l g [o= &=

HCL Compass
Version 2.0.1

Essential SAFe Schema

© Copyright HCL Technologies Ltd. 2020

Contents

100 o) (= o1 (PSPPSR OPPPPRRTRR 3
N €] [o I =T VoY Y o] oS3/ - 14 o] o SRR 5
P [1144 oo 18 ot o] o TP PSR P PP PPPPRRPPRRON 5
3 SUMMACrY Of RECOII TYPES .uvvriiiiiiiiiiiiiie e eectite e e ettt e e e e ettt e e e s esat e e e e e s saabtaeeeeessanstaeeeessennsseneeeessnnnes 6
4 Getting Started with a Populated Sample Databasecccivvcuiiiiieiiiiiiiiee e e e 7
5 Getting Started with an EMPty Databasecceiiiiiiiiiee ettt e e e etre e e e e e eabra e e e e e e enees 7
6 AGIlE REIEASE TraIN ..uiiiiiiiiiciiieee ettt et e e e e et e e e e e ettt e e e e e e seabtaeeeeesasbtaeeaaesennstaeeeessansstaneaaesannees 7
6.1 Y =11 o PSP P PP PPPPRPPP 8
6.1.1 NV =T = OO 9
6.1.2 DT ol o) o Lo o S 9
6.1.3 ViISION STAateMENT ... 9

6.2 SOIULIONS ettt ettt ettt e b et e bt e eb e e sb et e ma e e sae e e saeeeaneeesareesaeeennnee e 9
6.2.1 (60e] g T oTe T T=T 0| K- TP PP P PP PR PPPPPPPRNY 10

6.3 L= 112 OO POPPPPPPPIN 11
6.4 [go T o= 0] L e Lol £=T0 a1=T o K PP PPPPRT 14
6.5 SEAKENOIAEES ..t sttt st sab et s e e e nee s 14
6.6 LT Yo T = PO TOPOOPPPPPPPIRY 15
6.7 ROIES. ..ttt ettt ettt e e st e e et e e h bt e e sttt e e h bt e e e h b et e e e b eeeeaabe e e e aabeeeeeabaeeeaareeeean 16
6.7.1 Release Train ENGINEEIS ..ottt e e e e e s st re e e e e e e e e eaaaaeaeens 17
6.7.2 YA (=] g 1Y el o 11 <ot PR 17
6.7.3 BUSINESS OWNEIS .eeiiiiiiiiiiiiiiiiiiiiicee ittt e e e s a s e e e e s s esrba s e e e s sesnaes 17
6.7.4 (oo [N ot Y Yo F- =T PP PPPRRNt 17

6.8 N R S ettt e e e e e e ettt ettt e e e e e e et et e e e e e e e e e e e e e et e te et n b e e e e e eeeeeeeenranaans 18
6.9 (00T 0 7= (U =TT 19
6.9.1 RESOIULIONS ...ttt sttt st e st e s e st e sar e sabeesaee 19
6.9.2 PrIOITEIES coviiiiiiiiiiii e 20
6.9.3) o] VA o 0] [0| £ PP UUURPPRPPPPINY 20
6.9.4 ClaSSES OF SEIVICE ettt sttt e st st e e e ebee s 20

2 N1 411 oo L T SO TP P PP PPPRPPPOP 20
7.1 Program INCIrEMENTSccoiiiiiiiiiieee e ee ettt e s e s e e e e e e et eebebeaseeseeeeeseeenessnnnnnnnns 20
7.1.1 1Y - 11 o OO PP PP PPPPPPPTPPPRPRR 20

7.1.2 REIBASES ..ttt e ettt e e ettt e e e et e e e et e e e et e e ettt e e rat s 22

7.1.3 (0] oJ1=Tot 4177 PP 24

7.1.4 == 0. KPP 25
7.15 =T 1 o F SR PSR OPPRPRRTPOt 29
7.1.6 FEATUIES oot e e e s e e s s eren e e e e s s 29
7.1.7 NOTES .ttt a e e e s earaes 30
7.2 [EEIATION cooiiiiiiiie e e e 31
7.2.1 L= 0P PPN 31
7.2.2 SEOrIES AN TASKSeeeeeiiiiie e s s 34

8 WK TEBMS ettt ettt s e st e s et e s bt e s et e sab e e s b e e s abe e et e e s b e e st e e sabeesnee s 35
8.1 FEATUIES ittt 35
8.1.1 - 1o USROS 36
8.1.2 DEFINITION 1ttt st e e st e e sbr e e s e e s nr e e snr e e e snreas 38
8.1.3 (o P2 oY TV =PSRRI 38
8.1.4 (0] oJ1=Tot 411U 39
8.1.5 SEAKENOIAEES. ... e et 40
8.2 K] o] =T PR UPTT PP 40
8.2.1 Y= I PP PSP PPPPRPTPPRt 43
8.2.2 DEFINITION 1.t sttt s sr e 44
8.2.3 [=T o o 11 o =PRI PSPPROt 44
8.2.4 TASKS ettt e e e r e e bt e e e b bt e e s be e e e s bae e s e baeeeaaraneean 46
8.2.5 LCTo | E PP PP OPPTTPTPR 46
8.3 TASKS ettt ettt ettt b et e h e bt e bt e bt e e ehe e e bt e e eab e e ehe e e e nbe e eabeenhteennneenareenaes 47
8.3.1 - 1o PSPPSR PUPOPPRPPRP 49
8.3.2 DEFINITION .ot st e e 50
8.3.3 [T o o 1T o = PSPPI PPUPPPRRNt 50
8.4 CommON WOrk [t8mM Tabs ...oooiiiieee e e e 52
8.4.1 [T (0] VPP PP TPPPPR 52
8.4.2 NOTES ettt e e earaes 52
8.4.3 SUDSCIIDEI LISt ..eeiiiiieeeiie ettt et e st e s sab e e e s s beeeesaneeee s 52
8.4.4 AEACNMENTS ...ttt e e e e st e e s e e s be e e e s be e e e s nr e e e naraeeean 52

LS O LU 1T 1= PP O PP PPPPPTN 52
9.1 PUDIIC QUUETIES ..ttt sttt ettt et e st e s b e e beeesbeeesbaeenneeenns 52

9.1.1 VIEWINEG SCIUM NOTES ...ttt ettt et et e e e e e e s s sss st eeeeeeeeeeeeeeeeeesessssssnsssssssnnns 52

9.1.2 Triaging WOTK [EEIMS ...vveiieiiiiiieee ettt e e e e st e e e e e st ae e e e e e sabtaeeeeeesnanseeeeas 55

9.2 PErsONal QUETIES ...co.eeiiiiieeieeree ettt st et s b e st e s re e s b e s eresennaeesreeenneeeane 56
9.2.1 1T 0] o T 1o RSP PU PR PPP 58
9.2.2 27Tl SRR 60

10 EssentialSAFe — Schema Or PACKage?c..uviiiiiiicciiee ettt e e e aae e e s e e aarane s 61
10.1 ESSentialSAFE @5 @ SCREMA ..ccuuiiiiieiiieeee et 61
10.2 ESSENtialSAFE @S @ PACKAZE «.uvviiiiiiiiiiiiiee ettt e e s e s e e e s s r e e e e s s narraeeaeeeas 61
10.2.1 Enabling @a NeW Database ...t e e e e e e e e e e e e e e e e s 61
10.2.2 Enabling an EXiSting SChEMAccooiiiiiiii et 61
10.2.3 Using a Different Email, Notes or Attachment Solutioncccceeveciiieiiiccccieee e, 61
10.2.4 Dealing With CONTlICtS...cuiiiiiciiiiiie e e e e e e e areeee s 61
10.2.5 Supplementary PACkagesuuuiiiiiiiieiiieieec et e e e e e e e e e e e e e e e e 62

11 POIMISSIONS ..ttt e e s e e s e e e s e e e e re s 62
12 CUSTOMIZATION Leeiiiiiiiiiiiii e 63
L2 B =Y 4 111 o o TS 63
L2 A | Y1 A = [1o T TSR 63
L2 T Y - 1T £ T o TS 64
13 BEST PraCliCeS .ot e s e e e e e e s 65

1 Glossary of Abbreviations
RT — ReleaseTrain

RTE — Release Train Engineer

PM — Product Manager

PO — Product Owner

PI— Programincrement

NFR — Nonfunctional Requirement

2 Introduction

HCL Compass EssentialSAFe schema is a full featured schema which ships with HCL Compass 2.0.1 and
helps team follow Essential SAFe®. Information about SAFe can be found on the Scaled Agile
Framework® website. SAFe and Scaled Agile Framework are registered trademarks of Scaled Agile, Inc.

https://www.scaledagileframework.com/
https://www.scaledagileframework.com/

The EssentialSAFe schema is ready for use out-of-the-box. Organizations can define Agile Release Trains
and start using the tool quickly with minimal knowledge of schema design. Future customization of the
schema is possible.

This document does not provide training for SAFe practices. Instead, it only describes how this schema
can help you follow SAFe practices in your organization. For training on SAFe practices, consult the
Scaled Agile Framework website. There are many places in this document where we link to the Scaled

Agile Framework website where you can find training and explanation of the concepts. You are
encouraged to use those links to gain a greater understanding of the process.

The following assumptions are being made

1) HCL Compass 2.0.1 with Web Server Components should already be installed and configured.
2) You are familiar with administering and using HCL Compass 2.0.1 and the web server?.
3) You are familiar with Essential SAFe terminology.

