code to the DevOps Loop MCP server by using one of the following methods:

• By using the command palette. See Connecting VS Code to the DevOps Loop MCP server by using the command 

palette  on page 78.

• By editing the MCP configuration file. See Connecting VS Code to the DevOps Loop MCP server by manually editing 

the MCP configuration file  on page 79.

Connecting VS Code to the DevOps Loop  MCP server by using the command palette
You can use the command palette to connect VS Code to the DevOps Loop  MCP server.

Before you begin

You must have completed the following tasks:

• Ensured that you have installed VS Code and the GitHub Copilot extension.

• Obtained the MCP Server URL. For example: https://hostname/loop/mcp

Perform the following steps by using the command palette:

1. Open VS Code.

2. Open the Command Palette  (Ctrl+Shift+P or Cmd+Shift+P).

3. Search and select Copilot: Add Server.

4. Choose HTTP  as the server type, when prompted for the transport type.

The DevOps Loop  MCP Server uses HTTP-based transport.

5. Enter the MCP Server URL, in the URL  field.

VS Code automatically generates the required mcp.json  configuration.

6. Enter a name for the server. For example: Loop MCP Server.

7. Select Workspace, when VS Code prompts you to choose where to save this configuration.



Chapter 4. Administration

◦ ▪ Global  – used for all VS Code workspaces

▪ Workspace  – used only in the current folder/project

Note:  Selecting Workspace  automatically creates a .vscode  folder and generates a mcp.json 

file inside it.

8. Click the Extensions  icon  and navigate to MCP-servers installed.

9. Click the Settings  icon  next to Loop MCP server.

10. Select the Start server  option.

VS Code displays a notification stating that the MCP server requires authentication.

11. Click Allow  to proceed.

A second notification is displayed asking whether you want to open an external website.

12. Click Open.

Your default browser opens and displays the DevOps Loop  login page.

13. Sign in with your DevOps Loop  credentials.

A consent screen is displayed requesting access to MCP tools, loop APIs, and basic profile information.

14. Click Yes  to approve and complete the connection.

After successful authentication, VS Code displays the list of available MCP tools. See MCP tools available in DevOps 

Loop  on page 75.

Note:  The MCP server times out after 30 minutes of inactivity. If no tool calls occur during this period, your 

session will expire, and you are prompted to re-authenticate.

Results

You have successfully connected VS Code to the DevOps Loop  MCP server. The MCP server is displayed under Copilot → 

Servers.

Connecting VS Code to the DevOps Loop  MCP server by manually editing the MCP 
configuration file
You can manually connect VS Code to the DevOps Loop  MCP server by creating or editing the mcp.json  configuration file in 

your workspace.

Before you begin

You must have completed the following tasks:

• Ensured that you have installed VS Code and the GitHub Copilot extension.

• Obtained the MCP Server URL. For example: https://hostname/loop/mcp

79



HCL DevOps Loop 2025.12 (2.0.0)

80

Perform the following steps to manually modify the MCP configuration file:

1. Open VS Code.

2. Open any empty directory or project in VS Code.

3. Create a new folder named .vscode  inside that directory, if not present.

4. Create a file named mcp.json  inside the .vscode  folder.

5. Paste the MCP configuration JSON. For example:

{
  "servers": {
    "loop-mcp": {
      "uri": "https://hostname/loop/mcp",
      "type": "http"
    }
  },
  "inputs": []
}

Replace the hostname  with your actual DevOps Loop  server hostname.

6. Save  the file.

7. Click Extensions  icon  and navigate to MCP-servers installed.

8. Click the Settings  icon  next to Loop MCP Server.

9. Select the Start server  option.

VS Code displays a notification stating that the MCP server requires authentication.

10. Click Allow.

A second notification is displayed asking whether you want to open an external website.

11. Click Open.

Your default browser opens and displays the DevOps Loop  login page.

12. Sign in with your DevOps Loop  credentials.

A consent screen is displayed requesting access to MCP tools, loop APIs, and basic profile information.

13. Click Yes  to approve and complete the connection.

After successful authentication, VS Code displays the list of available MCP tools. See MCP tools available in DevOps 

Loop  on page 75.

Note:  The MCP server times out after 30 minutes of inactivity. If no tool calls occur during this period, your 

session will expire and you are prompted to re-authenticate.

Results

You have successfully connected VS Code to the DevOps Loop  MCP server. The MCP server is displayed under Copilot → 

Servers.



Chapter 4. Administration

Connecting Claude Desktop to the DevOps Loop  MCP server
You can connect Claude Desktop to the DevOps Loop MCP Server and use it as a connector to retrieve and update loop 

resources.

Before you begin

You must have completed the following tasks:

• Ensured that Claude Desktop is installed and you have an active Claude Pro subscription  (minimum).

• Obtained the MCP Server URL. For example: https://hostname/loop/mcp

1. Open the Claude Desktop  application.

2. Navigate to Settings  > Connectors.

3. Click Add custom connector.

The Add custom connector  window is displayed.

4. Enter the name of the connector. For example: Loop MCP server

5. Enter the MCP server URL in the Remote MCP server URL  field.

6. Click Add.

The MCP server is now added and listed on the Connectors  page.

7. Click the Connect  button next to the newly added Loop MCP server entry.

Claude Desktop redirects you to the DevOps Loop  login page.

8. Sign in with your DevOps Loop credentials.

A consent screen is displayed requesting access to MCP tools, loop APIs (used internally for tool execution), and 

basic profile and role information.

9. Click Yes  to approve and complete the connection.

After successful authentication, Claude Desktop displays the list of available MCP tools provided by the DevOps Loop 

MCP Server. See MCP tools available in DevOps Loop  on page 75.

Note:  The MCP server times out after 30 minutes of inactivity. If no tool calls occur during this period, your 

session will expire and you will be prompted to re-authenticate.

Results

You have successfully connected Claude Desktop to the DevOps Loop MCP Server.

Teamspace management
A teamspace in HCL DevOps Loop  is a secure, dedicated environment designed for multiple teams to work independently 

within a single shared DevOps Loop  installation.

81



HCL DevOps Loop 2025.12 (2.0.0)

82

When you create a teamspace in DevOps Loop, the platform automatically provisions corresponding components for all 

integrated applications. Each component is provisioned with a corresponding name that reflects the Teamspace, ensuring 

consistency and seamless integration across all the applications.

The following table lists the configuration of each integrated application within the teamspace provisioning:

Application Description

Plan A new teamspace is created.

Control An organization is created.

Code A teamspace is created.

Deploy A team is created.

Test A teamspace is created.

Measure A teamspace and a default team are created.

You can manage and switch between multiple teamspaces by clicking the Switch Teamspace  icon . The following 

options are available to help you create and manage team spaces in DevOps Loop:

Action Icon Description

Create a teamspace Select Create TeamSpace  to create a team space within DevOps Loop.

Invite members to a 

teamspace

Select Edit Teamspace  to add members to the teamspace.

These configurations provide your team with a fully integrated DevOps environment, streamlining collaboration, automation, 

and traceability across the software delivery lifecycle.

Related information

Creating a teamspace  on page 82

Adding or inviting members to a teamspace  on page 84

Joining a teamspace as an invited member  on page 84

Creating a teamspace
You can create a teamspace in HCL DevOps Loop  to provide your team with a dedicated, secure workspace that 

automatically spans across all the capabilities like Plan, Control, Code, Build, Test, Deploy, and Measure.

Before you begin

Ensure that the following prerequisites are completed:



Chapter 4. Administration

• You are added to the User  group in Keycloak.

• Ensure that you have administrative privileges in DevOps Loop.

1. Log in to DevOps Loop.

2. Click the Create TeamSpace  button.

Alternatively, select the Switch Teamspace  icon  and click + Create TeamSpace.

Result

The Teamspace creation page is displayed along with the Define Teamspace  and Invite Members  tabs.

3. Perform the following steps in the Define Teamspace  tab.

a. Provide a name in Enter Teamspace Name. The maximum character limit is 20.

b. Optional: Provide a brief description of the teamspace in Description.

4. Click Next.

Result

The Invite Members  tab is displayed.

5. Perform the following steps in the Invite Members  tab.

a. Search members with a valid email address or select them from the dropdown list and click Add.

b. Type the email address of the members who are not in the Keycloak user directory and click Add.

6. Click Create.

The Teamspace setup progress page is displayed, showing each phase of the setup. DevOps Loop  begins 

provisioning the TeamSpace across all integrated capabilities.

Note:  A Control repository is added to Build, and a webhook is set up in Control to synchronize data between 

Control and Build.

◦ If the members already exist in the Keycloak user directory, they are directly added as members in the 

teamspace.

◦ If the members do not exist in the Keycloak user directory, an invitation email is automatically triggered after 

the teamspace is created.

Note:  You can add multiple members to your invite list.

If an error occurs during teamspace creation, an error message is displayed with options to Retry  or Cancel and retry 

later. Click Retry  to attempt the operation again. If the problem persists, check the tenant server pod logs and the 

logs for the associated product components to obtain additional information.

Note:  The error badge  indicates that the teamspace setup is incomplete or has configuration issues.

For a visual walkthrough of creating a teamspace watch the following video:

../videos/creating%20a%20teamspace.mp4

83

../videos/creating%20a%20teamspace.mp4


HCL DevOps Loop 2025.12 (2.0.0)

84

Results

You have created a teamspace, which is provisioned across all the capabilities of DevOps Loop. Additionally, the loop 

creation is enabled.

Related information

Adding or inviting members to a teamspace  on page 84

Joining a teamspace as an invited member  on page 84

Removing a member from a teamspace  on page 85

Adding or inviting members to a teamspace
You can add existing members or invite new members to join a teamspace in DevOps Loop  by using the Edit Teamspace 

option.

Before you begin

• You must be a teamspace owner.

1. Log in to DevOps Loop.

2. Select the Switch TeamSpace  icon  and select the teamspace in which you want to add members.

3. Click Edit Teamspace.

Result

The Add members  pane is displayed.

4. Click Add members.

5. Perform the following steps in the Invite Members  tab.

a. Search members with a valid email address or select them from the dropdown list and click Add.

b. Type the email address of the members who are not in the Keycloak user directory and click Add.

6. Click Save.

If the members already exist in the Keycloak user directory, they are directly added to the corresponding teamspaces 

across all integrated applications.

If the members do not exist in the Keycloak user directory, an invitation email is automatically triggered to join the 

teamspace.

Results

You have added members to your teamspace. If the members are not part of DevOps Loop, an invitation email is sent to 

them to join the teamspace.

Joining a teamspace as an invited member
You can join a teamspace in DevOps Loop  when you receive an invitation from a teamspace owner. The invitation email 

includes a link to update your account and access the DevOps Loop.

Before you begin



Chapter 4. Administration

You must have completed the following tasks:

• Confirmed that you have received an invitation email from DevOps Loop.

• Ensured that you are not signed in with another account in the same browser session.

1. Open the invitation email sent by DevOps Loop.

2. Click the Link to account update  link in the email.

The account update page is displayed in a new browser tab.

Note:  If you are already signed in with another DevOps Loop  account in your default browser, open the link in 

a different browser or in an incognito or private window in your default browser.

3. Click Click here to proceed.

4. Type New password  and Confirm password  and click Submit.

5. Type the Email id, First name, and Last name  on the account setup page.

6. Click Submit.

You are added to the invited teamspace.

Related information

Teamspace management  on page 81

Removing a member from a teamspace
You can remove a member from a teamspace when they no longer need access.

Before you begin

You must have completed the following tasks:

• Ensured that you have administrative privileges in DevOps Loop.

• Ensured that the member is removed from all associated loops before removing from the teamspace.

1. Log in to DevOps Loop.

2. Click the Switch TeamSpace  icon  and select the teamspace from which you want to remove a member.

3. Click Edit Teamspace.

The Teamspace Members  pane is displayed.

4. Click the Delete icon  next to the member you want to remove in the Members List section.

5. Click  Save.

Results

85



HCL DevOps Loop 2025.12 (2.0.0)

86

The member is removed from the teamspace.

Related information

Adding or inviting members to a teamspace  on page 84

Uninstalling DevOps Loop
You can safely uninstall DevOps Loop  from your environment, ensuring that all resources and data are properly removed.

Note:  For demo setups and air-gapped environment, the follow the same Kubernetes service uninstall procedures 

used for your platform.

Uninstalling DevOps Loop  from IBM Cloud Kubernetes Service (IKS)
To reinstall HCL DevOps Loop  when an ongoing installation fails, you can uninstall DevOps Loop  and its components from 

theIBM Cloud Kubernetes Service (IKS) cluster.

Before you begin

You must have completed the following tasks:

• Installed DevOps Loop.

• Closed DevOps Loop, any open web browsers, and all other applications that are enabled by DevOps Loop.

• Optional: Backed up data from the previous version of DevOps Loop.

1. Navigate to Cluster Management  > Clusters  > Overview  > Actions  > Connect via CLI  in your IBM Cloud account and 

switch context to your cluster.

2. Run the following command to uninstall DevOps Loop:

helm uninstall $HELM_NAME -n $NAMESPACE

Where,

NAMESPACE=devops-loop
HELM_NAME=devops-loop

The PersistentVolumeClaims and PersistentVolumes that were created during the installation are not deleted 

automatically. If you reinstall DevOps Loop, the user data is reused unless you specifically delete those volumes.

3. Run the following command to delete everything, including the user data contained in claims and persistent volumes:

kubectl delete namespace $NAMESPACE

Results

You have uninstalled DevOps Loop  from the  IKS cluster.



Chapter 4. Administration

Uninstalling DevOps Loop  from Kubernetes Service (K8S)
To reinstall HCL DevOps Loop  when an ongoing installation fails, you can uninstall DevOps Loop  and its components from 

the  Kubernetes Service (K8S) cluster.

Before you begin

You must have completed the following tasks:

• Installed DevOps Loop.

• Closed DevOps Loop, any open web browsers, and all other applications that are enabled by DevOps Loop.

• Optional: Backed up data from the previous version of DevOps Loop.

1. Switch to your K8S cluster by using the following command:

kubectl config use-context <context-name>

2. Run the following command to uninstall DevOps Loop:

helm uninstall $HELM_NAME -n $NAMESPACE

Where,

NAMESPACE=devops-loop
HELM_NAME=devops-loop

The PersistentVolumeClaims and PersistentVolumes that were created during the installation are not deleted 

automatically. If you reinstall DevOps Loop, the user data is reused unless you specifically delete those volumes.