In this document, we will be stepping through an EssentialSAFe SAMPL database. You have two options

1) You can create a new sample database with all the data already in it and follow along as we
describe the schema, or
2) You can create an empty database and add your own sample data as you follow along.

We will begin with setting up a new database, and then we will go through the record types. The order

in which we go through the record types will be the most likely order in which you create them.

3 Summary of Record Types

In this section we take a quick look at the record types available in the HCL Compass EssentialSAFe
schema and briefly describe how they relate to the SAFe process.

ReleaseTrain — The record that ties together an Agile Release Train and all its supporting records
Solution — A record that represents a solution that a RT delivers.

Component — A component of a solution (optional).

Team — A record that represents an agile team, with a product owner and members.
Programincrement — A record that represents a Program Increment in an Agile Release Train.
TeamPl — A record to track team specific progress for a Programincrement.

Iteration — A record that represents an lteration in a Program Increment.

Teamlteration — A record to track team specific progress for an Iteration.

Release — A record to track solution versions delivered in a Program Increment

Persona — A record to assist with design thinking (optional)

1 The EssentialSAFe schema does not work with the new web server yet. You must continue using Compass Web
Server.

https://www.scaledagileframework.com/
https://www.scaledagileframework.com/

Feature — A work item that is completed in a Program Increment.
Story — A work item that is completed in an Iteration, which might be a child of a Feature.

Task — A work item that is completed in an Iteration, which might be the child of a Story.

4 Getting Started with a Populated Sample Database

If you would like to create a sample database with some example EssentialSAFe records, follow the
instructions given in this link. In step 7 of the instructions, choose “EssentialSAFe”:

https://help.hcltechsw.com/compass/2.0.1/com.hcl.compass.doc/webhelp/oxy ex-
1/com.ibm.rational.clearquest.admin.doc/topics/t cr sample db.html?hl=sample%2Cdatabase

5 Getting Started with an Empty Database

If you would like to create a new EssentialSAFe database from scratch and add the data as you go
through this document, follow the steps given here- choosing EssentialSAFe as the schema for your
database:

https://help.hcltechsw.com/compass/2.0.1/com.hcl.compass.doc/webhelp/oxy ex-
1/com.ibm.rational.clearquest.admin.doc/topics/t cr new user db.html

6 Agile Release Train

An Agile Release Train is the vehicle through which an organization of agile teams delivers one or more
solutions to its customers and stakeholders. In HCL Compass EssentialSAFe schema this is represented
the ReleaseTrain (RT) record. The user who creates an RT record will automatically be granted Release
Train Engineer (RTE) role on that record and will have permission to create, modify and delete all
supporting records of this RT. This applies to any other user granted the RTE or ProductManager (PM)
role in the RT record. Permissions are summarized in section 11.

To create a new ReleaseTrain in HCL Compass, click New->ReleaseTrain. If you are looking at the sample
database, run the query Public Queries->All Release Trains and open the PIZZA release train record.

https://help.hcltechsw.com/compass/2.0.1/com.hcl.compass.doc/webhelp/oxy_ex-1/com.ibm.rational.clearquest.admin.doc/topics/t_cr_sample_db.html?hl=sample%2Cdatabase
https://help.hcltechsw.com/compass/2.0.1/com.hcl.compass.doc/webhelp/oxy_ex-1/com.ibm.rational.clearquest.admin.doc/topics/t_cr_sample_db.html?hl=sample%2Cdatabase
https://help.hcltechsw.com/compass/2.0.1/com.hcl.compass.doc/webhelp/oxy_ex-1/com.ibm.rational.clearquest.admin.doc/topics/t_cr_new_user_db.html
https://help.hcltechsw.com/compass/2.0.1/com.hcl.compass.doc/webhelp/oxy_ex-1/com.ibm.rational.clearquest.admin.doc/topics/t_cr_new_user_db.html
https://www.scaledagileframework.com/agile-release-train/

&€ A Compass

New Query ~ Edit Named List

g@ New Query

New REST URI

ReleaseTrain
Solution
Component
> Feature

> Goal
Iteration
NFR

Objective

Figure 1 Creating ReleaseTrain

There are three things to keep in mind when using the New menu. The menu is a combo-box button.
This means you can either click on the button to perform the action or click on the arrow to choose a
different action.

The second thing is that the name of the menu depends on whether you have a default record type
configured in your schema. If no default record type is configured (the out of the box EssentialSAFe
schema does not), the name of the menu is New Query (such as in the figure above). Clicking on it will
create a new query. If a default record type is set, then the name of the menu includes the default
record type instead. For example, if you modify the schema and make Feature the default record type,
then it will say New Feature. Clicking on it will create a new feature. In the rest of this document you will
see many places where we tell you to choose a menu option like New->Feature. This means to choose
that option from the New menu, whatever it is named.

The third thing is that the order of the record types you see in this menu will change as you use the
product. It will remember which records you create more often and sort the list based on that. The
order you see in the screenshots might not match the order you see when you are actually using the
product.

6.1 Main
Let’s look at the tabs on the ReleaseTrain form. For all record types, most commonly used fields will
appear on the Main tab.

vl Welcome X | B *PIzzA X

ReleaseTrain:PIZZA ~ W % ~ B ~ | save | saveandClose | Cancel
Main Solutions Teams @ Prog 1t Personas = Roles NFRs = Configure

Name

PIZZA

Description

A fast and green pizza delivery service. h

Vision Statement

We aim to provide a high quality pizza delivered on the greenest possible route. E

Figure 2 ReleaseTrain Form

6.1.1 Name

This is how your RT and associated records will be identified. You will also see this name used to identify
some of the related records, such as Program Increments and Iterations. There is no limit to the size of
the name but we strongly recommend choosing a short name, under 10 characters. Choose something
short but unique.

6.1.2 Description
Use this space for a longer description of your RT.

6.1.3 Vision Statement

Use this space to describe your “vision” for the solutions on this Release Train — your vision statement
should answer questions like — What are our goals? What do our solutions do? Who are they for? What
makes it stand out?

6.2 Solutions
The Solutions tab has a list of all solutions that are owned and delivered by this ReleaseTrain.

-l welcome X [*PIZZA X

ReleaseTrain:PIZZA ~ 'i' +* - E ~ | Save | Save andClose | Cancel

Main = Solutions Teams Program Increments = Stakeholders = Personas Roles = NFRs = Configure

Solutions (must be created from ReleaseTrain only)

Name - Description

DriverApp An app for our delivery drivers to find the greenest route from our store to your location “
PizzaApp A mobile app for ordering pizza.

PizzaDash A dashboard to track the status of pizza orders

Figure 3 ReleaseTrain Solutions Tab

The RT is a vehicle through which solutions are delivered to customers and stakeholders. The HCL
Compass EssentialSAFe schema has a Solution record type. At least one Solution must be created and
added to your RT. A Solution belong to the RT and must be created from the RT form. A Solution cannot
be shared with multiple RTs, so you should choose a unique name for it. To create a new Solution, the
RT must be in an editable state (either being submitted or modified). In the Solutions tab, click “New”. A
popup Solution form will appear. Enter a name and description of your solution and click “Save”.

~ .
‘B M Weicome X [*PIZZA X
Dot Temimnuzza =4 - v | Save | Sav

*PizzaApp - x|

Solution:PizzaApp ~ W % v B - | save | SaveandClose | Cancel

Main Components

Name

PizzaApp

Description Remove

A mobile app for ordering pizza. h

yE

Figure 4 Solution Form Main Tab

Since you clicked “Save”, the form should stay up, allowing you to continue working with it. If you are
following along with the sample database instead of creating the records, double click on any of the
existing Solution records to open its form so you can follow along with the next steps.

6.2.1 Components

The Components tab on the Solution form shows all the Components of a Solution. You can further
define your Solution by breaking it up into components. You can only do this when the Solution is in a
non-editable state (already saved). To create a component, click Utilities->CreateComponent. A
Component form will pop up and allow you to create a Component. The Solution field will already be set
to the Solution you ran the CreateComponent from. You do not change this, but if you do the

component would get created on a different Solution. A Component needs a name. The name needs to
be unique in the context of its Solution. For example, you can have two solutions, DooDad and Gadget,
and they can each have a component named “Ul”. You cannot, however, create two “Ul” components
under DooDad.

If you are following along on the sample database, you can go to the Components tab and look at
existing Components. Double click on one to open up its form.

— @l Welcome X | [*PIZZA X
B b Teminruz7a

= - B | sae

T
PizzaApp -3 X
Solution-PizzaApp ~ () T Kk~ B - | Modify | Utilities =
Main = Components m- Delete
CreateComponent
Name

A mobile app for ordering pizza

2l

Figure 5 Creating a Component

A

.’.\.u.a.n_n_r_E ADIZZA
:' PizzaApp Ul -@A X

PizzaApp Component:-PizzaApp Ul ~ L'j 'T * - g ¥ | Modify | Utilities =

Solution:PizzaApp ~ w r | Modify

Main = Components
— Name

ul

Gomponents Solution

PizzaA|
Name pp
Backend Description
Core

ul
el

Figure 6 Component Form

6.3 Teams

The Teams tab shows all the Teams owned by this ReleaseTrain. A Release Train has an organization of
agile teams working to implement the solutions that will be delivered to stakeholders and customers.
The HCL Compass EssentialSAFe schema has a Team record type that represents teams in a release train.
The Team record belongs to a ReleaseTrain and cannot be shared with different ReleaseTrains. The
Team record includes a list of users on the team and a product owner (PO). The product owner has an
important role for agile teams, as they are responsible for managing the team backlog and planning. The
PO can modify the TeamPIl and Teamlteration that are associated with their team. See section 11 for a
description of these permissions.

If you are following along with the sample database, double click on a team in the Teams tab, explore
the tabs, and look at how they are set up.

To create a Team on an RT, the RT must be in a modifiable state. Click Modify on the RT form if you
need to putitin an editable state. In the Teams tab, click New to add a new Team. The Team form will

pop up.

- ol Welcome % ﬁ *PIZZA X

ReleaseTrain:PIZZA ~

Main Solutions

Teams
Name
APITeam

DriverApp Team
MabileApp Team

'i' * - E ¥ | Save | Saveand Cl

Program Increments =~ Stakeholders = Personas = Roles = NFRs = Configure

A Description Product Owner

A team of back-end developers responsible for API's for our
apps
A team of mobile app developers for the Driver App.

A team of mobile app developers

Figure 7 Creating a Team on ReleaseTrain Form

JampdLliat te A

*MobileApp Team -3 x
Team:MobileApp Team + W % ~ B ~ | save | saveandClose | CancelL
Main = Members b,

‘ Name

MobileApp Team

Product Owner

lead -
A
Description I
A team of mobile app developers h
inFl
TrailI
xd St
remi
\
——
Figure 8 Team Form Main Tab
1 Al ins £
*MobileApp Team = X
Team:MobileApp Team « 'i +* v E - ‘ Save | Save and Close ‘ Cancel

7 Main | Members

| User Members

login A Name email
engineer Add

lead
QE

user

Figure 9 Team Form Members Tab

You do not have to add all the team members now, but do at least add a PO. The RTE or PM can always
go back and modify the team members and PO. The important part is that the Teams and PO’s have
been defined.

To ensure the Team is associated with the correct RT, create the Team from the RT record form, as
described above. Team records created any other way cannot be added to a Release Train later.

6.4 Programlncrements

The Programincrements tab shows all the Programincrement records that are owned by this
ReleaseTrain. The Program Increment is one of the two timeboxes defined in HCL Compass
EssentialSAFe. In this timebox the teams deliver Features that add business value to or extend the
architectural runway of the solutions. Timeboxes will be covered in detail in section 7.

6.5 Stakeholders

The Stakeholders tab shows all the Stakeholder records that are associated with this ReleaseTrain.
Stakeholders have a vested interest in the operation and output of the release train. These might be
customers, but they could also be product managers, architects or business owners of other release
trains that consume the solutions delivered by this release train. Unlike with the Team record, the RT
does not own its stakeholders. They are independent records that might be added to multiple release
trains in the database. You can also add stakeholders to Feature records, see section 8.1.5.

On the Stakeholders tab of the RT form, you can add existing Stakeholder records, create new
Stakeholder records, and remove existing Stakeholder records. The RT must be in an editable state for
you to do this.

© mlWelcome X | [B #PIZZA X

ReleaseTrain-PIZZA ~ i * - E ¥ | Save | Saveand Clc

Main = Solutions Teams = Program Increments Stakeholders = Personas Roles NFRs = Configure

Stakeholders

Name
Figure 10 Stakeholders Tab

After clicking New, you will see the Stakeholder form. The name is required and must be unique among
all stakeholder records. You can enter more details about the stakeholder in the description field.

*New Stakeholders @ x

StakeholderNew Record - E hd | Save | Save and Close | Cancel |
Main I

o Name

al Pizza Deliverers United

Q Description

al

| PDU is an association of pizza deliverers. They have a vested interest in the DriverApp B

&

A

A

A

A

A

FI

Figure 11 Stakeholder Form

6.6 Personas

The Personas tab shows all the Persona records that are owned by this ReleaseTrain. Personas are useful
for including design thinking in the development process. Personas are tied to a single ReleaseTrain
record and cannot be shared with other ReleaseTrain records. When you create Story work items for
this ReleaseTrain, you can choose a Persona to associate to. This can help with the design thinking
activities during development.

wll Welcome X [Pizza X

ReleaseTrain-PIZZA ~ ¢ b] ? * v E ~ | Modify | Utilities =
Main = Solutions = Teams Program Increments = Stakeholders = Personas Roles NFRs = Configure m- Delete
CreatePl
Personas
CreatePersona
2 > DT CreateBacklogsAndKanbans
Ava Ava wants to make some extra money delivering pizza.
3 Maritza loves pizza. Maritza loves the beach. She would love pizza delivered to her at
Maritza
the beach
Wendy Wendy is a parent who works full time and likes to order pizza for her family on

Wednesdays before she leaves work.

Figure 12 Creating a Persona from ReleaseTrain

https://www.scaledagileframework.com/design-thinking/

PIZZA Wendy - [X He

W Persona:PIZZA Wendy ~ (" W A - B - | Modify | utilities ~

Main
le.

in

Name

F Wendy
Release Train
PIZZA
Description

Wendy is a parent who works full time and likes to order pizza for her family on Wednesdays before she leaves work.

Figure 13 Creating a Persona

If you are following along with the sample database, open up some of the Personas to see what they
look like.

Persona records are created using one of two ways. The Utilities->CreatePersona action on the
ReleaseTrain form, or the New->Persona. The former method is preferred, since it will pop up a new
Persona form with the ReleaseTrain already set. You only have to choose a name and type in a
description. When you save and close the form, the ReleaseTrain will be automatically refreshed with
the new Persona. The latter method will require you to choose the ReleaseTrain as well.

6.7 Roles
The Roles tab is where you can assign roles for users in the ReleaseTrain. The only two roles that have a
functional effect on the schema are the Release Train Engineers and the Product Managers.

il Welcome % ﬁ *PIZZA X

ReleaseTrain:PIZZA -

Main = Solutions = Teams Program Increments = Stakeholders = Personas Roles NFRs | Configure
Release Train Engineers

login_name # Name email

admin

[

System Architects

login_name Name email

Business Owners

login_name Name email

Product Managers

login_name Name email

Figure 14 ReleaseTrain Roles

6.7.1 Release Train Engineers

This role has the highest privileges in the HCL Compass EssentialSAFe Release Train. The submitter of
the Release Train is automatically added to this list. The RTE can delete records owned by the Release
Train itself and can modify the Release Train record itself. They can create, modify, and delete all
timebox related records, teams, solutions, and components. Multiple users can be defined here but
there must be at least one.

6.7.2 System Architect
This role has no special privileges. You can use this to identify the system architects for your Release
Train.

6.7.3 Business Owners
This role has no special privileges. You can use this to identify the Business owners for your Release
Train.

6.7.4 Product Managers
Product Managers manage the Program Backlogs and Program Kanbans. They have privileges identical
to Release Train Engineers.

6.8 NFRs

This tab lists the non-functional requirements (NFR) for your ReleaseTrain. NFRs describe system
attributes that serve as constraints or restrictions for the design and implementation of the solutions.
The program backlog and team backlogs are constrained by the NFRs.

Constraints on the backlog

o

Figure 15 Backlogs are constrained by NFRs

Z

FR

w

@ Scaled Agile, Inc

An NFR record type exists for you to track these. The NFRs that constrain the program backlog are listed
on this ReleaseTrain’s NFRs tab. NFRs can also influence a team’s backlog. NFRs that constrain a team’s
backlog are added to TeamPI records (see section 7.1.4.4) to help teams prioritize and plan their
backlogs.

il welcome X | [B «PIzza X

ReleaseTrain:PIZZA ~ W A B - savels

Main = Solutions = Teams Program Increments = Stakeholders = Personas = Roles NFRs Configure

Non-Functional Requirements

Name

Figure 16 Nonfunctional Requirements Tab on Release Train

To add or create new NFR records directly on the ReleaseTrain, it must be in an editable state. Click
Modify to put the ReleaseTrain in an editable state. You can also add NFRs using New->NFR, but in
doing so, the NFR will not be tied to any ReleaseTrain or TeamPI until you Add it. While it may be
possible to add an NFR to multiple ReleaseTrains and TeamPIs, it is recommended that you do not share
NFR records. The best approach would be to always create new NFRs directly on the ReleaseTrain or the
TeamPI form using the New button.

The NFR record type has two fields, a name and a description. More advice on creating effective NFRs
can be found on the Scaled Agile Framework website.

https://www.scaledagileframework.com/nonfunctional-requirements/
https://www.scaledagileframework.com/nonfunctional-requirements/

*New Non-Functional Requirements = X

NFR:Mew Record - E - | Save | Save and Close | Cancel |
*Main r

i@ «nName

nal

g Description

nal E

4Fe

BEA

BA

Figure 17 NFR Creation Form

6.9 Configure

Release Train Engineers can customize some of the commonly used choice lists in the tool. For example,
the RTE can specify valid choices for Resolution, Priority, Story Points and Class of Service. The values
you see here at record creation are recommended choices to start with. The RTE can add or remove
from these lists, but they cannot be blank. The built-in queries will sort by Priority and Class of Service
alphanumerically, so you should include a number in the items to ensure they are sorted the way you
want.

wl welcome X [«PIzzA X
ReleaseTrain-PIZZA ~ W ok B sae
Main = Solutions Teams Program Increments = Stakeholders = Personas = Roles NFRs ‘Conﬁgureé
Choices for work items
Resolutions Priorities
Fixed ra 1- High Vs
Fixed Indirectly 2 - Medium
3-Low
Story points Classes of service
1 ~ 1- Expedite ra
2 2 - Standard
3
5
- 1
13
20 s

Figure 18 Configuring Release Train Choice Lists

6.9.1 Resolutions

When a feature, story or task is closed, a resolution category may be chosen. This field contains the
allowable resolution category.