3. Run the following command to delete everything, including the user data contained in claims and persistent volumes:

kubectl delete namespace $NAMESPACE

Results

You have uninstalled DevOps Loop  from the  K8S cluster.

87



88

Chapter 5. Working with Loops
A loop is a workflow that connects DevOps activities of your team from planning and development through build, 

deployment, testing, and release phases.

You can find information about creating and managing loops, learning loop, managing members, and using dashboards to 

monitor progress across all capabilities of DevOps Loop.

Loop management
The loop consists of several interconnected phases that ensure continuous software development, testing, deployment, and 

monitoring.

Loop creation ensures seamless integration between development and operations, leading to faster and more reliable 

DevOps workflow. The following changes take place as a result of loop creation:

• Provisions your planning, source control, testing, deployment, and metrics tools for a ready-to-use project 

environment.

• Connects all capabilities by installing and configuring essential plugins, webhooks, repositories, and integrations for 

real-time data sharing and visibility.

• Provides access to a unified dashboard and links for direct access to each application.

• Adds users in each capability and sets specific access rights across all applications.

Overall, loop creation reduces the time and manual effort required to configure and maintain your development toolchain so 

that you can focus on innovation.

You can explore loop capabilities by enabling Learning Loop option. This allows you to learn and practice workflows by 

working with sample projects, work items, and configurations without starting from an empty setup. See Learning Loop 

overview  on page 97.

Managing loops

You can use the following options on the Home  page:

Actions Description

View all the loops The All loops  tab lists all the loops within your teamspace.

View the recently added loops The Recently Added  tab lists the recently added loops within your teamspace.

View My favorites The My Favorites  tab lists the loops that are marked as favorite within your 

teamspace.

View Disabled loops The Disabled  tab lists the loops that are disabled within your teamspace.

View the incomplete loops The Incomplete  tab lists all the incomplete loops within your teamspace. You can 

click Retry  to complete the creation of the loop.



Chapter 5. Working with Loops

Actions Description

Search loops
You can search for a loop by clicking the  icon and entering the name in the 

Search Loops  field when the list of loops is lengthy.

Create a loop You can create a new loop by clicking the Create Loop  button.

Edit a loop You can modify the list of team members who can access the loop by clicking 

the Settings  icon .

Mark as favorite You can mark a loop as a favorite to make it easier to find by clicking the Add to 

favorites  icon .

Open Loop Genie You can interact with Loop Genie and send your queries related to the loop by 

clicking the  button.

View dashboards You can view the overview and detailed dashboards for the loop by clicking

View loop details You can view loop details such as configuration details and its linked resources, 

such as test projects and control repositories, by clicking the Loop Details  option 

on the loop.

Creating a loop
You can create a loop to build a pipeline of tasks across the integrated capabilities in HCL DevOps Loop.

Before you begin

Ensure that the following prerequisites are completed:

• You are added to the User  group in Keycloak.

• Created a teamspace or a member of an existing teamspace.

• Read and understood the information in About user roles and access permissions  on page 57.

About this task

When you create a loop, DevOps Loop  creates specific resources in each of the applications and also, installs and configures 

the required plugins. During the loop creation, when the plugins are installed and configured, personal access tokens are 

created in Plan, Control, and Test. On loop creation, the respective users are added to the specific resources in each of the 

capabilities.

1. Click Teamspace  > <teamspace_name>  to navigate to your teamspace.

2. Click Create Loop  on the home page of your teamspace.

The Define Loop  tab is displayed.

3. Perform the following actions in the Define Loop  tab:

89



HCL DevOps Loop 2025.12 (2.0.0)

90

a. Enter a loop name.

Note:  The first five characters for the loop name must always be unique, and they should not be 

reused while creating another loop.

b. Optional: Enter details about the loop in Description.

c. Optional: Enable the Learning Loop  option to prepopulate the loop with demo data for exploring workflows 

and practicing tasks.

4. Click Next.

The Invite Members  tab is displayed.

5. Perform the following actions in Invite Members  tab.

a. Enter the email ID of the team member to be added to the loop in Search members.

b. Click Add.

6. Click Create.

The loop setup process begins. A progress view displays the status of each capability being initialized. Once all the 

capabilities are fully initialized, the loop is successfully created.

For details about the capabilities and resources configured during loop creation, see Capabilities and resources 

configured during loop creation  on page 91.

What to do next: After the loop is created, DevOps Loop automatically provisions the required resources and 

integrations across all capabilities. You can begin using these resources based on your workflow needs.

The following examples show common actions you may perform after creating a loop. These are optional  and 

depend on the tasks you want to complete within the loop:

◦ View the Dashboard to see summaries and statuses of the activities through visualizations. See Dashboards 

and insights  on page 99.

◦ Create components and applications in DevOps Deploy. See Creating components in Deploy for a loop  and 

Creating applications in Deploy for a loop.

◦ For Control integration, create a file named input.txt  under the repository in Control.

For a visual walkthrough of creating a loop watch the following video:

../videos/creating%20a%20loop.mp4

Related reference

REST commands for Deploy  on page 148

Related information

Loop creation failure at the Measure stage

../videos/creating%20a%20loop.mp4


Chapter 5. Working with Loops

Capabilities and resources configured during loop creation
When you create a loop, the platform automatically provisions resources, installs and configures plugins, generates tokens, 

establishes integrations, and assigns appropriate permissions to the loop creator and invited members across multiple 

capabilities.

Capability-specific resources and configurations

Capability or Plugin Configuration during loop creation

Plan
• Creates an application in the same teamspace where the loop is created.

• Sets up email notifications for work item changes.

• Names the application using the first five characters of the loop name.

Control
• Creates a repository with the same name as the loop in the organization 

associated with the teamspace.

Code
• No resources are created at this stage.

Build
• Creates a team with the following convention: <TeamspaceName~LoopName>.

• Creates the following templates:

◦ Project

◦ Process

◦ Source

◦ Jobs

• Creates a job template with basic CI/CD steps.

• Creates the Deploy  and Control  integrations.

• Creates the main project with the naming convention  TeamS­

pace~Loop:LoopName  (The UI displays this convention as TeamS­

pace~Loop) and configures it using the Process and Source templates.

Note:  A project is associated with only one loop.

Test Creates a project with the same name as the loop within the teamspace.

91



HCL DevOps Loop 2025.12 (2.0.0)

92

Capability or Plugin Configuration during loop creation

Deploy
• Creates an application with the same name as the loop and a team named 

<TeamspaceName~LoopName>.

• Creates three empty environments: Development, QA, and Production.

• Creates a template pipeline and an empty application process.

Plan Plugin
• Installs and configures the Plan plugin in Measure.

• Installation occurs once; configuration occurs with each loop.

• Generates a personal access token in Plan which is used to configure the 

Plan Plugin for Plan-Measure connection.

• Auto-synchronizes every 5 minutes.

• Default version: 1.2.3

Build Plugin
• Installs and configures the Build plugin in Measure.

• Installation occurs once; configuration occurs with each loop.

• Auto-synchronizes every 5 minutes.

• Default version: 1.1.5

Control Plugin
• Installs and configures the Control plugin in Measure.

• Installation occurs once; configuration occurs with each loop.

• Generates a personal access token in Control which is used to configure 

the Control Plugin for Control-Measure connection.

• Auto-synchronizes every 5 minutes.

• Default version: 1.1.1

Deploy Plugin
• Installs and configures the Deploy plugin in Measure during the first loop 

creation.

• Generates a personal access token in Deploy which is used to configure 

the Deploy Plugin for Deploy-Measure connection.

• Auto-synchronizes every 5 minutes.

• Default version: 5.1.1

Test Plugin
• Installs and configures the Test plugin in Measure.

• Installation occurs once; configuration occurs with each loop.



Chapter 5. Working with Loops

Capability or Plugin Configuration during loop creation

• Generates an offline user token in Test which is used to configure the Test 

Plugin for Test-Measure connection.

• No auto-synchronization.

• Default version: 1.0.32

Control–Plan Integration
• Links repository changes (pull requests, commits, branch creation) in Con­

trol to work items in Plan.

• Pull request titles and branch names should start with the work item ID for 

proper syncing.

• Changes appear in the SCM Event section of the work item in Plan.

• A personal access token in Plan configures a webhook in Control.

Test–Plan Integration
• Creates work items in Plan from Test Hub via integration.

• A personal access token in Plan is used for setup.

• Verify by opening your Test Hub project and navigating to Manage Integra­

tion > Change Management.

Test–Control Integration
• Maps the repository created in Control to the Test Hub project associated 

with the loop.

• View it in Test Hub under Manage Configuration > Repositories.

• Enables Test Hub to pull test assets from Control.

Measure
• Creates a team <TeamspaceName~LoopName Team> and adds the cre­

ator/admin with full permissions.

• Creates a value stream and pipeline associated with the team, using appli­

cation data from Deploy by using the YAML plugin in Measure.

Analytics
• Creates dashboards in Opensearch for the newly created loop.

Access and Permissions

The loop creator is granted the highest permissions for all resources in the integrated capabilities. Invited users are given 

only basic permissions by default when they join a loop. They can manually elevate their own permissions through the UI for 

any resource as needed.

93



HCL DevOps Loop 2025.12 (2.0.0)

94

Viewing loop details
You can use the Loop Details  page to view a complete overview of a loop, including its key configuration and resource 

information.

When you want to view a loop’s configuration details and its linked resources, such as test projects and control repositories, 

select the Loop Details  option on the loop. Each resource includes metadata such as its name, URL, and creation date, 

making it easy to understand how the loop is structured and which assets it relies on.

From the Loop Details  page, you can add additional test projects and control repositories as needed, so that you can expand 

or update the loop’s configuration without leaving the page.

The page also includes a team members section. Here, you can view all the members who are part of the loop, along with 

their role (Admin or Team Member), their email ID, and the other loops they belong to. You can search through the list of 

members or make updates using the available edit capabilities, helping you keep membership aligned with your project 

requirements.

Related information

Adding members to a loop  on page 94

Adding members to a loop
You can add members to a loop who are already part of your teamspace so they can collaborate and stay updated within it.

Before you begin

You must have completed the following tasks:

• Created a loop.

• Ensured that you have administrative privileges in DevOps Loop.

• Ensured that the member is already added to the teamspace.

1. Log in to DevOps Loop.

2. Click Teamspace  > <teamspace_name>  to navigate to your teamspace.

3. Select the loop in which you want to add members.

4. Click the Settings icon  and select Edit.

Result

The Loop Members  pane is displayed.

5. Click Add Members.

The list of members in your teamspace is displayed.

6. Type the email address in the Search  bar or select the member from the list and click Add.

7. Click Save.

Results



Chapter 5. Working with Loops

The member is added to the loop and its capabilities.

Related information

Removing a member from a loop  on page 95

Removing a member from a loop
You can remove a member from a loop when they no longer need access.

Before you begin

You must have completed the following tasks:

• Created a loop.

• Ensured that you have administrative privileges in DevOps Loop.

About this task

When you remove a member from a loop, the member is also removed from all connected capabilities within that loop.

1. Log in to DevOps Loop.

2. Select the loop from which you want to remove the member on the All Loops  tab.

3. Click the Settings icon  and select Edit.

The Loop Members  pane is displayed.

4. Select the member in the Members List  section, and click the Delete  icon .

5. Click Save.

The member is removed from the loop and its capabilities.

Related information

Adding members to a loop  on page 94

Disabling a loop
You can disable a loop to pause its activities and stop updates. You can enable it again from the Disabled  tab whenever you 

need it.

Before you begin

You must have completed the following tasks:

95



HCL DevOps Loop 2025.12 (2.0.0)

96

• Created a loop.

• Ensured that you have administrative privileges in DevOps Loop.

About this task

When you disable a loop, the following connected capabilities within that loop are impacted:

• Plan: Emails, alerts, and search functions for work item updates are disabled.

• Control: The Plan-Control webhook is deactivated and all the information in the events (such as pull request, branch 

creation etc) stop flowing from Control to Plan.

• Measure: Data flow from Control, Plan, Test and Build is interrupted and therefore value streams and dashboards no 

longer receive updates.

1. Log in to DevOps Loop.

2. Select the loop that you want to disable from the All Loops  tab.

3. Click the Settings icon  and select Disable.

The loop is disabled and moved to the Disabled  tab.

Related information

Enabling a loop  on page 96

Enabling a loop
You can enable a loop to restore its activities and allow updates to flow again.

Before you begin

You must have completed the following tasks:

• Created a loop.

• Disabled the loop you want to enable.

• Ensured that you have administrative privileges in DevOps Loop.

About this task

When you enable a loop, the following connected capabilities are restored:



Chapter 5. Working with Loops

• Plan  – Emails, alerts, and search functions for work item updates are re-enabled.

• Control  – The webhook is activated and all the events such pull request, branch creation etc starts flowing from 

Control to Plan.

• Measure  – Data flow from Control, Plan, Test  and Build  resumes, and therefore value streams and dashboards 

receive updates.

1. Log in to DevOps Loop.

2. Select the Loop that you want to enable from the Disabled  tab.

3. Click the Settings icon  and select Enable.

The loop is enabled and appears in the All Loops  tab.

Related information

Disabling a loop  on page 95

Learning Loop overview
Learning loop provides preloaded sample datasets across multiple DevOps Loop  capabilities. It helps you learn and practice 

workflows by exploring sample projects, work items, and configurations without starting from an empty setup.

The learning loop, with its preloaded sample data, helps you to explore and understand DevOps Loop  features:

• Understand how events flow between the capabilities. For example, a commit in Control triggers a build in Build and a 

deployment in Deploy. The updates automatically appear on the loop's hosted webpage.

• View a consistent end-to-end view of DevOps Loop  capabilities for demonstrations, evaluations, and training.

• Experiment with features and configurations in a non-production environment.

Learning Loops include an automated deployment to web experience. Code changes flow through the full pipeline code 

change →  build →  deployment →  updated webpage  and each loop includes its own uniquely hosted URL. A dedicated NgineX 

web server pod serves static Learning Loop content and ensures isolation between loops.

Scope

The sample datasets currently spans the following capabilities of DevOps Loop:

• Plan: Creates a project with releases, sprints, and work items.

• Control: Adds a sample file to a repository.

• Build: Requires a manual step to configure an active agent.

• Deploy: Maps an agent to a team, sets the license mode to floating, and creates components with predefined 

configurations. Deployments automatically publish updates to the loop’s hosted webpage through the NgineX pod.

97



HCL DevOps Loop 2025.12 (2.0.0)

98

The learning loop has the following key characteristics:

• Built for learning and exploration, not for use in production environments.