6.9.2 Priorities

Priority is a required field in features, stories, and tasks. These choices will be used to do Kanban
prioritization planning activities. It is good practice to use a numerical value followed by a word, that
way you can control how priorities are sorted.

6.9.3 Story Points
Story work items can be assigned story points for estimating the amount of effort needed. This field
contains the list of allowable story points. These values must be integers.

6.9.4 Classes of Service
Class of Service is another way to optimize story execution, when Priority is not enough. A story, for
example, may need to be expedited or have a fixed date. The default (and recommended values) are

e 0 - Fixed Date (this value is always prepended to the Classes of Service)
e 1-—Expedited
e 2 -—Standard

You do not have to add “0 — Fixed Date” to the Classes of Service list. It is a built-in class of service, and it
cannot be changed or removed. This class of service is used to make the FixedDate field mandatory on
the story. You must have at least one other class of service value defined here. When adding classes of
service, use a number to start, to ensure they are in the order you want in queries. For example, stories
with “0 — Fixed Date”, will appear before stories with “1 — Expedited” if you sort alphanumerically.

If the ReleaseTrain has not been saved yet, save it now. Next, you will set up and configure the
timeboxes.

7 Timeboxes

Solutions in a Release Train are delivered at defined intervals. These intervals are timeboxes where work
gets done.

7.1 Program Increments
A Program Increment (PI) is a timebox in which Features are delivered. Atthe end of a Pl, new releases
of one or more Solutions are delivered to Stakeholders. They are typically 8-12 weeks in length.

7.1.1 Main

Program Increments can be created by Release Train Engineers and Product Managers. There are two
ways to create Program Increment records. The first is on the ReleaseTrain form using Utilities-
>CreatePl. The second way is with New->Programincrement. The former is preferred since many fields
are populated automatically from the ReleaseTrain.

7.1.1.1 Creating Pl from ReleaseTrain
From the Release Train record, click Utilities->CreateP!I.

https://www.scaledagileframework.com/team-kanban/
https://www.scaledagileframework.com/program-increment/

SlE AUIISUGUUN © | FIEEEGes | e -
il welcome X | [Pizza X

ReleaseTrain:PIZZA) W k- B~ | Modify | Utilities ~

Main = Solutions = Teams Program Increments = Stakehelders = Personas = Roles NFRs = Configure m' Delete

CreatePl
Program Increments

CreatePersona

Name ~ StartDate EndDate
CreateBacklogsAndKanbans
Pl October 1, 2020 at 12:00:00 AM Eastern December 31, 2020 at 12:00.00 AM Eastern
Daylight Time Standard Time
pl2 January 1, 2021 at 12:00:00 AM Eastern March 31,2021 at 12:00:00 AM Eastern Daylight
Standard Time Time

Figure 19 Choosing CreatePl from Utilities

A new Program Increment record will pop up with Release Train, Start Date and a suggested name
populated. You can change the name if desired, and the name can be any length. We do recommend
that you choose a short name, under 10 characters. Consider choosing names to ensure that the Pls are
sorted correctly in queries. For example, Pl 1 would appear before Pl 2. The start date is initialized to
today’s date, but you can change this. Decide how long you want the Pl to run for and choose an end
date. A description field can hold some additional details about the Program Increment that you want
to record.

@
J ReleaseTrain:PIZZA -

=
O W x-E
%} Main = Solutions = Teams Program Increments = Stakeholders = Personas = Roles = NFRs = Configure
*PIZZA PI 1 -3 x
Programincrement:PIZZAPI1 ~ 'i' * - E v | Save ‘ Save and Close ‘ Cancel

Main = Releases Objectives Teams [terations Features = MNotes

Release Train Name
PIZZA - PI1
Start Date End Date

10/1/2020 - 12/31/2020 -

Description

Figure 20 Programincrement Form

7.1.1.2 Creating a Programincrement from the New Menu
It is preferred that you create the Programincrement directly from the ReleaseTrain form, but you can
also create the Programincrement by choosing New->Programincrement.

New Query ~ ‘ Edit Named List

a; New Query

New REST URI

Persona
ReleaseTrain
Component
b Solution

hd Feature

Goal
Iteration
NFR Funnel
Objective hins

Programincrement

More...

Figure 21 Creating Pl Using New Menu
This will create a new Programincrement with ReleaseTrain, name, and start dates not pre-filled.
Regardless of which method you choose, you must be RTE or PM for the RT to create a Pl for that RT.

You can create as many Program Increments as you need. Creating them now may make it easier to
create a roadmap of Features and do planning in upcoming Program Increments.

The Programincrement form has other content of interest besides a name, start and end dates, and
description. You can track releases for each solution, create objectives, manage team-specific status
records, manage iterations and take scrum of scrum notes. Let’s look at a Pl now. From the Program
Increment tab on the RT, open the first Pl on the Release Train record.

7.1.2 Releases

A Pl delivers one or more incremental releases of a solution. Each release is represented by a Release
record, which lets you assign a version number of the release being delivered. You can create those
releases individually or, if you have multiple solutions, all at once. You can also have multiple releases
for a single solution (e.g. 1.0 and 1.0.1). The Release record helps you track which versions of the
solutions get delivered in which PI.

There are several ways to create Release records. The first is manually using New->Release. The second
is using the Utilities->CreateRelease action. The third is to use the Utilities->CreateAllReleases action.
We describe the second and third methods here.

7.1.2.1 CreateRelease
With the first Program Increment record opened but in a non-editable state, run the Utilities-
>CreateRelease action. This will pop up a Release creation window with RT and Pl already set in the

form to match the Pl you ran the action on. You only need to set a solution and version number. You can
add a description if you like, but it is not required.

4 PIZZAPI - X

2 Programincrement:PIZZAPI1 - g,'S 'i' * - E hd ‘ Modify ‘ Utilities ¥ & E - ‘ |

Main | Releases Objectives = Teams lterations = Features =~ Notes T Delete

Createlteration
Releases for this Program Increment

AddTeams

Solution - Version

. CreateRelease
DriverApp 1.0
PizzaApp 1.0 CreateAllReleases
PizzaDash 10

Figure 22 Creating Release from Programincrement Form

| *PizzaApp1.0

| Release:PizzaApp 1.0 « 'i' * - ﬁ v | Save ‘ Sa

Main

Release Train

PIZZA v

Program Increment

PIZZAPI1 -

Solution

PizzaApp -

Version

1.0

Description

Figure 23 Release Creation Form

7.1.2.2 CreateAllReleases

If there are multiple solutions in this RT, it may be easier to create multiple Release records at one time.
You can do this if all have the same version number (e.g. 1.0). To do this, you need to set “Default
version for releases in this Program Increment” on the PI. This is set on the Releases tab. Now you can
run the Utilities->CreateAllReleases action. This will automatically create a Release record for every
solution using the version specified as the default. This action is smart enough to detect if a Release
already exists and it will skip it. So, if you created one Release manually, you could still run
CreateAllReleases to create the rest.

PIZZAPI1 -3 x

Programincrement:PIZZAPI1 ~ §5 'i' * hd E hd ‘ Modify | Utilities ¥ & E - | N

Main = Releases = Objectives = Teams Iterations = Features = Notes m’ Delete

Createlteration
Releases for this Program Increment
AddTeams

Solution ~ Version

. CreateRelease
DriverApp 1.0
PizzaApp 1.0 CreateAllReleases
PizzaDash 1.0

Default version for releases in this Program Increment

1.0
Figure 24 Running CreateAllReleases Action

7.1.3 Objectives

The RTEs and PMs can create organizational Objectives which summarize the teams’ individual
objectives for the Pl (see section Program Increment), or define organization-wide objectives for the PI.
The objective is represented by an Objective record, which lets you specify a headline, business value,

description and commitment. The best way to create Pl objectives is directly on the Objectives using the
New button, because this will automatically link the newly created Objective to the PI.

- *PIZZAPIN

_ Programincrement:PIZZAPI1 « 'i' * - E M | Save ‘ S

Main = Releases Objectives Teams Iterations Features Notes

Objectives

Value Headline Committed
Figure 25 Objectives Tab on ProgramIncrement

You will need to Modify the Pl record to use the New button. Clicking the New button pop up an
Objective creation form. You must choose a Headline and Business Value. Optionally you can add a
description. Consider writing SMART Objectives that are specific, measurable, achievable, realistic and
time-bound. The Objective also has a committed value which will can be used to distinguish between

https://www.scaledagileframework.com/pi-objectives/
https://www.scaledagileframework.com/pi-objectives/

Committed and Uncommitted objectives. When done creating the Objective, click Save and Close. The
Objective lists will be updated with the newly created Objective.

; *New Objectives

an Objective:New Record « ﬁ - | Save | g

| *Objective Details

*Headline

Business Value Committed
1 - No -

Description

Figure 26 Objective Creation Form
DIMpa
i APITeam PIZZA Pl 1

TeamPL:APITeam PIZZAPI 1 T A-BH-
Pl Main | Objectives = MFRs Motes

Pra
Mal Objectives
Value # Headline
1 this is a new objective

Figure 27 Newly Created Objective on Programincrement

Objectives can be created by anyone from New->Objectives menu, however they can only be added to a
Pl by an RTE or PM, or to a TeamPI by an RTE, PM or PO.

While you can Add existing Objective records, you should use caution when sharing Objective records
between different ReleaseTrain records. It may also be undesirable to share Objective records between
different Pls. The reason for this is an objective might be committed in one ReleaseTrain or PI, but not in
the other. The best practice is to create a new Objective every time, and in the headline you may want
to identify which ReleaseTrain or Pl it should be for, e.g. “PIZZA/APITeam — APIs should comply with
FIP140-2 security standards”.

After creating objectives, you must save the PIl. You should click Save now (not Save and Close, since we
are not finished with the PI).

7.1.4 Teams
When the Programincrement record is created, it will also create a TeamPI record for every team
defined in the ReleaseTrain. The TeamPI record tracks team-specific information related to the PI, such

as scrum notes and team objectives. The Teams tab will list all TeamPI records created for this PI, as

shown below.

PIZZA P11

Programincrement PIZZAPI 1 ()

Main Releases Objectives Teams [terations Features Notes

0 Program Increment Status for Teams

al Team ~ Product Owner
b! APITeam

il DriverApp Team

MobileApp Team

Figure 28 Teams Tab on Programincrement

@A x

W Kk~ B v | modify | utilities ~ |

e

Phase b
Plan i
Plan 3
Plan

If you add a Team to the ReleaseTrain after the Pl was created, the TeamPI will not automatically get
created for the new Team. You can add it to the Pl while the Pl is in a non-editable state using the

Utilities->AddTeams action. This action will look for new teams and add any missing TeamPI records.
We will now describe more about the TeamPI record.

I PIZZAPI1

Programincrement-:PIZZAPI1 «

= Main = Releases = Objectives = Teams

Program Increment Status for Teams

Team

APITeam
DriverApp Team
MobileApp Team

7.1.4.1 TeamPl|

)

Iterations =~ Features = Notes

 Product Owner Phase
Plan
Plan

Plan

=<

v | Pref
T * - B - | Modify | Utilities = | Pretere

m’ Delete

Createlteration

AddTeams

CreateRelease

CreateAllReleases

Figure 29 Running AddTeams Action on Programincrement

The TeamPlI record is a special record that allows individual agile teams to track their own progress,
objectives and NFRs as they work through the Program Increment. The easiest way to get to these
records is through the Teams tab on the Programincrement. In a typical Agile Release Train, the product

owners of the teams collect information about the team’s progress in this TeamPI record and bring it
back to the product manager for the weekly scrum of scrum status meeting.

TeamPl records are created automatically, as described in section 7.1.4, but they can be modified by the
product owner of the associated team. The TeamPI tabs are described below.

7.1.4.2 Main

If the TeamPI was automatically created through earlier steps, then Pl and Team will have already been
set and you should not change these. You can optionally track the Shrewhart Plan Do Check Adjust cycle
for the team during the PI. Simply set the Phase as appropriate (as in Figure 30). The team’s phase will
show up in the Teams tab on the Programincrement (see Figure 29). In the Main tab you can also
provide a description. This could be a summary statement about what the team hopes to accomplish in
this PI.

I *MobileApp Team PIZZA Pl 1

TeamPl:MobileApp Team PIZZAPI1 «

d

Main = Objectives = NFRs = Notes

Program Increment

PIZZAPI -
Team
MobileApp Team -
Phase

! Plan| -

Plan
Do
Check
Adjust

i1

Figure 30 TeamPI Plan Do Check Adjust Cycle

7.1.4.3 Objectives

The Objectives tab shows a list of team objectives for the PI. During Pl Planning, Teams create objectives
they wish to meet during the PI. Objectives also help the team in goal setting when doing iteration
planning and working on stories. This is where they will create and add their Pl objectives. How you
create team Pl objectives on the TeamPI form is similar to how you create Pl objectives on the Pl form.
First put the TeamPI in an editable state and then click Add or New. Refer to section 7.1.3 for more
about the Objective record. Teams usually create objectives first in the TeamPI records, and then the
RTE will summarize these objectives in the Pl record and sometimes add new objectives for the entire
organization. Different teams may share the same objective, especially if more than one team works on
a single Feature. For a shared Objective, one team can create it and the other teams can add it. If you
are creating a new Objective and not sharing it with other teams, you may want to indicate this in the
headline. For example, set the headline to “PIZZA/APITeam — APIs should comply with FIP140-2 security
standards”. For a shared Objective, don’t put a team in the headline to indicate it can be shared, e.g.
“PIZZA — Order a Pizza through the mobile app.”

https://en.wikipedia.org/wiki/PDCA
https://www.scaledagileframework.com/pi-objectives/

*MobileApp Team PIZZAPI 1

TeamPl:MobileApp Team PIZZAPI1 « W k- B - | save |
Main :Ohjec'tives: NFRs Notes
Objectives

Value Headline
Figure 31 Objectives on TeamPl Form

7.1.4.4 NFRs
The NFRs tab lists non-functional requirements a team’s backlog. For more information about NFRs, see
section 6.8.

*MobileApp Team PIZZA PI 1

TeamPI-MobileApp Team PIZZAPI 1 ~ W k- B~ save |

Main = Objectives :NFRs Motes

Non-Functional Requirements

I Name
Figure 32 NFRs Tab on TeamPI

7.1.4.5 Notes
The Notes tab is where Product Owners can take daily team scrum notes, or notes of any kind,
throughout the life of the PI.

*MobileApp Team PIZZAPI 1

TeamPl:MobileApp Team PIZZAPI1 +

Main = Objectives = NFRs = Notes

New Note:

Notes Log:
==== py: admin on 12 November 2020 18:27:39 ====

Daily team status...

Figure 33 Notes Tab on TeamPI

7.1.5 Iterations

A Program Increment is made up of iterations. Iterations are smaller timeboxes of 2-4 weeks in length
during which Story and Task work items are completed. The Iterations tab on Pl lists all the Iteration
records for this Programincrement. You will create your Iterations from the Pl record itself. Creation of
the Iteration records will be covered in section 7.2.

PIZZAPI1 = x

Programincrement-PIZZAPI1

3N kv B~ | Modify | utilities + |

— Main Releases Objectives = Teams lterations = Features = MNotes
Iterations

Name . StartDate EndDate

ter 1 October 1, 2020 at 12:00:00 AM October 15, 2020 at 12:00:00 AM
Eastern Daylight Time Eastern Daylight Time

lter 2 October 16, 2020 at 12:00:00 AM October 31,2020 at 12:00:00 AM
Eastern Daylight Time Eastern Daylight Time ig

lter 3 November 1, 2020 at 12:00:00 AM November 15, 2020 at 12:00:00 AM
Eastern Daylight Time Eastern Standard Time

ter 4 MNovember 16, 2020 at 12:00:00 AM Movember 30, 2020 at 12:00:00 AM
Eastern Standard Time Eastern Standard Time

lter 5 December 1,2020 at 12:00:00 AM October 15, 2020 at 12:00:00 AM
Eastern Standard Time Eastern Daylight Time

lter 6 December 16, 2020 at 12:00:00 AM October 31, 2020 at 12:00:00 AM
Eastern Standard Time Eastern Daylight Time

Figure 34 Iterations Tab on Programincrement
7.1.6 Features

The Features tab shows you all the Feature records which have been scheduled for this PI. A Feature
will automatically show up here when its Pl is set to this one (such as in Figure 36).

https://www.scaledagileframework.com/iterations/

PIZZAPI1

‘ Programincrement:PIZZAPI 1 ~ W A-B-

© Main Releases Objectives = Teams Iterations = Features Notes

Features scheduled for this Pl

‘ id Headline
SAMPLO0000001 Can order a pizza on the mobile app Ul
SAMPLO0000003 driver alerted to pick up delivery through driver app
SAMPLO0000004 process credit card payment
SAMPLO0000006 customer saves frequent order info into profile
SAMPLO0000008 driver given greenest possible route
SAMPLO0000009 recalculates order of deliveries based of envrionmental condition changes
SAMPLO0000010 generate delivery list for driver app based on envionmental impact

Figure 35 Features Tab on Programincrement

Feature-:SAMPL0000000T -

Main = Definition = Planning Objectives = Stakeholders = History = MNotes Subscriber List = Attachments

Programincrement

PIZZAPI 1

Owner

Drcnbdinn

Figure 36 A Feature Set to Program Increment Pl 1 on PIZZA ReleaseTrain

7.1.7 Notes

The Notes tab is a space for a Product Manager or Release Train Engineer to take scrum of scrum notes.

| PIZZAPI1

‘ Programincrement:PIZZAPI1 «

° Main Releases = Objectives = Teams Iterations = Features MNotes

New Note
Scrum of scrum notes here..

Notes Log
==== by admin on 12 November 2020 17:19:27 ====

Scrum of scrum notes here..

Figure 37 Notes Tab on Programincrement

7.2 lteration

A Program Increment is made up of iterations. Iterations are the shortest timeboxes and are where
stories are completed. They typically last 2-4 weeks depending on organizational needs. An Iteration
record tracks the iteration. They can only be created and modified by RTEs and PMs.

You can create Iterations on a Programincrement record when it is in a non-editable state. Run the
Utilities->Createlteration and a new lteration form will pop up pre-populated with the PI, a suggested
name, and a start date (see Figure 39). Consider choosing a name that will sort iterations
alphanumerically in the proper order (e.g. Iter 1, Iter 2). We strongly recommend choosing a short
name, preferably under 10 characters.