• Some manual steps, such as configuring build agents is required.

• Once configured, the end-to-end workflow is automated across Control, Build and Deploy. Code changes in Control 

trigger a build in Build, and a deployment in Deploy and the deployed content is automatically published to the loop’s 

hosted webpage.

• After the sample data is loaded, you can edit or extend it to fit your own configurations.

Note:  Sample applications created by learning loop are now automatically hosted through the NgineX pod.

• Each learning loop is assigned a unique URL to ensure isolated hosting of static content.

• Supports more complex deployments in future releases, including multi-component segments.

Preloading sample data into a learning loop
When you want to explore DevOps Loop  capabilities and learn how workflows operate across Plan, Control, Build, Deploy, and 

Test, you can use the Learning Loop option to preload sample data with preconfigured projects, work items, and settings.

Before you begin

You must have administrative privileges in DevOps Loop.

1. Log in to DevOps Loop.

2. Click Create Loop.

3. Enter the required loop details, such as the loop name and description.

4. Enable the Learning Loop  option.

This option automatically loads sample projects, work items, and configurations across Plan, Control, Build, Deploy 

and Test once the loop is created.

Enabling learning loop automatically sets up a hosted environment:

◦ A dedicated nginX web server pod is created to host Learning Loop static content.

◦ A unique URL is generated for the loop.

◦ Deployments will automatically update content at this URL.

◦ The test SmokeTest.dtx.yaml  file is automatically created under the project in Test.

5. Perform the following steps to set the license type for the automatically installed deploy agent:

a. Navigate to Resources  > Agents

b. Click Actions  menu for the agent.

c. Select the Set License Type  from the following options:

▪ Authorized  or

▪ Floating

d. Click Save.



Chapter 5. Working with Loops

6. Navigate to Test  and execute the test manually.

The test result is displayed in Execution  tab.

Results

You have successfully created a learning loop with preloaded sample data.

Dashboards and insights
The dashboard consolidates data from all capabilities, such as Plan, Code, Control, Build, Test, Release, and Deploy, by 

offering a centralized view of the status. Dashboards are available with both summary and detailed perspectives, and they 

filter information specific to each loop.

Upon loop creation, two dashboards for each subscription tier are automatically provisioned and linked directly to the 

workspace of each loop. These dashboards are universally visible, irrespective of the user’s licensing tier. You might see 

tier-specific differences in the dashboard that might arise from the depth and variety of data sources through integrated 

applications for a specific tier. The default dashboards are preconfigured and available for immediate use.

For advanced analytics, DevOps Loop  includes a milestone risk assessment feature, which requires an optional plug-in.

Data authorization

All the dashboard data is displayed based on your loop membership and access rights. You will only see information for 

loops of which you are a member, ensuring sensitive data remains secure and collaboration across teams is controlled.

Viewing dashboards
You can view the overview and detailed dashboards for the loops in your teamspace. The dashboards display key metrics 

such as issues, workloads, builds, deployments, milestones, lead time, and cycle time. Data is shown only for loops of which 

you are a member, based on your access rights.

Before you begin

You are a member of the loop.

About this task

When you want to view dashboards for loops in your teamspace, you can access both Overview  and  Detailed  dashboards. 

The Overview dashboard provides a high-level summary of loop activity, including issues, team workload, test results, builds, 

deployments, and milestone risk.

The Detailed dashboard provides more granular insights, such as open issues, pull requests, build and deployment details, 

test metrics, and timeline performance.

99



HCL DevOps Loop 2025.12 (2.0.0)

100

Note:  You can view data only for the loops you are a member of, and the information displayed is restricted based on 

your access rights.

1. Click the Dashboards  tab in the navigation panel.

The Dashboards  page is displayed, with Overview  and Detailed  dashboard for every loop.

2. Select the dashboard from the Dashboard name  column.

Results

The selected dashboard with metrics and data is displayed.

Related information

Editing dashboards  on page 100

Editing dashboards
You can customize the dashboard view by applying filters and selecting specific metrics such as test results, build history, or 

deployment status to focus on the data most relevant to your loop.

Before you begin

You must have completed the following tasks:

• Created a loop.

• Ensured you have administrative privileges.

1. Click the Dashboards  tab.

Result

The Dashboards  page is displayed, with an Overview  and a Detailed  dashboard for every loop.

2. Click the Edit  icon .

3. Use any of the following options to edit the dashboard:

Option Description

Full Screen Expands the dashboard to full-screen mode for easier viewing.

Share Shares the dashboard view with other users in the following format

• Embed code

• Permlinks



Chapter 5. Working with Loops

Option Description

Clone Creates a copy of the selected widget within the dashboard layout.

Swap
Allows for swapping the position of widgets within the dashboard layout.

Add Adds new panels or widgets to the dashboard.

Cancel Cancels the current edit operation.

User Margin Between Panels Adjusts spacing between panels in the dashboard.

Show Panel Titles Toggles panel titles on or off.

Add Filters Applies a filter to the data to be displayed in the dashboard.

4. Click  Save to save the changes.

5. Click Refresh  to update the dashboard view with the latest data.

Results

You have customized the dashboard to focus on the metrics and information that are most important to your loop.

AI-powered search
When you want to search work items, records, and related data in DevOps Loop, you can use the search bar to locate 

information across multiple capabilities. You can search across a wide set of artifact types, including issues, builds, tool 

requests, commits, and deployments, and you can filter results by loop or by category to quickly narrow your search.

You can search for epics, defects, and stories across Plan, and the results are presented as interactive cards that include 

metadata. From these cards, you can directly access associated URLs for pull requests (PRs), commits, and builds, making it 

easy to move from search results to action.

You can generate AI summaries of search results to quickly understand the context of work items, issues, and related data. 

These summaries are generated for the top five results on each page, helping accelerate decision-making by providing quick 

insights as you navigate through your results.

Note:  AI summaries are available only if the OpenAI or watsonx integration is enabled in DevOps Loop. If neither 

integration is enabled, DevOps Loop  will not generate summaries.

Search results are automatically filtered based on your access rights. You will only see documents and records associated 

with loops of which you are a member, ensuring that sensitive data remains secure and collaboration across teams is 

101



HCL DevOps Loop 2025.12 (2.0.0)

102

controlled. This ensures that results are fully scoped to the current user, preventing visibility into team spaces you do not 

belong to.



Chapter 6. Capabilities of DevOps Loop
HCL DevOps Loop  provides an integrated suite of capabilities such as Plan, Code, Control, Build, Test, Release, Deploy and 

Measure to manage every stage of the software development lifecycle within a connected, continuous loop.

Each capability is designed for a specific purpose, but together they form a continuous feedback cycle, helping teams plan, 

build, deploy, and measure value efficiently.

Plan
Plan is a change management software application within the DevOps Loop that supports seamless ticket creation, tracking, 

and comprehensive issue management. With customizable workflow automation, it helps teams to streamline and adapt 

processes to meet their unique business requirements while preparing work for the next stages of the loop.

For more details refer to the Plan Documentation.

Code
Code  is a cloud-based IDE that is part of HCL DevOps Loop, allowing developers to write, compile, build, and debug code 

directly in the browser without requiring local setup.

Built on Visual Studio Code, Code  offers pre-configured tools, extensions, and libraries, along with support for custom 

extensions. It includes a file system, terminal, and tools for debugging and testing while integrating with remote source 

control repositories for secure version control.

Continue reading to learn how Code  enhances your development experience and integrates with DevOps Loop.

Code  overview
Code  is a cloud-based integrated development environment on HCL DevOps Loop, with which you can write, compile, build, 

and debug software applications in a so-called dev container, accessible directly from a web browser. The editor provides 

a completely configured development environment with preinstalled extensions, tools, and libraries. You can start coding 

without the need to set up the environment on your local machine.

Architecture

The general architecture of the Code  platform is shown in the following image.

103

https://help.hcl-software.com/devops/plan/3.0.6/index.html


HCL DevOps Loop 2025.12 (2.0.0)

104

Code  provides personal dev containers that are configured for members of a teamspace. By using each dev container, 

you can write, build, and debug your code in an integrated environment without affecting the work of other users in the 

team. Each container is isolated for a specific user to prevent conflicts with different project setups. Additionally, you can 

also customize the individual dev container to meet your specific needs, by ensuring that all the necessary extensions and 

libraries are available for use.

The dev container integrates essential tools and processes, with the web browser serving as an interface for accessing the 

browser IDE, supporting coding, debugging, version control, and more.

Visual Studio Code-based environment

The browser development environment is based on Visual Studio Code, which means that almost all features the latter 

provides are also available in Code. For more information, refer to Visual Studio Code documentation.

The development environment includes preinstalled extensions  on page 130. However, you can also add custom 

extensions to suit project needs. It includes a file system for file management, a terminal for command-line operations, and 

tools for application execution, debugging, testing, and maintaining documentation.

Source control integration

Code  integrates with remote source control repositories, ensuring secure, accessible version control and project continuity 

across sessions. Code  offers built-in support for Git repositories (for example, repositories stored in https://help.hcl-

https://code.visualstudio.com/docs
https://help.hcl-software.com/devops/plan/3.0.3/oxy_ex-1/control/content/index.en-us.html


Chapter 6. Capabilities of DevOps Loop

software.com/devops/plan/3.0.3/oxy_ex-1/control/content/index.en-us.html). Other types of source control repositories are 

supported by means of extensions that you can install into the dev container.

Accessing Code

To learn how to access the Code feature, see DevOps Loop user interface  on page 21.

Related information

Git authentication for dev containers  on page 114

User interface
The Code  user interface offers key features that are designed to facilitate navigation, file management, source control, 

debugging, and extension management within the browser IDE.

The following image shows the user interface with a vertical toolbar on the left-hand side of the Code  IDE.

The following table lists the main highlights of the Code  user interface:

Menu items Description

Main (hamburger menu) Opens a collapsible side menu in a dropdown, and includes general menu items such 

as File, Edit, Selection, View, Go, Terminal, and Help. These menus are mostly the 

same as those that are present in the main toolbar of Visual Studio Code.

Buttons

105

https://help.hcl-software.com/devops/plan/3.0.3/oxy_ex-1/control/content/index.en-us.html


HCL DevOps Loop 2025.12 (2.0.0)

106

Menu items Description

Folder Opens the Explorer panel that provides tree-like navigation of the workspace 

structure.

Search Provides the search and replace functionality for files in the workspace.

Source control Provides the source control panel from which you can perform commands on Git 

repositories that are used in your workspace.

Run and Debug Provides common actions for running and debugging applications.

Extensions Provides a menu to manage extensions.

Agent sessions Provides a view to manage and monitor ongoing AI-powered autonomous tasks, 

allowing you to interact with AI agents.

For more information about the UI of the browser IDE, refer to the documentation of Visual Studio Code.

Switching to your teamspace
You can switch to your teamspace to access team-specific development containers and their pre-configured settings.

About this task

Upon login, you can navigate using two tabs: Running Dev Containers  and Other Dev Containers.

If you have an assigned teamspace, you can launch preconfigured dev containers - such as Starter, Java, Python, or C++ - 

directly from the Other Dev Containers  tab. Once launched, you can manage these running dev containers in the Running 

Dev Containers  tab. You can find full details in the Working with dev containers  on page 107 guide.

To access your team-specific dev containers:

https://code.visualstudio.com/docs


Chapter 6. Capabilities of DevOps Loop

1. Click the switch teamspace button in the top-left corner.

2. Select the appropriate teamspace created by your team admin.

Note: If you do not see any teamspace listed, it means you have not been added yet. Contact your team admin to 

request access to a teamspace.

You can also switch to a different branch (other than main) using the Branch menu in the upper right corner of the 

IDE. The branch switch menu is visible only in Other Dev Containers  tab. This allows for versioning dev containers, 

which lets a development environment evolve together with the application it creates.

Working with dev containers
You can launch a dev container to load your specific development environment and begin active development tasks.

About this task

When you are added to a teamspace, new preconfigured dev containers appear on your landing page under the Other Dev 

Containers  tab. Since you have just accessed the workspace for the first time, the Running Dev Containers  tab will initially be 

empty. Launching a container moves it to the Running Dev Containers  tab, where all active environments are managed.

107



HCL DevOps Loop 2025.12 (2.0.0)

108

To start working with a dev container:

1. Click the Let’s Go  button on a dev container.

2. The dev container will launch and begin running - this may take some time initially.

3. Once running, the container will move to the Running Dev Containers  tab.



Chapter 6. Capabilities of DevOps Loop

To optimize performance, Code provides real-time visibility into the resource metrics of your dev containers, such as:

◦ Launch time and date: The specific date and time the container was started.

◦ Duration: The total uptime of the container since launch.

◦ Memory consumption: The real-time RAM usage, measured in Megabytes (MB).

◦ CPU cores: The number of CPU cores currently utilized by the container.

4. Go to File  > Open Folder  to get started, after the browser-based IDE loads.

5. Click Yes  when prompted with "Do you trust the authors of the files in this folder?".

6. Navigate to the workspace directory.

7. You can now start working in your workspace. For example, you can clone a Git repository to populate your 

workspace with the source code you want to work with.

Note: This is just a quickstart example. As the environment runs on a VS Code Server, you can install extensions, 

debug applications with breakpoints and live logs, use terminals and Git integration, and fully customize your dev 

container with the dependencies you need. Use this as a starting point to explore the full development workflow.

A video version of the above steps is also available for reference. It demonstrates the full workflow - from accessing 

Code  to running your application in the browser IDE. Watching the video can help you follow along more easily. Learn 

more about dev containers here  on page 110.

../videos/new-qs.mp4

109

../videos/new-qs.mp4


HCL DevOps Loop 2025.12 (2.0.0)

110

Dev containers
You can use this information to understand why and when to choose between available dev containers. You should choose 

the Starter container when you need basic tasks, or a preconfigured container when your project requires a customized 

environment (like Node.js or Java) assigned by an administrator.

Starter dev container

The Starter  dev container provides a basic environment designed for essential tasks like text editing and cloning Git 

repositories. It includes the DevOps Code  extension, which offers commands for seamless integration with tools like DevOps 

Plan  on page 131.

This container is available to all users, regardless of teamspace membership. After logging into Code, you will find Starter 

under the Other Dev Containers  tab. Once launched, it moves to the Running Dev Containers  tab.

The following video demonstrates two scenarios: one for users without a teamspace, and one for users within a teamspace.

../videos/starter-userspace-not-userspace.mp4

To launch the Starter container, go to the Code  landing page and click the Let’s Go  button on the Starter container tile. 