You must specify an end date before saving. You can create as many Iterations as you need for this PI.
You can create them all up-front so that teams can do planning across multiple iterations, or you can
create them as you need them and only plan for the next iteration.

[o
" Prefere
Programincrement:PIZZAPI1 ~ g, 5 'i' * - E A ‘ Modify | Utilities * ‘
© Main Releases = Objectives Teams | Iterations Features = Notes m' Delete
| | Createlteration
Iterations
AddTeams
Name ~ StartDate EndDate CreateRelease
lter 1 October 1, 2020 at 12:00:00 AM October 15, 2020 at 12:00:00 AM
Eastern Daylight Time Eastern Daylight Time CreateAllReleases
Iter 2 October 16, 2020 at 12:00:00 AM October 31, 2020 at 12:00:00 AM
Eastern Daylight Time Eastern Daylight Time
Iter 3 November 1, 2020 at 12:00:00 AM November 15, 2020 at 12:00:00 AM

Eastern Daylight Time Eastern Standard Time

November 16, 2020 at 12:00:00 AM November 30, 2020 at 12:00:00 AM
Fastern Standard Time Fastern Standard Time

Iter 4

Figure 38 Createlteration Action on Programincrement

I *PIZZAPI her 1 .

| terationPizzapi1iert « W * - B ~ | save | saveandClose

! Main Teams Stories and Tasks

Program Increment Name
PIZZAPI1 - Iter 1
Start Date End Date

10/1/2020 - 10/15/2020 -

Description

Figure 39 Creating Iteration

7.2.1 Teams

As with creating a PI, saving a new lIteration will trigger the creation of a Teamlteration record for each
team in the ReleaseTrain. The Teamlteration is to an Iteration as the TeamPl is to a Programincrement.
The Teamlteration records capture team specific information related to the Iteration, such as the team

https://www.scaledagileframework.com/iterations/
https://www.scaledagileframework.com/iteration-planning/

phase, goals and retrospective. The Teamlteration records will not be created until after you save the
new lteration.

PIZZA P11 Iter 1 = X

Heration-PIZZAPI 1 Iter 1 (7 W % v B v | Modify | Utilities ~

Main = Teams Stories and Tasks

Team Iterations

Team # Phase

APITeam Plan

DriverApp Team Plan

MobileApp Team Plan |

ylic

Figure 40 Teams Tab on Iteration

If you add a Team to the ReleaseTrain after the Iteration was created, the Teamlteration will not
automatically be created for the new Team. An RTE or PM can add new teams to the Iteration. While the
Iteration is in a non-editable state, run the Utilities->AddTeams action. This action will look for new
teams and add any missing Teamlteration records to the Iteration.

PIZZAPI1 Iter 1 -3 x =
=)

| Meration:PIZZAPITIter 1) T K~ B v | Modiy | utiities - |
Main | Teams = Stories and Tasks m' Delete !

AddTeams

| | Team lIterations

Team ~ Phase
APITeam Plan
DriverApp Team Plan
MobileApp Team Plan

Figure 41 Running AddTeams on Iteration

7.2.1.1 Teamlteration
Now let’s look at a Teamlteration. Double click on one of the records listed on the Teams tab.

7.2.1.1.1 Main

The Iteration and Team values on this tab were automatically set during Iteration creation or when you
ran the AddTeams action. You can also track the PDCA cycle (Plan-Do-Check-Act) here. There is a space
for a longer description of what your team is doing with the iteration.

https://www.scaledagileframework.com/iterations/

' *MobileApp Team PIZZA Pl 1 lter 1

| Teamlteration:MobileApp Team PIZZAPI1 lter1 «

Main Goals Iteration Retrospective

Iteration

PIZZAPI1 lter 1 -

Team

MobileApp Team -

Phase

| Plan -

Plan

n Do

i Check
£ Adjust

Figure 42 Teamlteration Main Tab

7.2.1.1.2 Goals

Agile Teams can enter goals for the iteration which should align with the team and organizational
objectives put forth by the PI planning. A new goal includes a headline and description and includes one
or more objectives (see Figure 43). Goals can be entered here, or from the New-> Record menu and
added here later. You can also add one or more Goal records to a Story. This can help align your work
with the Iteration goals. You will learn more about this in section 8.2.5.

https://www.scaledagileframework.com/iteration-goals/

I *MobileApp Team PIZZA PI 1 Iter 1
w * e E - | Save

| Teamilteration:MobileApp Team PIZZAPI 1 Iter1 « []

Main | Goals Iteration Retrospective

Goals *New Goals - x

I Headline_ Goal:New Record « E hd ‘ Save ‘ Save and Close ‘ Cancel

*Goal Details

*Headline I

Description New
il B
u
ul
e
e

Objectives
¥ Headline Description
it Add
a
' [t |
b

Template: ¥ load *

n

ion/MobileAnp Team

Figure 43 Creating a Goal on Teamlteration

7.2.1.1.3 Iteration Retrospective

When the iteration ends, the PO can conclude the iteration with a retrospective. What went right, what
went wrong? What can be done better? What unfinished work should go into the next Iteration? What
defects were found? The output of this retrospective can be captured here.

*MobileApp Team PIZZAPI 1 lter 1

|| Teamilteration:MobileApp Team PIZZAPI1 lter 1 - 'i' * - ﬁ - | Sav

| Main | Goals [Heration Retrospective

Retrospective

Figure 44 Iteration Retrospective Tab

7.2.2 Stories and Tasks

This tab shows all the Stories and Tasks scheduled for this iteration, the teams responsible for them, and
their current state. It is a quick way to see where all the teams are in terms of completing their work.
There is no action within the Iteration record for this tab.

https://www.scaledagileframework.com/iteration-retrospective/

I PIZZAPI 1 lter 1

| leration-PIZZAPI1 lter 1 ~) W H~E

Main | Teams | Stories and Tasks

- Stories scheduled for this iteration

Type i | Headline State Owner Team
SAMPLO establish connection to ~
Enabler 0000014 payment gateway Demo APITeam
SAMPLO pull order from pizza app
User 0000013 system Backlog APITeam
User SAMPLO create utility to calculate Demo DriverApp
| 0000024 mpg for drivers car Team
1
create utility to calculate
SAMPLO least gas consuming route DriverApp
5 User 0000025 from shop each customer Backlog Team
on route
5 L4
Tasks scheduled for this iteration
id Headline State Parent Story

b

Figure 45 Stories and Tasks Tab on Iteration

8 Work Items

We have gone over all the structural record types to help your team follow SAFe processes. Now we will
go over work item records. These records track actual work done by the team. The work items follow
the SAFe Requirements Model. For the HCL Compass EssentialSAFe schema, we only track work items
associated with Essential SAFe, such as the Feature, Story and Task. We describe these below.

8.1 Features

Features are work items which are completed within a Program Increment. There are two types of
Features — Enablers and Business Features. They have stakeholder interest, meet business objectives,
and are completed by being sliced into smaller stories which are completed during iterations within the
PI. Once all its stories are complete and tested, the Feature is complete.

The following diagram shows the states and actions available for a Feature. This is the default and
suggested flow, but you may skip over states as well. To enter a state, you would run the action pointing
into it. For example, to enter the Implementing state from any state prior to it, you would use
Implement action. To enter the Implementing state from any state after, you would use the
Relmplement action.

https://www.scaledagileframework.com/safe-requirements-model/
https://www.scaledagileframework.com/features-and-capabilities/

Analyze Plan Implement Validate Deploy Release

Close
) 4 [3 3 i > [— I ’ ™
Funnel Analyzing Backlog Implementin Validating Deploying ﬁ a
e ¢ 1 ¢] ¢ (——— ¢] &
ReSubmit ReAnalyze PutBack Relmplement ReValidate ReDeploy ReRelease

Figure 46 State Flow for Feature

To create a feature, use the New->Feature menu option.

A& A Compass

New Query ~ | Edit Named List
g New Query

Mew REST URI

Team
Component
Feature

> Goal

™ Iteration
MFR
Objective
Persona

Funnel

Programincrement |,
Ranking

2 Loading...

[p ORI

sh

Figure 47 New Feature Menu Option
We will now look at the form for the Feature.

8.1.1 Main
The Main tab has commonly used fields. We describe the fields below. Any field marked with a * in the
headline is mandatory.

wl welcome X | [§j pizza x| [samPLooo0DOOT X

* v B M

Feature:SAMPL0000000T ~ [)

i

Main = Definition = Planning = Objectives = Stakeholders = History = Motes = SubscriberList = Attachments

ID State

Type
SAMPLO0000001 Releasing Business
Headline
Can order a pizza on the maobile app Ul
Release Train Priority
PIZZA 1-High
Solution Tags
PizzaApp
Component
PizzaApp Ul
Description

Figure 48 Main Tab on Feature

81.1.1 ID
This value is automatically set when you create the record and cannot be changed.

8.1.1.2 State
This value can only be changed using one of the state transition actions shown in Figure 46. On creation,
the initial state will be Funnel.

8.1.1.3 Type*
A Feature can be either a Business or Enabler Feature. A business feature adds functionality and
enablers support the development process and build the Architectural Runway.

8.1.1.4 Headline*
A short description of the Feature.

8.1.1.5 Release Train*
The Feature exists in the context of a Release Train, therefore every Feature must have a Release Train
specified.

8.1.1.6 Solution*
A Feature adds value to a solution. Choose the solution to which this Feature applies.

8.1.1.7 Priority*
Choose a priority for this Feature. Remember, you can customize these in the ReleaseTrain
Configuration tab (see section 6.9.2).

8.1.1.8 Component
You can optionally choose a component of the solution to be more specific about where the Feature
applies.

https://www.scaledagileframework.com/architectural-runway/

8.1.1.9 Tags
You can add tags to the record for easy searching or categorization.

8.1.1.10 Description
You can put more details here.

8.1.2 Definition

This tab helps you define the Feature. It has just two fields, the Benefit Hypothesis and the Acceptance

Criteria. For insight on what to put here, refer to Features and Capabilities on the Scaled Agile
Framework website.

Feature:SAMPL00000001 ~ (" W % - B ~ | Modify | ChangeState ~

Main = Definition Planning = Objectives = Stakeholders = History Motes = Subscriber List = Attachments

Benefit Hypothesis

Users will be able to order a tasty Pizza on the mobile app and have it delivered.

Acceptance Criteria

User can choose what size pizza to order

User can select the crust, including a gluten-free option
User can add toppings

Price of the order is clearly visible

Figure 49 Definition Tab on Feature

8.1.3 Planning
This tab is used to help plan the Feature.

https://www.scaledagileframework.com/features-and-capabilities/

Feature:SAMPLO00000004 - (VW ok B~ | Modify |
Main = Definition Planning = Objectives = Stakeholders History = Motes Subscriber List = Attachments

Programincrement

PIZZAPI

Owner

lead

Resolution

Stories
id -~ State Headline
SAMPLO0000OT4 Demo establish connection to payment gateway
SAMPL0O00000TS Demo transmit payment info over secure connection
SAMPLO0000OT6 Demo payment confirmation is sent over email
SAMPLO0000033 Submitted payment confirmation sent via text message

Figure 50 Planning Tab on Feature

8.1.3.1 Program Increment

During Pl Planning, the organization leadership decides which features to implement for the coming
Program Increment. They can do this by setting the Program Increment field on the Feature. If you have
future Programincrement records created, you could also create a roadmap, assigning features to later
Programinrements to help you communicate your development horizon.

8.1.3.2 Owner
A business owner or system architect usually creates the Feature and owns it throughout its lifetime.

8.1.3.3 Resolution
when the feature is finally finished, a resolution code will be entered — these codes are customized by
the RTE in the Release Train record.

8.1.3.4 Stories
Features get sliced into smaller stories, where the implementation happens. These stories will be listed
on this tab. Double-click on any story to view its details.

8.1.4 Objectives

During Pl Planning, you typically start with the Features you want to create and then teams will create
Objectives from these. Teams that need to collaborate on a Feature may create separate objective
specific to their domain. During the Pl Planning, teams can create Objective records directly on the
Feature using this tab by clicking the New button. Existing objectives can also be added using the Add
button.

https://www.scaledagileframework.com/pi-planning/
https://www.scaledagileframework.com/roadmap/
https://www.scaledagileframework.com/pi-planning/
https://www.scaledagileframework.com/pi-objectives/

Feature:SAMPLO0000004 . "W % - B ~ | save | saveandClose | ¢
Main = Definition = Planning Objectives Stakeholders = History Motes = SubscriberList Atftachments

Objectives
Value ~ Headline Committed
8 PIZZA - provide secure payment gateway No "‘

Figure 51 Objectives Tab on Feature

8.1.5 Stakeholders
Stakeholders interested in the enablement of this feature can be logged here — they can be added from
existing stakeholder records or created new. These stakeholders can be internal or external (customers)

Feature:SAMPL00000004 - W % ~ B ~ | save | SaveandClose | G
Main Definition = Planning = Objectives = Stakeholders History Motes Subscriber List = Attachments

StakeHolders
Name # Description
Green Pizza Delivery Services JEadl
Figure 52 Stakeholders Tab on Feature
8.2 Stories

Stories are work items which are completed within an Iteration. Stories are either sliced from features
or may arise from retrospectives or testing (defects). Stories should be sized appropriately so they can fit
into a single iteration.

The following diagram shows the states and actions available for a Story. This is the default and
suggested flow, but you may skip over states as well. To enter a state, you would run the action pointing
into it. For example, to enter the Work state from any state prior to it, you would use StartWork action.
To enter the Work state from any state after, you would use the ReWork action.

Plan Analyze StartWork Test Demo

Close
o - u n a . a
ReSubmit PutBack ReAnaIyze ReWork ReTe st Re Demo

Figure 53 State Flow for Story

There are two ways to create a Story. The easiest way, especially when splitting a Feature into separate
Story records, is to run the Utilities->CreateStory on the Feature. This will create a new Story and pre-
populate Release Train, Solution, Priority, Component, Pl and Parent Feature with values from the
Feature. This makes slicing a Feature into Story records quick and easy.

ml welcome X | By pizza X | [P sampLooooooo1 X

Feature:SAMPLO000000T ~ (" W % ~ B ~ | Modify | Change State ~ | utilities =

Main Definition = Planning Objectives = Stakeholders = History

Notes = Subscriber List = Attachments m- Delete
CreateStory

ProgramIncrement

PIZZAPI1

Owner

Resolution
Stories

id ~ State Headline

SAMPLO0000028 Demo as a customer i want to add multiple topping to a pizza

SAMPLO0000029 Demo as a customer i want to remove topping from a pizza before ordering it

SAMPI NNNNNNAN Clnsed

A= A cnstamer i want ta order tonnina an half of mv nizza

Figure 54 Running CreateStory Action on Feature

Feature:SAMPLO0000001 (%)

W K~ B~ | Moy

Main Definition Planning = Objectives = Stakeholders = History = Motes SubscriberList =~ Attachments
ID *Story
SAMPL(ll)(lq
Story:SAMPLO0000046 ~ B ~ | save | Saveand Clos

Headline Main = Definition = Planning = Goals = History = Notes = Subscriber List =~ Attachments
Can order a|

ID Stat T P
Release Trai ate ype ersona
PIZZA | SAMPL00000046 Submitted User - -
Solution Headline

isi 1
i PizzaApp | This is my new story!

Component Release Train Priority

PIZZA - 1 -High hd
PizzaApp U‘ =
Description Solution Tags

- ol

PizzaApp - K4

Component

PizzaApp Ul -

Template: ¥ load ¥

Figure 55 New Story with Prepopulated Fields from Feature

Some stories are not split from a Feature. These stories can also be created from the New->Story menu

option.

F-N&« A Compass

New Query ~ | Edit Named List

ag New Query

New REST URI

Story

NFR

N Component
Feature
Goal
Iteration
Objective
Persona

Funnel

Programincrement jing

Ranking

More...
ER All Unplanned Stories

Figure 56 Creating Story with New->Story

We will now take a closer look at the Story form.

8.2.1 Main
The Main tab has commonly used fields. We describe the fields below. Any field marked with a * in the
headline is mandatory.

ol welcome X | [“SAMPLO0000037 X

Story-SAMPLO0000037 «

*Main Definition = Planning Goals = History = Notes = Subscriber List = Aftachments

ID State Type Persona

SAMPL00000037 Submitted User - -

*Headline

*Release Train * Priority

* Solution Tags

Component

Description

Figure 57 Main Tab on Story

82.1.1 ID
This value is automatically set when you create the record and cannot be changed.

8.2.1.2 State
This value can only be changed using one of the state transition actions shown in Figure 53. On creation,
the initial state will be Submitted.

8.2.1.3 Type*

Scaled Agile Framework defines two types of stories, User and Enabler stories. HCL Compass
EssentialSAFe schema also defines a third type of Story, the Defect. This can be used to represent
defects in the product that need to be fixed and can fit in an iteration.

8.2.1.4 Headline*
A short description of the Story.

8.2.1.5 Release Train*
The Story exists in the context of a Release Train, therefore every Story must have a Release Train
specified.

8.2.1.6 Solution*
A Story adds value to a solution. Choose the solution to which this Story applies.

https://www.scaledagileframework.com/story/
https://www.scaledagileframework.com/enablers/

8.2.1.7 Priority*
Choose a priority for this Story. Remember, you can customize these in the ReleaseTrain Configuration
tab (see section 6.9.2).

8.2.1.8 Component
You can optionally choose a component of the solution to be more specific about where the Story
applies.

8.2.1.9 Tags
You can add tags to the record for easy searching or categorization.

8.2.1.10 Description
You can put more details here.

8.2.1.11 Persona
If you use design thinking, which can help create desirable products, you can choose a Persona that this
story applies to.

8.2.2 Definition

This tab helps you define the Story. It has just one field, the Acceptance Criteria. For insight on what to
put here, refer to Story page on the Scaled Agile Framework website. You might describe a series of
tests using Behavior Driven Development practices.

Story. SAMPLO0000037 -
*Main :De'ﬁnitinn: Planning = Goals = History Motes Subscriberlist = Attachments

Acceptance Criteria

Figure 58 Definition Tab on Story

8.2.3 Planning
This tab can be used to help plan the Story.

https://www.scaledagileframework.com/design-thinking/
https://www.scaledagileframework.com/story/
https://www.scaledagileframework.com/behavior-driven-development/

Story:SAMPL00000013 - (7 W % ~ B~ | Modify | Change State ~

Main Definition Planning Goals History Motes SubscriberLlist Attachments

Feature

id # Headline

SAMPLO0000002 calculates status of pizza between pizza and driver apps

< >
Team Program Increment
AP[Team PIZZAPI1
Owner Iteration

PIZZAPI 1 lter 1

Story points Resolution
Class of Service Fixed Date
Tasks

id State Headline

Figure 59 Planning Tab on Story

8.2.3.1 Feature
A story can have a parent Feature. If the story was not created from a feature directly, you can add one
here or if there is no parent (as may be the case for a defect or some enablers), leave the field blank.