Alternatively, to copy a direct link to the container, click the copy link button on the tile. You can then paste the link into a web 

browser address bar to open the container.

Preconfigured dev container

A preconfigured dev container provides a customized development environment tailored to specific project requirements, 

such as C++, Java, Node, Python, RealTimeC++, Watsonx, etc. A preconfigured dev container is added via a teamspace 

created and managed by an administrator  on page 120.

To access a preconfigured dev container, switch to the teamspace assigned to you by your administrator. Then, select the 

relevant dev container from the available options. For example, to work in a Node.js environment, click the Let's Go  button on 

the Node dev container tile.

Note:  If no teamspace appears, it likely means you are not added to one yet. Contact your team admin to request 

access.

For example only: The image below shows how dev containers appear after switching to an admin-assigned teamspace, 

such as TeamspaceEG. In this case, you can see preconfigured dev containers alongside the Starter container.

This setup is just an example. The actual teamspace name and available containers might vary.

../videos/starter-userspace-not-userspace.mp4


Chapter 6. Capabilities of DevOps Loop

Note:  Administrators can define standard dev containers to ensure consistency across team environments. For more 

information on configuring dev containers, see the Administrator Guide  on page 120.

Terminating a dev container

When a dev container starts running, you can see a Terminate button  on the dev container tile. This action opens the 

Terminate Dev Container  dialog.

111



HCL DevOps Loop 2025.12 (2.0.0)

112

Important:  When you terminate a dev container, all files and unsaved work are deleted. Therefore, you must push 

your changes to a remote source control repository, such as a Git repository, before termination.

File system
Understanding the file system structure in a dev container helps you organize your work effectively and maintain 

compatibility across different development environments.

File system tree

You can store your files in or below the /usr/code root directory. This works like a shared directory across all dev containers, 

ensuring your files remain persistent and accessible.



Chapter 6. Capabilities of DevOps Loop

Container-specific directories

You will find each dev container has its own subdirectory under /usr/code  where you can create and organize your project 

files, source code, configurations, and cloned repositories.

You will see two system-managed directories in each container:

• data directory: Contains system-managed data

• extension: Contains system-managed extension files

Note:  You must not modify these directories as changes may cause your dev container to malfunction.

Shared files

You can place files directly under /usr/code  to make them accessible from any dev container. This is useful for common 

configurations, shared libraries, or cross-environment projects.

113



HCL DevOps Loop 2025.12 (2.0.0)

114

Git authentication for dev containers
You can use Git within a dev container to ensure version control and collaboration while keeping your environment isolated.

There are many authentication methods specific to configuring Git in dev containers, including UI feature, personal access 

tokens and device code authentication.

• DevOps Code UI (Recommended and Easier)  on page 114

• Personal Access Token (PAT)  on page 117

• Device Code (GPG)  on page 118

Note:  For information on configuring Git credentials using Control Repositories, see Managing Git authentication for 

developers.

Authenticating with DevOps Code UI (Recommended)
You can create a personal access token in Control, and then use that as your password when authenticating from Code. This 

type of authentication is based on SSH keys, which are automatically generated for your dev container and registered with 

Control.

About this task

You can use this procedure to clone a Control  repository and push changes using Code.

1. Navigate to the Control repository you wish to clone:

2. Click Open with DevOps Code.



Chapter 6. Capabilities of DevOps Loop

3. You will be redirected to the Clone Control Git repository  page.

Configure the repository settings:

115



HCL DevOps Loop 2025.12 (2.0.0)

116

a. Select the Loop settings  branch. This is the branch from where you can fetch available dev containers that 

you choose to use.

b. Select Dev container. The procedure will be faster if you select a dev container that is already running. 

Otherwise, the dev container will first be launched before beginning a cloning.

c. Enter a valid folder name in the Clone folder name  field.

Note:  The Full path  field will automatically update  on page 112 to reflect the folder name you enter.

d. Click Clone. The Code IDE instance will open, and the repository will be cloned.

4. Copy the clone location:

a. Wait for the IDE page to load completely.

b. Locate the Clone succeeded at location  notification popup.

c. Copy the file path displayed in the message.

d. Open something from the cloned repository in the Code IDE. Choose one of the following alternatives:

▪ Open the repository root folder (which you copied above), or one of its subfolders, as a workspace 

folder: File > Open Folder

▪ Add the repository root folder (which you copied above), or one of its subfolders, to a workspace that 

is already open: File > Add Folder to Workspace

▪ Open a .code-workspace file from the cloned repository: File > Open Workspace from File

5. Commit and push your changes:

Use the built-in Git source control tools within the IDE to commit your updates and push them to the desired branch.



Chapter 6. Capabilities of DevOps Loop

Authenticating Git with personal access token
You can securely clone a Git repository from your Control system. You can use it as a secure alternative to other Git 

authentication methods for accessing files in your dev container.

Before you begin

You must have performed the following task:

• Read File system in the dev container  on page 112.

• Read How to generate and use Personal Access Token  in Control.

About this task

The following method outlines how to clone a Git repository in Code  using a Personal Access Token (PAT).

1. Generate a Personal Access Token

a. Navigate to your Settings  in Control to generate a PAT.

b. To generate a personal access token, click the Access Tokens  tab in Settings.

c. Add the Token Name, and set all permissions to Read and Write.

2. Construct the clone URL for repository owned by username or organization ID

a. The URL for cloning is structured with your username and the PAT. For example, assume your username is 

code@example.com, DevOps Loop is deployed at mydomain.com and your Control repository has the name 

repo-name, then the cloning URL will look like this:

https://code-example.com:PAT@mydomain.com/control/code-example.com/repo-name

b. Note that the @ in the username is replaced with a hyphen (-) in the URL.

c. Replace PAT with the personal access token you generated in Control.

Note:  When creating a repository in Control, the Owner  tab gives you two options: username or 

teamspace/organization ID. This choice dictates the correct structure for the clone URL.

For a teamspace-owned repository, the teamspace ID must be used as the organization_identifier (the 

second-to-last part of the URL path) for the clone operation to succeed.

https://code-example.com:a1b39ac1e546af4dc664ba36f4b12e77f8dad2da@mydomain.com/

control/teamspace ID/repo-name

3. Clone the Repository

You can clone the repository either via the terminal or UI:

Using Terminal:

a. Run the full git clone command with the constructed URL

git clone https://code-example.com:<PAT>@mydomain.com/control/code-example.com/repo-name

Using UI:

117

https://www.ibm.com/docs/en/devops-plan/3.0.5?topic=repository-how-generate-use-personal-access-token


HCL DevOps Loop 2025.12 (2.0.0)

118

a. Go to the Source Control page in the IDE.

b. Click the Clone Repository button in the UI.

c. Paste the constructed clone URL into the input box.

d. Choose the target folder (e.g., /usr/code/repos).

e. Click Clone to start cloning.

Results

The Git repository is successfully cloned to your target folder. You can now begin working with the cloned files in your dev 

container.

Authenticating Git with device code
You can set up a GPG key and password store within your dev container to perform Git operations securely and establish a 

robust authentication layer to clone, commit, and push changes to your repository.

Before you begin

You must have performed the following task:

• Read File system in the dev container  on page 112.

About this task

The process involves creating a GPG key, initializing a password store, and then using a device code or passphrase to 

perform Git operations. https://docs.github.com/en/authentication/managing-commit-signature-verification/generating-a-

new-gpg-key

1. Launch the dev container

a. From the launcher in DevOps Loop, click the Code  button.

b. Run the dev container to start the Code IDE instance.

c. After the container is running, open a new terminal by clicking the Explorer  button in the right vertical toolbar 

and selecting Terminal.

All subsequent steps must be run as commands from this terminal.

2. Configure a GPG Key

a. In the terminal, run the following command to create a GPG key with a passphrase

gpg --full-generate-key

b. When prompted, select "RSA and RSA (default)", which is the first option, as the key type.

c. Specify the desired key size and how long the key should be valid.

d. Once the key longevity is provided, you will get a prompt showing the key's expiration date. You need to 

confirm if this date is correct.

e. The key identification process will then ask for a User ID, which includes your real name, email address, and 

an optional comment. During this step, you may be instructed to perform actions like moving your mouse or 

typing on the keyboard to generate enough "entropy".

f. To protect your new key, you will be prompted to enter a passphrase.

https://docs.github.com/en/authentication/managing-commit-signature-verification/generating-a-new-gpg-key
https://docs.github.com/en/authentication/managing-commit-signature-verification/generating-a-new-gpg-key


Chapter 6. Capabilities of DevOps Loop

g. After the key is generated, you will see a line that says

gpg: key <GPG Key> marked as ultimately trusted

This confirms the key's creation.

h. If the key is not printed properly, use this command:

gpg --list-secret-keys --keyid-format LONG

3. Initialize the Password Store

◦ Use the following command to initialize the password store with your key.

pass init <GPG Key>

A message similar to the following confirms that the password store has been initialized and a directory 

(e.g., /usr/code/starter-ibm-devops-automation-code-minimal-1-0-300/.password-store/) has been created:

mkdir: created directory '/usr/code/starter-ibm-devops-automation-code-minimal-1-0-300/.password-store/'

Password store initialized for <GPG Key ID>

4. Export an environment variable

You have to export an environment variable each time you open a new terminal.

export GPG_TTY=$(tty)

5. Perform Git Operations via Terminal

After the setup is complete, you can use a device code to perform Git operations.The device code is only valid as long 

as the GPG key is valid. If the key expires (for example, in one day), you will need to repeat the entire setup process 

the next day. When a session expires, you can use the passphrase to perform further Git operations.

Example: Cloning, adding, committing, and pushing changes to the Control repository

a. Copy the repository link from Control Repository, and run the following command to clone it:

git clone <control-repo-link>

Note:  During the clone operation, you are prompted to authenticate by visiting a link provided in the 

terminal, entering the provided device code, and then granting access to the Git credential manager by 

clicking Yes.

b. After cloning, you can add a file, and then commit and push the changes to the repository. This process is 

similar to working with a standard GitHub repository.

When you run git push, you are prompted to provide your passphrase to complete the operation.

6. Alternatively, using the Git UI

a. From the left toolbar, click File > Open folder and select the root directory.

b. Click the Clone Repository button.

c. Paste the Control repository link when prompted.

119



HCL DevOps Loop 2025.12 (2.0.0)

120

d. Authenticate by visiting the provided link and entering the device code, then approve the Git credential 

manager prompt.

e. Once cloned, use the UI to add, commit, and push changes.

f. When pushing, enter your passphrase when prompted to complete the operation.

Configuring dev containers
As a teamspace admin in Code, you can configure the dev containers so that they are available to the team members.

Before you begin

You must have performed the following tasks:

• Installed Docker and ensured that it is running on your machine.

• Installed Node.js and npm (for Dev Container CLI).

• Created a DockerHub account and enabled it for pushing images.

• Gained access to Control with permission to create repositories.

About this task

You can set up and preconfigure dev containers for users in a teamspace while using Code. You can create and configure the 

container environment, build an image, publish it to a registry, and make it accessible within the teamspace's configuration 

repository. These configurations follow the Dev Containers specification  and are versioned by pushing them to a Control Git 

repository.

1. Install the Dev Container CLI  tool:

a. Clone the GitHub repository by running the following command:

git clone https://github.com/devcontainers/cli.git

b. Navigate to the cloned directory and install the following Dev Container CLI:

npm install -g @devcontainers/cli

2. Create the devcontainer.json  file:

You can create the devcontainer.json file by defining the metadata such as name, description, build or image source, 

and runtime Visual Studio Code extensions.

Here’s a sample devcontainer.json:

{
  "name": "Go Dev Container",
  "description": "A preconfigured Go development environment with code-server support and Go tooling.",
  "build": {
    "dockerfile": "Dockerfile"
  },
  "customizations": {
    "vscode": {
      "extensions": [
        "secure-dev-ops.devops-code",
        "golang.go"
      ]
    }

https://github.com/devcontainers/cli
https://containers.dev/


Chapter 6. Capabilities of DevOps Loop

  }
}

Note:  In the example above, extensions are specified by their IDs, and will then be downloaded from 

the Open VSX  registry (that is, <publisher.name>  format. However, administrators may need to pre-

bundle .vsix extension files directly within the dev container image. In such scenarios, especially within 

offline environments, you can specify the local .vsix files using a relative path. See Loading extensions from 

local .vsix files  on page 128.

You can also download a sample file here: devcontainer.json

Refer to the Dev Container metadata reference guide  to include JSON metadata related to general settings, Docker or 

Docker Compose-specific options, and tool-specific properties for configuring a devcontainer.js file.

3. Create the Dockerfile  for custom environment setup:

You can add a Dockerfile to define the environment and behavior of your development container by specifying the 

base image, installing tools, setting environment variables, and configuring the container runtime.

Example Dockerfile:

FROM ubuntu:20.04
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update && \
    apt-get install -y \
        sudo \
        curl \
        git \
        ca-certificates \
        build-essential && \
    apt-get clean
 
⚠ Install Go
ENV GO_VERSION=1.22.3
RUN curl -fsSL https://go.dev/dl/go${GO_VERSION}.linux-amd64.tar.gz | tar -C /usr/local -xz
ENV PATH="/usr/local/go/bin:${PATH}"
ENV GOPATH="/home/1001/go"
ENV PATH="${GOPATH}/bin:${PATH}"
 
⚠ Install code-server
RUN curl -fsSL https://code-server.dev/install.sh | sh -s -- --version=4.98.0
 
⚠ Safe for Ubuntu + RHEL images
RUN chmod -R ug+w /etc/pki/ca-trust/source /etc/pki/ca-trust/extracted || true
 
RUN useradd -m -u 1001 devuser
USER 1001
WORKDIR /home/1001
CMD ["tail", "-f", "/dev/null"]

Key Commands required for the Dockerfile:

121

https://open-vsx.org/
docs/attachments/devcontainer.zip
https://containers.dev/implementors/json_reference/


HCL DevOps Loop 2025.12 (2.0.0)

122

◦ FROM: Set the base image.

◦ ENV: Set the environment variables.

◦ RUN: Install dependencies and clean cache to keep the image lean.

◦ USER: Run the container as a non-root user (1001) for security.

◦ CMD: Keep the container running by tailing a null file.

To create or customize a Dockerfile for your development container, refer to the official Dockerfile reference. 

This guide provides detailed explanations and examples of all supported commands. You can also explore 

dev container documentation  for guidance on integrating your Dockerfile into a .devcontainer setup.

Note: If DevOps Loop runs using self-signed certificates or private Certificate Authorities (CAs), the admin 

must add the line RUN chmod -R ug+w /etc/pki/ca-trust/source /etc/pki/ca-trust/extracted  in the Dockerfile 

before the line USER 1001.

You can download a sample Dockerfile here: Dockerfile

4. Build the dev container  image:

Navigate to the root .devcontainer  directory and run the following command to build the dev container image.

devcontainer build --workspace-folder . --image-name sarasonia/go-container:1.0

This command reads the devcontainer.json file and executes the Dockerfile. The syntax should be in the following 

format:

devcontainer build --workspace-folder . --image-name <username>/<container-name>:<tag>

where,

◦ <username>: Docker Hub username

◦ <container-name>: your container (repository) name

◦ <tag>: version (for example, 1.0)

5. Update the devcontainer.json  file to use the image key:

{
  "name": "Go Dev Container",
  "description": "A preconfigured Go development environment with code-server support and Go tooling.",
  "build": {
    "dockerfile": "Dockerfile"
  },
  "image": "sarasonia/go-container:1.0",
  "customizations": {
    "vscode": {
      "extensions": [
        "secure-dev-ops.devops-code",
        "golang.go"
      ]
    }
  }
}

6. Push the image to Docker Hub  registry:

Login and push.

https://docs.docker.com/reference/dockerfile/
https://containers.dev/
docs/attachments/Dockerfile.zip


Chapter 6. Capabilities of DevOps Loop

docker login
docker push sarasonia/go-container:1.0

After it is pushed, it will be available at: docker.io/devuser/java-container.

7. Access Control:

a. Sign in to HCL DevOps Loop. Navigate to your teamspace.

b. Go to the Control  page. You’ll see a repository named .devopsconfig under your teamspace (e.g., 

TeamspaceEG/.devopsconfig).

8. Upload devcontainer.json  and Dockerfile  using Control:

a. Inside the .devcontainer  folder of the repo, upload devcontainer.json and Dockerfile.

b. Commit and push the changes to the main branch.

Note:  You can also commit the changes to a different branch other than the main branch. In such a 

case, you will see different branches on the Branch menu.

9. Start the sample Go container:

a. Go to the Code  landing page.

b. Click the teamspace  button and switch to your teamspace  on page 106. Under Other Dev Containers, you 

will see a new dev container:

123



HCL DevOps Loop 2025.12 (2.0.0)

124

c. Click Let’s Go  to launch the container.

Note: The first-time launch may take a few minutes.

10. View Visual Studio Code  Extensions:

In the Code IDE instance, click the Extensions  button to see and verify the extensions you had configured in 

devcontainer.json  file.



Chapter 6. Capabilities of DevOps Loop

11. Cloning .devopsconfig repo using DevOps Code:

After navigating to the Control page and locating the .devopsconfig repository, you can update your configuration files 

using the recommended workflow

This method is recommended for making multiple changes, as it provides an easier user experience by leveraging the 

Git functionality within Code.

125



HCL DevOps Loop 2025.12 (2.0.0)

126

a. Click the Code  dropdown button next to the repository name, and select Open with DevOps 

Code.

b. This directs to the Clone Control git repository  page. Here, add the Loop settings branch, Dev container  and 

a suitable folder name  for cloning. You can see how the full path changes according to the name you updated 

in the Clone folder name  textbox.



Chapter 6. Capabilities of DevOps Loop

c. Click Clone  to clone the repository. This directs to Code IDE instance. After successful loading of the IDE 

page, you get a Clone succeeded at location  message popup. Copy the location.

d. In the Code IDE instance, go to the hamburger menu, select File  and click Open Folder, and paste the location 

path in the Go to file  dropdown textbox, and click the OK  button.

e. Navigate to the devcontainer folder in the left Explorer pane, add/update your devcontainer.json and 

Dockerfile files, and use the built-in Git tools within Code  to commit and push the changes to the desired 

branch of Control.

Results

The custom container image has been successfully built and published to the Docker registry. The image is now ready to be 

configured for use within your teamspace.

What to do next

127



HCL DevOps Loop 2025.12 (2.0.0)

128

After you configure dev containers for teamspaces, members in a team can launch any dev container directly from their Code 

landing page.

Loading extensions from local .vsix  files
Using Code, you can install and activate extensions in an offline or air-gapped environment by loading them from local .vsix 

files specified in the dev container configuration.

About this task

You can load extensions from a local .vsix file by specifying a relative path. This approach allows offline or air-gapped 

environments to activate extensions and is also necessary for proprietary extensions that should not be published publicly, 

without requiring access to the Open VSX  registry.

1. Place your .vsix extension files into a local folder, such as extensions/ inside a cloned .devopsconfig repository:

This allows offline environments to access the extensions without connecting to the Open VSX registry.

2. Reference the local .vsix files in your dev container configuration file (devcontainer.json):

devcontainer.json example:

{
  "name": "Node",
  "description": "Node codeserver environment with offline extensions",
  "build": {
    "dockerfile": "./Dockerfile"
  },
  "customizations": {
    "vscode": {
      "extensions": [
        "IBM.wca-core-1.6.2.vsix",
        "ms-python.python-2025.14.0.vsix"
      ]
    }
  }
}

You can specify the exact version of each extension you want to install and control updates centrally.

3. Update your Dockerfile to copy the extensions folder into the container during build:

Dockerfile example:

FROM mcr.microsoft.com/devcontainers/javascript-node:1-22-bookworm
 

ENV DEBIAN_FRONTEND=noninteractive
 

RUN apt-get update && \
    apt-get install -y sudo curl git gnupg pass pinentry-tty && \
    apt-get clean
 

RUN curl -fsSL 
 https://github.com/git-ecosystem/git-credential-manager/releases/download/v2.6.1/gcm-linux_amd64.2.6.1.
tar.gz -o gcm.tar.gz \
    && tar -xvf gcm.tar.gz -C /usr/local/bin \
    && rm -rf gcm.tar.gz \

https://open-vsx.org/


Chapter 6. Capabilities of DevOps Loop

    && git-credential-manager configure
 

RUN curl -fsSL https://code-server.dev/install.sh | sh -s -- --version=4.103.2
 

COPY extensions /opt/extensions/
 

USER 1001
 

CMD ["tail", "-f", "/dev/null"]

This ensures the extensions are installed automatically when the container is set up.

4. Build and run the dev container:

The extension manager will detect the local .vsix files and install them during container startup.

Results

You have successfully installed and activated extensions in your dev container using local .vsix files. The extensions are now 

immediately available for use.

Installing GitHub Copilot in dev containers
As an admin, you can install the GitHub Copilot extension to enable AI-powered code suggestions, and chat assistance 

within your dev container.

Before you begin

You must have performed the following tasks:

• Gained access to edit the .devopsconfig control repository.

• Have a valid GitHub account with an active GitHub Copilot subscription.

About this task

This task describes how you can configure a dev container to support GitHub Copilot, and install and activate the extension 

within the running environment.

1. Configure the dev container image:

a. Navigate to the .devopsconfig Control repository.

b. Edit the existing devcontainer.json file (for example, within the Java dev container configuration), and update 

the image property to define the specific container version:

"image": "baravich/devcontainer-java-copilot:2.0.000" 

c. Commit and push the changes to the repository.

2. Launch the dev container:

a. In Code, locate the appropriate tile for the dev container configured in Step 1.

b. Click the tile to launch the dev container.

3. Install the Copilot Extensions:

129



HCL DevOps Loop 2025.12 (2.0.0)

130

a. You must run a script to install the necessary binaries once the environment is running. Open a new Terminal 

in the dev container environment.

b. Copy and paste the following command to download and run the installation script:

curl -fsSL 
 https://raw.githubusercontent.com/sunpix/howto-install-copilot-in-
code-server/refs/heads/main/install-copilot.sh

This script automatically installs both the GitHub Copilot and Copilot Chat extensions.

4. Authenticate and access the Copilot:

a. Locate the GitHub Copilot icon in the activity bar or status bar, once the installation is complete.

b. Select the icon and follow the prompts to sign in to your GitHub account.

c. Authorize the extension to access your subscription.

Results

The GitHub Copilot and Chat extensions are now installed and active. You can now use AI assistance for code generation 

and technical questions directly within your development environment.

Extensions
You can use extensions to specialize the Code IDE, integrating tools for coding, debugging, version control, and more. You 

can deploy them during initial project setups or to ensure workflow consistency in containerized and offline environments.

Preinstalled extensions

Your administrator can configure dev containers with preinstalled extensions during setup. These extensions are defined 

in the devcontainer.json file and sourced from the Open VSX  Registry. For details on how to configure these in the 

devcontainer.js, refer to the Administrator Guide  on page 120.

The following image shows a simple example of preinstalled extensions available in Code  when you launch a dev container.

https://open-vsx.org/


Chapter 6. Capabilities of DevOps Loop

While working in your browser-based IDE, you can also perform the following tasks:

• Install additional extensions directly from the Open VSX Registry from the Extensions button in the left toolbar of the 

IDE.

• Install local VSIX files if needed.

Note: Any extensions you manually install is removed when the dev container is terminated. For more information, see Using 

dev containers  on page 110.

Integrating Plan with Code
The DevOps Code extension allows integration with HCL DevOps Plan  (Plan), enabling you to create and manage work items 

directly from your development environment in the browser IDE.

131



HCL DevOps Loop 2025.12 (2.0.0)

132

About this task

You can follow these steps to configure DevOps Code extension in the Code  browser IDE, and create work items in HCL 

DevOps Plan  (Plan).

1. Open the Command Palette.

Right-click to open the context menu and select Command Palette  in the editor.

2. Access the DevOps Code Command.



Chapter 6. Capabilities of DevOps Loop

a. Choose the Code  command from the list of available commands.

The Create Plan Item  window is displayed.

b. Click the Configure settings  button to integrate DevOps Code with Plan  for the first time.

The Settings  window is displayed to add the Personal Access Token, Plan Server URL, and Team Space ID.

You can add these fields by navigating to the Plan  platform, which is detailed in the next step.

3. Perform the following steps to get configuration details from Plan:

133



HCL DevOps Loop 2025.12 (2.0.0)

134

a. Click the Plan  button in the HCL DevOps Loop  switcher to navigate to the Plan  page.

b. Go to the Settings  section of Plan, and enter the Personal Access Token  (or API tokens) in the Create New 

API Token  dialog.

4. Perform the following steps to enter the configuration details:

a. Navigate back to the Code  application window from the switcher.

b. Update the configuration details in the Settings window of Code.

https://www.ibm.com/docs/en/devops-plan/3.0.3


Chapter 6. Capabilities of DevOps Loop

Note:  To find the team space ID to use, open a work item in Plan and look in the browser address bar 

for the text between the words "repos" and "databases". For example, 'f062c5fb-b1d6-458b-9c02-

af601d80e060' in https://<DevOpsLoopURL>/plan/#/ccmweb/view/repos/f062c5fb-b1d6-458b-9c02-

af601d80e060/databases/MODEL/records/WorkItem/MODEL00000179

5. Create a work item:

a. Select the DevOps Code  command from Command Palette.

The Create Plan Item  window is displayed again.

135



HCL DevOps Loop 2025.12 (2.0.0)

136

b. Fill in the required fields such as Application Project, Component, Type, Title, and Description.

c. Click the Create  button to create your work item in Plan.

A prompt is displayed at the end of the IDE to indicate that the work item has been created successfully.

6. Click Open Work Item Link  to view the work item on the Plan  page.

A dialog is displayed to open the Plan  web page.



Chapter 6. Capabilities of DevOps Loop

7. Click Open  to navigate to the work item page on the Plan  web page.

Results

By following these steps, you can easily configure the Code  extension and begin creating and managing work items directly 

within your development environment. This integration eliminates the need to switch between your Code IDE and Plan.

Note:  Currently, the DevOps Code extension has the following limitations:

• At most one Plan  application can be used. If you have multiple applications, the first one will be used.

• The Plan  application must use the Agile business flow. Other flows are currently not supported.

• Your Plan  project(s) must have at least one component.

Access applications via automatic port forwarding
You can access applications running within your dev container from your local machine as Code automatically detects and 

forwards listening ports (7000–8000), to ensure uninterrupted interaction with containerized services.

Note:  The dev container uses some ports internally and reserves the port range 7000 - 8000 for your application to 

use.

When Code  detects that an application is running in the dev container and listening on a port, it automatically forwards 

the port, making it accessible outside the container. For example, you can connect to applications running within the dev 

container from your local machine.

../videos/auto-port-forwarding.mp4

File management features
You can transfer files between your local computer and dev container, and simplify your development workflow.

The following section outlines the key features provided by Code  for file management:

137

../videos/auto-port-forwarding.mp4


HCL DevOps Loop 2025.12 (2.0.0)

138

Drag and Drop

Code  provides a drag-and-drop feature that simplifies file management, so that you can effortlessly transfer files between 

your local computer and the dev container. You can simply drag files from your local system and drop them into the Explorer 

view of the Code IDE to add them to a workspace folder.

../videos/drag-drop.mp4

Browse local files

Code  provides the Show Local button feature, which allows you to browse files from your local machine. This gives you the 

option to choose between using the file system of your local computer or that of the dev container.

Download

Code  provides the Download  option to easily download files and folders from the server IDE to your local system. Simply 

right-click on the required file or folder, select the Download  option, and the file will be transferred to your local machine for 

backup.

../videos/drag-drop.mp4


Chapter 6. Capabilities of DevOps Loop

Control
Control manages source code within the DevOps Loop  using GitHub compatible APIs that integrate with existing developer 

tools, workflows, and automation. It supports version management, collaboration, and code governance as development 

progresses.

For more details refer to the Control Documentation.

Managing Git authentication for developers
In this topic, you will learn how to manage authentication when using Git on your system to access Control repositories 

within DevOps Loop deployment.

There are three types of credentials you can use with Control in a Loop deployment:

• SSH keys: For information, see the Using an SSH key (for Desktop)  section in the Control Documentation.

• Personal access token via HTTPS: For information, see the Using HTTPS (not with OAuth2 support)  section in the 

Control Documentation.

139

https://help.hcl-software.com/devops/plan/3.0.6/oxy_ex-1/control/content/index.en-us.html
https://help.hcl-software.com/devops/plan/3.0.5/oxy_ex-1/control/content/usage/manage-clone.en-us.html
https://help.hcl-software.com/devops/plan/3.0.5/oxy_ex-1/control/content/usage/manage-clone.en-us.html


HCL DevOps Loop 2025.12 (2.0.0)

140

• OAuth credentials with Git-Credential-Manager via HTTPS: To configure your Git client in the development 

environment for HTTPS communications with Control in a DevOps Loop deployment, add settings similar to the 

following example using the Git command line. Replace yourhost.example.com  with your Loop server's hostname:

git config --global credential.https://yourhost.example.com.provider generic
git config --global credential.https://yourhost.example.com.oauthClientId git-credential-manager
git config --global credential.https://yourhost.example.com.oauthTokenEndpoint /auth/realms/devops-
automation/protocol/openid-connect/token
git config --global credential.https://yourhost.example.com.oauthDeviceEndpoint /auth/realms/devops-
automation/protocol/openid-connect/auth/device
git config --global credential.https://yourhost.example.com.oauthAuthorizeEndpoint /auth/realms/devops-
automation/protocol/openid-connect/auth
git config --global credential.https://yourhost.example.com.oauthAuthModes DeviceCode

This configuration ensures secure and efficient access to your repositories.

Build
Build is a build management platform within the DevOps Loop  that supports application development, continuous 

integration, and artifact storage. Its template-driven approach helps teams standardize processes, enforce policies, and 

integrate testing into their workflows.

For more details refer to the Build Documentation.

Configuring an external agent for Build in DevOps Loop
You can configure an external Build agent to connect with DevOps Loop  installed on Kubernetes (K8s), Azure Kubernetes 

Service (AKS), IBM Kubernetes Service (IKS), or OpenShift Container Platform (OCP).

Before you begin

Before you begin, ensure the following prerequisites are met:

• Installed DevOps Loop  on Kubernetes (K8s), Azure Kubernetes Service (AKS), IKS, or OCP.

• Ensured that you have access to the Kubernetes or OpenShift cluster where DevOps Loop  is running.

• Installed the DevOps Build agent on a supported external platform.

• Been granted permissions to edit services or create routes in the cluster.

1. Edit the Emissary ingress service to expose the Build agent port for Kubernetes (K8s), Azure Kubernetes Service 

(AKS), or IKS deployments.

a. Run the following command:

kubectl edit svc emissary-ingress -n emissary

b. Under the spec.ports  section, add the following configuration:

- name: build-agent
nodePort: 31123
port: 7920

https://help.hcl-software.com/devops/loop/2.0.0/docs/build/index.html


Chapter 6. Capabilities of DevOps Loop

protocol: TCP
targetPort: 7920                    

2. Update the installed.properties  file of the agent with the cluster domain and port.

locked/agent.brokerUrl=failover:(ah3://<service-domain>:31123)
locked/agent.jms.remote.host=<service-domain>
locked/agent.jms.remote.port=31123            

Result

You must replace <service-domain>  with the domain exposed in your cluster setup.

3. Start the external Build agent.

Result

The agent is displayed under the Agents  section in the Build UI.

4. For IKS, configure the cluster service domain, if it is not configured.

Follow step 12  on page 33 in the Installing DevOps Loop  on IBM Cloud Kubernetes Service (IKS)  topic for setting up 

the service domain.

5. For OpenShift deployments, create a route to expose the Build agent service.

a. Apply the following route definition:

cat <<EOF | oc apply -n <namespace> -f -
apiVersion: route.openshift.io/v1
kind: Route
metadata:
name: devops-build-agent
spec:
to:
kind: Service
name: devops-build-server
port:
targetPort: agent
tls:
termination: passthrough
insecureEdgeTerminationPolicy: Redirect
EOF                    

b. Retrieve the route host by running the following command:

oc get route devops-build-agent

c. Update the installed.properties  file of the agent as follows:

locked/agent.brokerUrl=failover:(ah3://<route-host>:443)
locked/agent.jms.remote.host=<route-host>
locked/agent.jms.remote.port=443                    

d. Start the external Build agent.

Result

The agent is displayed under the Agents  section in the Build UI.

Results

You have configured the external Build agent and connected it to DevOps Loop.

141



HCL DevOps Loop 2025.12 (2.0.0)

142

What to do next

You can now run jobs on this agent.

Integrating Build resources with existing loop and teamspaces
You can integrate the previously created Build resources, including teams, mappings, and agent pools to an existing 

teamspace and loop after you upgrade from DevOps Loop  1.0.2 to 1.0.3 or later.

Before you begin

You must have completed the following tasks:

• Ensured that you have the administrator privileges in DevOps Loop.

• Ensured that you have a valid bearer token.

• Ensured that you have a loop ID, teamspace ID, and loop name.

1. Create a team in Build by using the following API call:

 

                    curl -kX PUT "${LOOPDOMAIN}/build/rest2/team/loop/${loopId}" \
                    -H "Authorization: Bearer ${BEARER_TOKEN}" \
                    -H "Content-Type: application/json" \
                    -d '{
                    "name": "${LoopName}",
                    "description": "",
                    "type": "Loop",
                    "teamspaceId": "${teamspaceId}",
                    "roleMappings": [
                    {
                    "role": "Platform User",
                    "user": "${UserEmailAddress}",
                    "authenticationRealm": "Platform_build_OIDC"
                    }
                    ]
                    }'
                

Replace all variables with actual values:

◦ loopId: Navigate to Deploy  >  Settings  >  Teams. Select the team created during loop initialization and loop ID 

can be found at the end of the URL.

◦ teamspaceId: Navigate to Deploy  >  Settings  >  Teams. Select the team created during teamspace creation 

and teamspace ID can be found at the end of the URL

◦ LoopName: Use the loop's name, without any prefix.

◦ BEARER_TOKEN: Use a valid bearer token.

You can assign additional members in the roleMappings  array. Supported roles include Platform User  and Platform 

Admin.

2. Perform the following steps to map resources to the newly created team in Build:



Chapter 6. Capabilities of DevOps Loop

a. Click Teams  in the left navigation panel.

The Teams  tab is displayed with the list of teams.

b. Select the newly created team.

c. Map the following resources in the Team Objects Mappings  section:

▪ Project

▪ Project Process

▪ Job

▪ Repository

▪ Template

▪ Agent Pool

d. Select each resource from the drop-down, click Add, select the newly created team, and click OK.

3. Add the required users to the new team.

4. Configure the agent and assign it to the appropriate agent pool.

5. Click Retry  for the failed teamspaces after upgrading from DevOps Loop  1.0.2 to DevOps Loop  1.0.3 or later to 

complete the teamspace creation.

Results

The Build environment is now successfully integrated into the previously created loops and teamspaces after upgrading from 

DevOps Loop  1.0.2 to DevOps Loop  1.0.3 or later.

Related information

Configuring Agents

Assigning users to teams

Test
Test Hub centralizes test data, environments, test runs, and reports in a single web based interface within the DevOps 

Loop. It streamlines test management, execution, and tracking, providing greater efficiency and visibility to ensure quality 

throughout the loop.

For more details refer to the Test Hub Documentation.

Integration of Test Hub  with Measure
When you want to export the test results to Measure, you can use the Test Hub  plugin to integrate Test Hub  with Measure. 

After you complete the integration, you can run test assets, and then view the metrics on the Measure  dashboard.

Prerequisites
You must have completed the following tasks in Measure  before proceeding with the tasks to be performed in Test Hub:

143

https://help.hcl-software.com/devops/loop/1.0.3/docs/build/docs/topics/agent_config.html
https://help.hcl-software.com/devops/loop/1.0.3/docs/build/docs/topics/security_teams_users.html
https://www.ibm.com/docs/en/devops-test-hub/11.0.7?topic=getting-started-guide


HCL DevOps Loop 2025.12 (2.0.0)

144

1. Added Test Hub  integration in Measure. For more information, refer to the Test Hub plugin documentation.

2. Copied the URL that is displayed on the Integrations  page in Measure  and saved it for later use. Here is the URL 

sample: https://10.0.2.15.nip.io:9443/reporting-consumer/pluginEndpoint/67eaa3c12b5778a2d1332269/onetest/

callback.

Steps to perform in Test Hub
You can perform the following tasks when you want to export test results to your dashboard in Measure:

1. Configure a webhook for Measure  on page 144.

2. Add additional parameters for test runs  on page 146.

Configuring a webhook for Measure
When you want to export test results to Measure  after the test run, you can do so by configuring a webhook to receive the 

customized results.

Before you begin

You must have completed the following tasks:

• Read and fulfilled the prerequisites that are listed in Integration of Test Hub with Measure.

• Read and understood Configuration of a webhook.

• Read and understood the configuration of a webhook template. For more information, refer to Configuring a webhook 

template.

• Read and understood the configuration of a server webhook. For more information, refer to Configuring a server 

webhook.

About this task

You can set up webhooks to send notifications to various messaging apps such as Microsoft Teams, Slack, Measure, or 

to any application that can receive an HTTP POST  request, whenever specific events happen on Test Hub. For instance, 

a webhook can be triggered when a test run fails. After the event, the payload that is received by the application contains 

the details of the event, including the additional parameters that you added. If you want the result events to be correlated 

when using systems such as Measure, you must add the properties that are present in the webhook template as additional 

parameters in the Execute test asset  window.

1. Log in to Test Hub.

The Projects  page of the initial team space is displayed.

2. Click My projects  > project_name  to open the project that contains the test assets.

The Overview  page of the project is displayed.

3. Click Manage  >  Webhooks.

The Templates  tab is displayed.

4. Click New Template.

The New template  page is displayed.

https://www.hcl-software.com/plugins/hcl-onetest-server
https://10.0.2.15.nip.io:9443/reporting-consumer/pluginEndpoint/67eaa3c12b5778a2d1332269/onetest/callback
https://10.0.2.15.nip.io:9443/reporting-consumer/pluginEndpoint/67eaa3c12b5778a2d1332269/onetest/callback
https://help.hcl-software.com/devops/test/hub/11.0.6/docs/topics/c_webhook.html
https://help.hcl-software.com/devops/test/hub/11.0.6/docs/topics/t_config_webhook_temp.html
https://help.hcl-software.com/devops/test/hub/11.0.6/docs/topics/t_config_webhook_temp.html
https://help.hcl-software.com/devops/test/hub/11.0.6/docs/topics/t_config_server_webhook.html
https://help.hcl-software.com/devops/test/hub/11.0.6/docs/topics/t_config_server_webhook.html


Chapter 6. Capabilities of DevOps Loop

5. Perform the following actions on the DETAILS  tab.

a. Enter a unique name for the template.

b. Create a new channel type by clicking the Create new channel type ...  option.

The New channel type  dialog is displayed.

c. Enter a unique name for the channel type, and then enter a description for the channel type.

6. Click Apply.

The channel type is created and added to the Channel Type list.

7. Click This template is suitable for events, and select only the following events from the Execution Events  list:

◦ Execution Stopped Manually

◦ Execution Completed with Verdict Pass

◦ Test and Suite Errors

8. Click the  Template  tab.

9. Click the  infinity  icon  to insert a Measure  sample template in the Template body.

A message is displayed about the action that inserts text in the template body.

10. Click Ok.

11. The text is inserted in the Template body.

Note:  Remove #if( $commit || $buildId || $buildUrl)  from the webhook template if you are not passing 

either commit, buildId  or buildUrl  as additional parameters during test execution in Test. If you do not remove 

the webhook is not triggered.

12. Click Apply.

The template is created and added to the Templates  tab.

13. Click the Webhooks  tab, and then click New Webhook.

The New Webhook  page is displayed.

14. Enter a name for the webhook in the Name  field.

15. Paste the URL that you copied earlier from the Integrations  page of Measure  in the Webhook URL  field.

16. Click theChannel Type, and then select the channel type that you just created from the list.

17. Enter a description for the webhook in Description.

18. Select the template that you just created from the drop-down list.

19. Click Apply.

The webhook is created and added to the Webhooks  tab.

Results

You have configured a webhook to export the test results to Measure  after the test run is complete.

What to do next

You can configure the test run and run the test to export the result summary to Measure. See Adding additional parameters 

for test runs  on page 146.

145



HCL DevOps Loop 2025.12 (2.0.0)

146

Adding additional parameters for test runs
When you want to add additional parameters to be included in test results, you can do so by defining the parameters.

Before you begin

You must have completed the following tasks:

• Read and fulfilled the prerequisites that are listed in Integration of Test Hub with Measure.

• Configured a webhook for Measure. See Configuring a webhook for Measure  on page 144.

1. Click Execution  in the navigation pane.

2. Select the test that you want to run and click  in the Actions  column to open the Execute test asset  window.

3. Click Advanced settings.

4. Enter the following parameters and values in Additional Configuration Parameters:

Parameter name Value

result.property.buildId Enter the build ID for which you are running the test in the second 

edit field as the parameter value. For example, 1.13.4.

result.property.buildUrl Enter the build URL for which you are running the test in 

the second edit field as the parameter value. For example, 

https://10.10.110.112.nip.io/build/tasks/project/build_test123 .

5. Click Add  for each parameter.

6. Click Execute.

Results

The additional parameter values are captured while your test runs, and the test results are exported to Measure  after the test 

run is complete.

What to do next

You must perform the following tasks to view the test results in the dashboard of Measure:

1. Create a dashboard in the Insights  section. For more information, refer to Creating dashboards.

2. Add a chart to the newly created dashboard, and when you click Add charts, you must select Functional Tests, Unit 

Tests, API Tests, and Performance Tests from the Quality  section. For more information, refer to Adding a chart.

Release
Release standardizes and automates the software release lifecycle with the DevOps Loop, moving applications smoothly 

from preproduction to production. It provides predictable scheduling, integrates changes from planning tools, and gives 

stakeholders clear visibility into plans and milestones.

For more details refer to the Release Documentation.

https://help.hcl-software.com/devops/velocity/5.1.x/user/topics/port_dashboardCreate.html
https://help.hcl-software.com/devops/velocity/5.1.x/user/topics/port_interpretdata.html
https://help.hcl-software.com/devops/velocity/5.1.x/index.html


Chapter 6. Capabilities of DevOps Loop

Deploy
Deploy standardizes and simplifies the rollout of software components across environments withing the DevOps Loop. Its 

release automation tools improve deployment speed and reliability, providing visibility into multi-tiered deployments and 

orchestrating complex processes across environments and approval gates.

For more details refer to the Deploy Documentation.

Installing an external agent for Deploy in DevOps Loop
You can install and connect an external Deploy agent to a DevOps Loop  instance running on Kubernetes (K8s), and IBM 

Kubernetes Service (IKS).

Before you begin

Ensure that the following prerequisites are met:

• Installed DevOps Loop  on Kubernetes (K8s), or IKS.

• You have access to the Kubernetes cluster where DevOps Loop  is running.

1. Obtain the Deploy web agent communication URL for the Deploy server running in the DevOps Loop  instance.

In a Kubernetes cluster, the URL is indicated as: wss://{{.Values.global.domain}}:7919

Here, the value for the Values.global.domain  is the same URL used to access the DevOps Loop  UI.

2. Install the Deploy agent using the Deploy web agent communication URL obtained in step 1.

During the agent installation, you must specify any teams you want the Deploy agent to be included in. Refer to 

Installing agents  for more information on Deploy agent installation.

3. Start the external Deploy agent.

Result

The agent is displayed under the Agents  section in the Deploy UI.

Troubleshooting

If you encounter issues connecting the Deploy agent to the Deploy server running in DevOps Loop, verify that the 

Emissary Ingress service is configured to route traffic on port 7919 to the Deploy server WSS service:

a. Run the following command to inspect the service:

$ kubectl get svc -n emissary

A correct output lists 7919 in PORT(S) column, like the following:

NAME                     TYPE         CLUSTER-IP     EXTERNAL-IP PORT(S)                         
                         AGE
emissary-ingress         LoadBalancer 172.21.20.31   xx.xx.xx.xx 
 443:31734/TCP,80:32086/TCP,7919:31941/TCP,9022:31708/TCP 112d
emissary-ingress-admin   ClusterIP    172.21.9.14    <none>      8877/TCP,8005/TCP               
                         112d

b. If the port 7919 is not listed for the emissary-ingress service, edit the service configuration:

$ kubectl edit svc emissary-ingress -n emissary

147

https://help.hcl-software.com/devops/deploy/8.1.2/index.html
https://help.hcl-software.com/devops/deploy/8.1.2/install/topics/agent_install_ov.html


HCL DevOps Loop 2025.12 (2.0.0)

148

c. Under the spec.ports  section, add the following lines:

 - name: deploy-wss

 port: 7919

 protocol: TCP

 targetPort: 7919

After port 7919 is configured in the emissary-ingress service, your Deploy agent should successfully connect 

to the Deploy server running in DevOps Loop.

Results

You have installed and connected the external Deploy agent to DevOps Loop.

What to do next

You can now use this agent to run deployments.

REST commands for Deploy
This set of reference topics provides additional information on using the command line interface for tasks related to 

teamspaces and loops in Deploy.

Example

Creating applications in a loop from a JSON file

Prerequisite

To create applications in a loop, you must have any one of the following permissions:

• Manage Team Spaces  permission.

• Manage Loops  permission and are a member of the teamspace.

Request

PUT https://{hostname}:{port}
    /cli/application/create
Accept: {contentType}

Table  6. Header parameters

Para

meter Type

Requ

ired Description

Accept application/json true

This command takes a JSON request string or file. You must use the following template for the request:

Example



Chapter 6. Capabilities of DevOps Loop

Example JSON request with loop name

{

  "loop": {

    "name": "Loop 1",

    "teamSpace": "Team space 2"

  },

  "name": "My Application"

}

Example

Example JSON request with loop ID

{

    "loop": "1967ea12-9651-128d-4216-0f9a23522dd0",

    "name": "My Application", // application name

}

Example

Example command

curl -k -u username:passwd -X PUT https://{hostname}:{port}/deploy/cli/application/create -H 'Content-Type: 
 application/json' --data-binary @create-application.json

Get an application in a loop

Request

GET https://{hostname}:{port}
    /cli/application
Accept: {contentType}

Table  7. Header parameters

Para

meter Type

Requ

ired Description

Accept application/json true

Table  8. Required parameters

Parameter Type

Requ

ired Description

application string true Name or ID of the application in the following format:

teamspaceName~loopName:applicationName

Example

149



HCL DevOps Loop 2025.12 (2.0.0)

150

Example command to get an application by using application ID
curl -k -u username:passwd -X GET https://{hostname}:{port}/deploy/cli/application
     -application "27d56999-91e1-4689-914a-e6c932a75234"

Example

Example command to get an application by using application name in loop by ID
curl -k -u username:passwd -X GET https://{hostname}:{port}/deploy/cli/application
     -application "6d076690-8a79-4fbc-990a-4852fb857d25:applicationName"

Note:  When using loop ID, you do not need to specify the teamspace name or ID. If you do, make sure that the 

teamspace name or ID is valid.

Example

Example command to get an application by using application name in loop by name in teamspace by ID

curl -k -u username:passwd -X GET https://{hostname}:{port}/deploy/cli/application
     -application "6d076690-8a79-4fbc-990a-4852fb857d25~loopName:applicationName"

Example

Example command to get an application by using application name in loop by name in teamspace by 
name

curl -k -u username:passwd -X GET https://{hostname}:{port}/deploy/cli/application
     -application "teamspaceName~loopName:applicationName"

Example

Example response

[
    {
        "id": "1967ea12-9651-128d-4216-0f9a23522dd0",
        "securityResourceId": "1967ea12-9611-fde1-7dd3-fb62aef3d398",
        "loop": {
            "id": "1234bdb3-90a1-414d-88b3-1ff19e822ded",
            "name": "sampleLoop3",
            "teamSpace": {
                "id": "d0ff4b8a-ab83-4cca-9c81-78daab66db27",
                "name": "samplets3"
            }
        },
        "name": "My Application",
        "created": 1745881213285,
        "enforceCompleteSnapshots": false,
        "active": true,
        "tags": [],
        "deleted": false,
        "onlyChangedVersions": true,
        "useWizard": false,
        "user": "demo user (admin@admin.com)"



Chapter 6. Capabilities of DevOps Loop

    }
]

Creating components in a loop from a JSON file

Prerequisite

To create components in a loop, you must have any one of the following permissions:

• Manage Team Spaces  permission.

• Manage Loops  permission and are a member of the teamspace.

Request
PUT https://{hostname}:{port}
    /cli/component/create
Accept: {contentType}

Table  9. Header parameters

Para

meter Type

Requ

ired Description

Accept application/json true

This command takes a JSON request string or file. You must use the following template for the request:

Example

Example JSON requests with loop name

{
    "loop": {
          "name" : "Loop 1",
          "teamSpace" : "Team space 2"
            },
    "name": "My Component",
}

Example

Example JSON request with loop ID

{

    "loop": "1967ea12-9651-128d-4216-0f9a23522dd0",

    "name": "My Application",

}

Example

151



HCL DevOps Loop 2025.12 (2.0.0)

152

Example command
curl -k -u username:passwd -X PUT https://{hostname}:{port}/deploy/cli/component/create -H 'Content-Type: 
 application/json' --data-binary @create-component.json

Get a component in a loop

Request
GET https://{hostname}:{port}
    /cli/component
Accept: {contentType}

Table  10. Header parameters

Para

meter Type

Requ

ired Description

Accept component/json true

Table  11. Required parameters

Parameter Type

Requ

ired Description

component string true Name or ID of the component in the following format:

teamspaceName~loopName:applicationName

Example

Example command to get a component by using component ID

curl -k -u username:passwd -X GET https://{hostname}:{port}/deploy/cli/component
     -component "27d56999-91e1-4689-914a-e6c932a75234"

Example

Example command to get a component by using component name in loop by ID

curl -k -u username:passwd -X GET https://{hostname}:{port}/deploy/cli/component
     -component "6d076690-8a79-4fbc-990a-4852fb857d25:componentName"

Note:  When using loop ID, you do not need to specify the teamspace name or ID. If you do, make sure that the 

teamspace name or ID is valid.

Example

Example command to get a component by using component name in loop by name in teamspace by ID

curl -k -u username:passwd -X GET https://{hostname}:{port}/deploy/cli/component
     -component "6d076690-8a79-4fbc-990a-4852fb857d25~loopName:componentName"



Chapter 6. Capabilities of DevOps Loop

Example

Example command to get a component by using component name in loop by name in teamspace by 
name
curl -k -u username:passwd -X GET https://{hostname}:{port}/deploy/cli/component
     -component "teamspaceName~loopName:componentName"

Example

Example response
[
    {
        "id": "1967ea55-d829-fb58-d2d9-f5cc351c50a9",
        "securityResourceId": "1967ea55-d7e1-7303-7ae7-7fc579cd6d0f",
        "loop": {
            "id": "1234bdb3-90a1-414d-88b3-1ff19e822ded",
            "name": "sampleLoop3",
            "teamSpace": {
                "id": "d0ff4b8a-ab83-4cca-9c81-78daab66db27",
                "name": "samplets3"
            }
        },
        "name": "My Component",
        "description": "New component for command example",
        "created": 1745881488769,
        "componentType": "STANDARD",
        "ignoreQualifiers": 0,
        "importAutomatically": false,
        "useVfs": true,
        "active": true,
        "integrationFailed": false,
        "deleted": false,
        "defaultVersionType": "FULL",
        "cleanupDaysToKeep": 0,
        "cleanupCountToKeep": 0,
        "tags": [],
        "user": "demo user (admin@admin.com)"
    }
]

Measure
Measure provides end-to-end visibility into the DevOps loop, giving teams to track how value is created throughout the work 

flow. It consolidates testing, security, and performance metrics to identify bottlenecks, team issues, and opportunities for 

improvement while strengthening governance across the organization.

For more details refer to the Measure Documentation.

153

https://help.hcl-software.com/devops/velocity/5.1.x/index.html


154

Chapter 7. Loop Genie - Tech Preview

Disclaimer:

This release contains access to the Loop Genie feature in HCL DevOps Loop  as a Tech Preview. The Tech Preview is 

intended for you to view the capabilities of Loop Genie offered by HCL  DevOps Loop, and to provide your feedback 

to the product team. You are permitted to use the information only for evaluation purposes and not for use in a 

production environment. HCL  provides the information without obligation of support and "as is" without warranty of 

any kind.

Loop Genie is an AI-powered, multi-agent chatbot integrated into DevOps Loop. It performs tasks and retrieves information 

across multiple capabilities through a single conversational interface.

Loop Genie supports multi-step queries that can involve multiple tools in a single request. You can perform actions such 

as creating work items, retrieving work item counts, creating branches, listing repositories, and accessing branch commit 

history, all within one prompt. Loop Genie also produces formatted responses for better readability, replacing raw JSON 

outputs.

Loop Genie connects with built-in agents to handle prompts securely and efficiently. You can interact with Loop Genie 

through text or voice input, making it easier to manage teamspaces, add or remove users, create branches, edit files, and 

manage pull requests without navigating multiple interfaces.

Loop Genie’s AI capabilities require or support integration with OpenAI, IBM watsonx, Claude, and Gemini. These integrations 

provide natural language understanding, context-aware responses, and advanced automation, enabling Loop Genie to 

perform tasks and retrieve information efficiently across your DevOps Loop  environment.

Loop Genie supports multi-step queries that can use multiple capabilities and tools within a single request.

Sample multi-step workflow execution in Loop Genie:

Scenario:  You want to create a new work item in DevOps Loop, assign it to a user, and then fetch its status all in a single 

request.

Prompt to Loop Genie:

“

Create a new story in the Payment API  project titled ‘Implement new refund feature’, assign it to 

alice@example.com, and then get the status of the newly created work item.”

”

How Loop Genie handles the execution:



Chapter 7. Loop Genie - Tech Preview

1. Step 1 – Create Work Item

◦ Calls plan_create_work_item  with project name, title, and optional fields.

◦ Returns the new work item ID.

2. Step 2 – Assign User

◦ Calls plan_update_work_item  (or equivalent MCP command) to assign the work item to abc@example.com.

3. Step 3 – Retrieve Status

◦ Calls analytics_get_work_item_status  with the work item ID to fetch the current status.

Output returned by Loop Genie:

Field Value

Work Item 

ID

12345

Title Implement a new refund 

feature

Assigned To abc

Status Open

Interacting with Loop Genie
You can use Loop Genie, an AI assistant, to retrieve information or perform tasks across multiple capabilities and loops 

within DevOps Loop. The results or actions are displayed directly in the chat interface.

Before you begin

You must have completed the following tasks:

• Integrated an AI provider on the Integrations  page. See Configuring OpenAI integration  on page 68, Configuring IBM 

watsonx integration  on page 72, Configuring Gemini integration  on page 71, Configuring Claude Desktop integration 

on page 70.

• Created a loop and ensured that there are certain tasks and activities performed in the different solutions within the 

loop. See Creating a loop  on page 89.

1. Click the  button on the dashboard of a loop on the My Loops  page.

Result

A chat interface is displayed with a greeting message: "Hello test admin, How can I help you today?"

2. Enter your prompt or query in the chat box.

155



HCL DevOps Loop 2025.12 (2.0.0)

156

Alternatively, you can click the  icon to enter your query through a voice search. You must allow the browser to 

use the microphone by accepting the notification when prompted.

If you have configured Loop Genie with IBM watsonx  integration, use # commands. Using # commands ensures that 

Loop Genie correctly routes the request to the intended tool.

Note:  Loop Genie allows a single prompt to execute multiple actions across various capabilities sequentially.

3. Select the Focus  option to filter search results based on their scope.

Available options include On All, On Loop, On Control, and On Test.

4. Click Send.

Result

Loop Genie processes your query and either displays the results or performs the requested action.

Note:  The output format might vary between AI providers, which can affect how responses are displayed in 

Loop Genie. The results from OpenAI  and IBM watsonx  may differ in structure or presentation.

5. Optional:  Click the  icon to download the conversation in a .json  format for later reference.

6. Optional:  Click  to close the Loop Genie pane.

Note:  When you close Loop Genie, the chat session is terminated, and you cannot view the conversation 

history.

Results

You have interacted with Loop Genie to retrieve information or perform tasks across DevOps Loop  capabilities.

Related reference

Prompt references for Loop Genie  on page 156

Prompt references for Loop Genie
You can use the following prompts to interact with Loop Genie, which will respond and perform the specified actions on your 

DevOps Loop  platform.

Example

Note:  These commands are for reference, and you can customize them based on your environment and version.

Example



Chapter 7. Loop Genie - Tech Preview

Loop Genie supports multi-step workflows. A single prompt can involve multiple capabilities, and Loop Genie will execute 

them sequentially as part of a single request.

Example

The following table shows the scope and sample prompts for various modules in DevOps Loop:

Module Scope Prompt examples

Loop Manage loops, projects, users, 

test projects, and control 

repositories within a loop.

• List all projects under Loop “TeamAlpha”.

• Add user “jane.doe@example.com” to Loop “TeamAlpha”.

• Attach Test Project “QA-Release1” to Loop “TeamAlpha”.

• Add repository “devops-repo” to Loop “TeamAlpha”.

Loop Teamspaces Manage teamspace, teamspace 

users, and invitations across 

teamspaces.

• Show all teamspaces in DevOps Loop.

• List all users in Teamspace “Engineering”.

• Invite “mark.smith@example.com” to Teamspace 

“Engineering”.

Loop (Plan) Manage planning activities like 

components, work items, and 

applications.

• List all components for Plan ID “Plan123”.

• What work item types are supported in Plan “Plan123”?

• Show work items for Project “InventoryApp”.

• List applications under Plan “Release2.0”.

• Create a Bug work item “Fix login issue” in Project 

“InventoryApp”.

• Delete work item ID “4567” from Plan “Plan123”.

Loop (Opensearch) Search and analyze work items, 

story points, and statuses. • Search for work items containing “API Bug” in Sprint 

“Sprint7”.

• Show the status of Work Item ID “789”.

• How many open work items exist in Plan “Plan123”?

• Show total story points for Sprint “Sprint5”.

Loop (Testhub) Manage and execute tests and 

test projects. • List all Testhub projects for Loop “QA-Team”.

• List all tests in Project “ReleaseSmokeTests”.

• Run Test ID “T101” in Project “ReleaseSmokeTests”.

157



HCL DevOps Loop 2025.12 (2.0.0)

158

Module Scope Prompt examples

• Show results for Test ID “T101” in Project 

“ReleaseSmokeTests”.

• Get Testhub result for ID “5555”.

Loop (Control) Manage repositories, branches, 

tags, releases, issues, pull 

requests, and searches.

• Show details of the authenticated user.

• List all organizations linked to my account.

• Fork repo “main-project” to my personal workspace.

• Show all repositories I own.

• Create branch “feature-123” in repo “backend-service”.

• List branches in repo “frontend-app”.

• Create release “v1.0” in repo “backend-service”.

• Get details of release “v1.0” in repo “frontend-app”.

• List all releases for repo “api-service”.

• Create tag “v2.0” in repo “frontend-app”.

• Get details of tag “v1.0-beta” in repo “backend-service”.

• List tags in repo “frontend-app”.

• Show commits in repo “backend-service”.

• Get content of “README.md” in repo “frontend-app”.

• Update file “config.yaml” in repo “api-service”.

• Get issue #12 from repo “frontend-app”.

• List all issues in repo “backend-service”.

• Create issue “Fix API bug” in repo “api-service”.

• Edit comment on issue #12 in repo “frontend-app”.

• Show comments for issue #34.

• List pull requests for repo “backend-service”.

• Create PR from branch “feature-123” to “main” in repo 

“api-service”.

• Search for team “DevOps” in Org “Enterprise”.

• Show current Gitea MCP Server version.



Chapter 8. Troubleshooting
You can contact HCL Support if you are unable to troubleshoot the problem. Gather all the required background information 

and provide the details to HCL Support for investigation. For more information, see HCL Customer Support.

159

https://support.hcl-software.com/csm


clx

Security Considerations
This document describes the actions that you can take to ensure that your installation is secure, customize your security 

settings, and set up user access controls in HCL DevOps Loop.

You can find the following information about security considerations for the solution:

• Security considerations for Plan

• Security Considerations for Test

• Security Considerations for Deploy

• Security settings for Measure and Release  and Considerations for GDPR readiness

https://help.hcl-software.com/devops/plan/3.0.3/oxy_ex-1/com.ibm.rational.clearquest.getstart.doc/topics/c_security_overview.html
https://help.hcl-software.com/devops/test/hub/11.0.4/docs/topics/c_securityover.html
https://help.hcl-software.com/devops/deploy/8.1.1/user/topics/c_securityover.html
https://help.hcl-software.com/devops/velocity/5.1.x/user/topics/c_node_security.html?hl=security
https://help.hcl-software.com/devops/velocity/5.1.x/user/topics/ucv_gdpr.html


clxi

Notices
This document provides information about copyright, trademarks, terms and conditions for the product documentation.

© Copyright IBM Corporation 2000, 2016 / © Copyright HCL Technologies Limited 2016, 2024

This information was developed for products and services offered in the US.

HCL®  may not offer the products, services, or features discussed in this document in other countries. Consult your local 

HCL®  representative for information on the products and services currently available in your area. Any reference to an HCL® 

product, program, or service is not intended to state or imply that only that HCL®  product, program, or service may be used. 

Any functionally equivalent product, program, or service that does not infringe any HCL®  intellectual property right may be 

used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-HCL®  product, program, 

or service.

HCL®  may have patents or pending patent applications covering subject matter described in this document. The furnishing 

of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

For license inquiries regarding double-byte character set (DBCS) information, contact the HCL®  Intellectual Property 

Department in your country or send inquiries, in writing, to:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

HCL TECHNOLOGIES LTD.  PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS 

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY 

OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in 

certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the 

information herein; these changes will be incorporated in new editions of the publication. HCL®  may make improvements 

and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-HCL®  websites are provided for convenience only and do not in any manner serve 

as an endorsement of those websites. The materials at those websites are not part of the materials for this HCL®  product 

and use of those websites is at your own risk.



clxii

HCL®  may use or distribute any of the information you provide in any way it believes appropriate without incurring any 

obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information 

between independently created programs and other programs (including this one) and (ii) the mutual use of the information 

which has been exchanged, should contact:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by HCL®  under terms 

of the HCL®  Customer Agreement, HCL®  International Program License Agreement or any equivalent agreement between 

us.

The performance data discussed herein is presented as derived under specific operating conditions. Actual results may vary.

Information concerning non-HCL®  products was obtained from the suppliers of those products, their published 

announcements or other publicly available sources. HCL®  has not tested those products and cannot confirm the accuracy 

of performance, compatibility or any other claims related to non-HCL®  products. Questions on the capabilities of non-HCL® 

products should be addressed to the suppliers of those products.

Statements regarding the future direction or intent of HCL®  are subject to change or withdrawal without notice, and 

represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely 

as possible, the examples include the names of individuals, companies, brands, and products. All of these names are 

fictitious and any similarity to actual people or business enterprises is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on 

various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to 

HCL®, for the purposes of developing, using, marketing or distributing application programs conforming to the application 

programming interface for the operating platform for which the sample programs are written. These examples have not been 

thoroughly tested under all conditions. HCL®, therefore, cannot guarantee or imply reliability, serviceability, or function of 

these programs. The sample programs are provided "AS IS", without warranty of any kind. HCL®  shall not be liable for any 

damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice as follows: 

© (your company name) (year). 

Portions of this code are derived from  HCL Ltd.  Sample Programs. 

© Copyright HCL Ltd.  2000, 2022.



clxiii

Trademarks
HCL®, the HCL®  logo, and hcl.com®  are trademarks or registered trademarks of HCL Technologies Ltd., registered in many 

jurisdictions worldwide. Other product and service names might be trademarks of HCL®  or other companies.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the HCL®  website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary notices are 

preserved. You may not distribute, display or make derivative work of these publications, or any portion thereof, without the 

express consent of HCL®.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that all proprietary 

notices are preserved. You may not make derivative works of these publications, or reproduce, distribute or display these 

publications or any portion thereof outside your enterprise, without the express consent of HCL®.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either express or implied, 

to the publications or any information, data, software or other intellectual property contained therein.

HCL®  reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of the publications is 

detrimental to its interest or, as determined by HCL®, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable laws and regulations, 

including all United States export laws and regulations.

HCL®  MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-

IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED 

WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.



Index
A

accessibility
DevOps Loop

disability 28
keyboard 28

Automation
overview 21

D
DevOps Loop

accessibility 28
default security administration 55
disability 28
keyboard 28

G
getting started

guide 21
git credential manager 139
guide

getting started 21

M
managing authentication resources 139

O
overview

Automation 21

R
REST API

application resource
/create GET 149
/create PUT 148

component resource
/create GET 152
/create PUT 151

GET methods
/application/ 149
/component/ 152

PUT methods
/application/create 148
/component/create 151

S
security considerations

overview clx

U
user access 55

164


	HCL DevOps Loop 2025.12 (2.0.0)
	Contents
	Chapter 1. Release Notes
	Product description
	What's new
	Product download and installation
	Known issues
	Contacting HCL support
	What's New
	What's New in DevOps Loop 2025.12 (2.0.0)
	What's New in DevOps Loop 2025.09 (1.0.3)
	What's new in DevOps Loop 2025.06 (1.0.2)
	What's new in DevOps Loop 2025.03 (1.0.1)

	Known issues
	Known issues in DevOps Loop 2025.12 (2.0.0)
	Known issues from earlier versions


	Chapter 2. System Requirements
	Contents
	Disclaimers
	Hardware
	Operating systems and containers
	Contents
	Bit version support
	Operating systems
	Container Platforms

	Host prerequisites
	Contents
	Installation
	Licensing
	Runtime environment
	Web browsers

	Supported software
	Supported software in DevOps Loop 2025.12 (2.0.0)


	Chapter 3. Getting Started
	Overview of DevOps Loop
	User interface
	Accessibility features
	Accessibility compliance
	Accessing UI elements


	Chapter 4. Administration
	Configuring external databases for the capabilities in DevOps Loop
	Overview
	Plan
	Build
	Deploy
	Measure and Release
	Test

	Installation of DevOps Loop
	Installing DevOps Loop on IBM Cloud Kubernetes Service (IKS)
	Installing DevOps Loop on Kubernetes Service (K8S)
	Installing on a K8S cluster that has load balancer resources available
	Installing on a K8S cluster with an upstream L7 load balancer
	Installing on a K8S cluster that has an upstream L7 load balancer and expects data to be re-encrypted

	Installation of DevOps Loop on Google Kubernetes Engine (GKE)
	Preparing GCP infrastructure for installing DevOps Loop on GKE
	Installing DevOps Loop on Google Kubernetes Engine (GKE)

	Installing DevOps Loop on a RHEL system for a demo setup
	Installation of DevOps Loop in an air-gapped environment
	Preparing images and resources for an air-gapped installation
	Installing DevOps Loop in an air-gapped environment

	Managing DevOps Loop features after installation
	Additional Helm parameters


	License management and user administration
	DevOps Loop licensing information
	Enabling the social sign-up and social login for DevOps Loop
	Revoking a license
	User access and administration using Keycloak
	Email settings
	Password policy
	User password
	User deletion

	About user roles and access permissions

	Backup and restoration of DevOps Loop
	Tools supporting backup and restoration
	Backing up DevOps Loop data
	Restoring DevOps Loop data

	Private CA and self-signed certificate support
	Configuring trusted certificates in DevOps Loop

	Upgrading DevOps Loop
	Integrations in DevOps Loop
	AI provider integration
	MCP server integration
	AI provider integration for Loop Genie - Tech Preview
	Prerequisites for setting up AI providers for Loop Genie
	Requirements for OpenAI integration
	Requirements for Claude Desktop integration
	Requirements for Gemini integration
	Requirements for IBM watsonx integration
	Requirements for Ollama integration

	Configuring OpenAI integration
	Configuring Claude Desktop integration
	Configuring Gemini integration
	Configuring IBM watsonx integration
	Configuring Ollama integration


	DevOps Loop MCP server
	MCP tools available in DevOps Loop
	VS Code connection for the DevOps Loop MCP server
	Connecting VS Code to the DevOps Loop MCP server by using the command palette
	Connecting VS Code to the DevOps Loop MCP server by manually editing the MCP configuration file

	Connecting Claude Desktop to the DevOps Loop MCP server

	Teamspace management
	Creating a teamspace
	Adding or inviting members to a teamspace
	Joining a teamspace as an invited member
	Removing a member from a teamspace

	Uninstalling DevOps Loop
	Uninstalling DevOps Loop from IBM Cloud Kubernetes Service (IKS)
	Uninstalling DevOps Loop from Kubernetes Service (K8S)


	Chapter 5. Working with Loops
	Loop management
	Creating a loop
	Capabilities and resources configured during loop creation
	Capability-specific resources and configurations
	Access and Permissions


	Viewing loop details
	Adding members to a loop
	Removing a member from a loop
	Disabling a loop
	Enabling a loop

	Learning Loop overview
	Scope
	Preloading sample data into a learning loop

	Dashboards and insights
	Data authorization
	Viewing dashboards
	Editing dashboards
	AI-powered search


	Chapter 6. Capabilities of DevOps Loop
	Plan
	Code
	Code overview
	Architecture
	Visual Studio Code-based environment
	Source control integration
	Accessing Code

	User interface
	Switching to your teamspace
	Working with dev containers
	Dev containers
	File system

	Git authentication for dev containers
	Authenticating with DevOps Code UI (Recommended)
	Authenticating Git with personal access token
	Authenticating Git with device code

	Configuring dev containers
	Loading extensions from local .vsix files
	Installing GitHub Copilot in dev containers

	Extensions
	Integrating Plan with Code

	Access applications via automatic port forwarding
	File management features

	Control
	Managing Git authentication for developers

	Build
	Configuring an external agent for Build in DevOps Loop
	Integrating Build resources with existing loop and teamspaces

	Test
	Integration of Test Hub with Measure
	Prerequisites
	Steps to perform in Test Hub
	Configuring a webhook for Measure
	Adding additional parameters for test runs


	Release
	Deploy
	Installing an external agent for Deploy in DevOps Loop
	REST commands for Deploy
	Creating applications in a loop from a JSON file
	Prerequisite
	Request
	Example JSON request with loop name
	Example JSON request with loop ID
	Example command

	Get an application in a loop
	Request
	Example command to get an application by using application ID
	Example command to get an application by using application name in loop by ID
	Example command to get an application by using application name in loop by name in teamspace by ID
	Example command to get an application by using application name in loop by name in teamspace by name
	Example response

	Creating components in a loop from a JSON file
	Prerequisite
	Request
	Example JSON requests with loop name
	Example JSON request with loop ID
	Example command

	Get a component in a loop
	Request
	Example command to get a component by using component ID
	Example command to get a component by using component name in loop by ID
	Example command to get a component by using component name in loop by name in teamspace by ID
	Example command to get a component by using component name in loop by name in teamspace by name
	Example response



	Measure

	Chapter 7. Loop Genie - Tech Preview
	Sample multi-step workflow execution in Loop Genie:
	Interacting with Loop Genie
	Prompt references for Loop Genie

	Chapter 8. Troubleshooting
	Security Considerations
	Notices
	Trademarks
	Terms and conditions for product documentation
	Applicability
	Personal use
	Commercial use
	Rights


	Index