Typically, a story is created as a child of a Feature, sliced out as a part of a Pl Planning exercise. That is
not always the case. A story is not required to have a parent. For example, a defect story found during
development or testing might not have a parent Feature. An enabler story that was created internally by
the team, such as during retrospective, might not have a parent Feature.

8.2.3.2 Team
The team that will work on the story.

8.2.3.3 Program Increment
This field is the Programincrement this story is planned for. This list will be limited by whatever
ReleaseTrain the record is assigned to.

8.2.3.4 Owner
The person who will do the work. This list will not be limited in any way.

8.2.3.5 lteration
The Sprint in which the story will be completed. This list will be limited by the selected Program
Increment.

8.2.3.6 Story Points
This field contains the estimate for the relative work effort for a story. The list is limited to whatever
story points are configured on the ReleaseTrain.

8.2.3.7 Resolution
When the work item is complete, a resolution code can be assigned here. The list is limited to whatever
resolution codes are configured on the ReleaseTrain.

8.2.3.8 Class of Service

The Class of Service is a way to optimize execution of work in Kanban. The list is limited to whatever
classes of service are configured on the ReleaseTrain. The “0 — Fixed Date” class of service is built-in and
always first in the list. If this is chosen, then Fixed Date becomes a mandatory field.

8.2.3.9 Fixed Date
If the Class of Service is set “0 — Fixed Date”, you must set a Fixed Date to indicate when this story must
be done.

8.2.4 Tasks

In SAFe, Tasks are short work items (usually in the measurement of hours) that can be used to further
break down stories and to help teams understand how much work is involved. Tasks are optional and
used mainly by newer teams until they can plan and work entirely at the Story level. We learn more
about Task records in section 8.3.

8.2.5 Goals

During lteration Planning, teams create Goals, as described in section 7.2.1.1.2 to help align with the
teams Objectives (see section 7.1.3). To demonstrate that the stories they choose are aligned with these
goals, you can add these goals here. Conversely, you could create new goals on the stories, and add
them to the Teamlteration Goals tab during iteration planning.

Story:SAMPL00000013 - (" W kv B~ | Modify | che
Main Definition Planning Goals History = Notes Subscriber List Attachments

Goals

Headline

add U for browsing previous orders

Figure 60 Goals Tab on Story

https://www.scaledagileframework.com/story/
https://www.scaledagileframework.com/team-kanban/
https://www.scaledagileframework.com/iteration-planning/
https://www.scaledagileframework.com/iteration-planning/
https://www.scaledagileframework.com/iteration-goals/

8.3 Tasks

Tasks were introduced in section 8.2.4. The Task is the smallest work item in EssentialSAFe. The Task
also does not have a type nor a Story Point estimate. The effort in a Task is so short it is smaller than one
story point (usually modelled as one person-day). Tasking stories is an optional process in SAFe. It is
often used by newer teams to help them better size stories. More experienced teams may forego
creation of tasks and stick with stories as the smallest work item. In HCL Compass EssentialSAFe, a Task
record does not need to have a parent Story, but it usually does.

The state flow for a Task is shown below, and it can go forward or backward like the other work items.

StartWork Validate Close
[> [

Submitted Active Validating Closed

< I ¢ I 1

ReSubmit ReSubmit ReSubmit

Figure 61 State Flow for Task

There are two ways to create a Task. The easiest way, especially when splitting a Story into separate
Task records, is to run the Utilities->CreateTask on the Story. This will create a new Task and pre-
populate Release Train, Solution, Priority, Component, Pl and Parent Story with values from the Story.
This makes slicing a Story into Task records quick and easy.

vl Welcome X h +SAMPLO0000037 X | EE All Stories X h SAMPLO0D00023 X

Story:SAMPL00000023 ~ (7" W % - B - | Modify | ChangeState~ | Uilities v
Main = Definition = Planning = Goals = History = Notes = SubscriberList = Attachments m' Delete
CreateTask
ID State Type Persona
SAMPL0O0000023 Analyze Enabler
Headline

create utility to check weather conditions on road

Release Train

Priority
PIZZA 1- High
Solution Tags
DriverApp
Component

DriverApp Backend

Figure 62 CreateTask Action on Story

https://www.scaledagileframework.com/iteration-planning/

il Welcome X

E *SAMPL0O0000037 X

Story-SAMPL0O0000023 ~

ER Al stories %

Bj sampLooo00023 X

L'j 'i' * = E = | Modify | Change Stat

Main = Defin *Task -3 x
SAMPLI |1
> | Task:SAMPL00000038 ~ B ~ | save | SaveandClose | Cancel

Main Definition = Planning = History = Notes = SubscriberList = Attachments
~

1D State

Team
- SAMPLO0000038 Submitted

DrlverA#
Owner Headline

This is a new task
Story pol ReleaseTrain Priority

I
E ‘ PIZZA - 1 - High -
Class of R
‘ Solution Tags

DriverApp - Vd
Tasks :

Component
id —‘

DriverApp Backend -

Description

v
Template: ¥ Lload ~

Figure 63 New Task with Prepopulated Fields from Story

Some Tasks are not split from a Story. These Tasks can also be created from the New->Task menu

option.

New Query ~ | Edit Named Lis

Eé Mew Query

Mew REST URI

Task

Story
Component
Feature
Goal
[teration
MFR
Objective
Persona

Pragramincrement

Mare...

Funnel

ins

P All Unnlanned Stories

Figure 64 Creating Task with New->Task

8.3.1 Main
The Main tab has commonly used fields. We describe the fields below. Any field marked with a * in the
headline is mandatory.

Task:SAMPLD000003S B ~ | save | saveandClose | C
*Mlain = Definition = Planning = History = Motes = Subscriber List = Attachments

ID State

SAMPLO0000038 Submitted

*Headline

* ReleaseTrain * Priority

* Solution Tags

Component

Description

Figure 65 Main Tab on Task

83.1.1 ID
This value is automatically set when you create the record and cannot be changed.

8.3.1.2 State
This value can only be changed using one of the state transition actions shown in Figure 61. On creation,
the initial state will be Submitted.

8.3.1.3 Headline*
A short description of the Task.

8.3.1.4 Release Train*
The Task exists in the context of a ReleaseTrain, therefore every Task must have a Release Train
specified.

8.3.1.5 Solution*
A Task add value to a solution. Choose the solution to which this Task applies.

8.3.1.6 Priority*
Choose a priority for this Task. Remember, you can customize these in the ReleaseTrain Configuration
tab (see section 6.9.2).

8.3.1.7 Component
You can optionally choose a component of the solution to be more specific about where the Task
applies.

8.3.1.8 Tags
You can add tags to the record for easy searching or categorization.

8.3.1.9 Description
You can put more details here.

8.3.2 Definition

This tab helps you define the Task. It has just one field, the Acceptance Criteria. For insight on what to
put here, refer to Story page on the Scaled Agile Framework website. You might describe a series of
tests using Behavior Driven Development practices. Tasks are so small that you might forego defining
the acceptance criteria on the Task and instead define them all on the Story.

Task-SAMPL00000038 - B - | save | SaveandClose | C
*Main Definiion = Planning = History = Notes Subscriber List =~ Attachments

Acceptance Criteria

Figure 66 Definition Tab on Task

8.3.3 Planning

This tab can be used to help plan the Task. Tasks assigned to an Iteration will appear on the Stories and
Tasks tab on the Iteration. It should be noted that in HCL Compass EssentialSAFe, tasks will not show up
in the team Kanban or backlog queries along with stories. You can create separate queries to track
Tasks.

https://www.scaledagileframework.com/story/
https://www.scaledagileframework.com/behavior-driven-development/

Task-SAMPLO0000038 - B ~ | save | SaveandClose | Cance
*Main | Definition Planning Histaory Motes = Subscriber List = Attachments

Story
id Headline Iteration
Team Program Increment
Owner Iteration
Resolution
Figure 67 Planning Tab on Task
8.3.3.1 Story

A Task can have a parent Story. If the Task was not created from a Story directly, you can add one here
or if there is no parent (as may be the case for a defect or some enablers), leave the field blank.

Typically, a task is created as a child of a story, sliced out as a part of the |teration Planning exercise.
That is not always the case. A Task is not required to have a parent. For example, a task may have been
created internally by the team during retrospective.

8.3.3.2 Team
The team that will work on the task.

8.3.3.3 Program Increment
This field is the ProgramIncrement this task is planned for. This list will be limited by whatever
ReleaseTrain the record is assigned to.

8.3.3.4 Owner
The person who will actually do the work. This list will not be limited in any way.

8.3.3.5 lteration
The Sprint in which the story will be completed. This list will be limited by the selected Program
Increment.

8.3.3.6 Resolution
When the work item is complete, a resolution code can be assigned here. The list is limited to whatever
resolution codes are configured on the ReleaseTrain.

https://www.scaledagileframework.com/iteration-planning/

8.4 Common Work Item Tabs

If you are using the out of the box HCL Compass Essential SAFe schema, you will find that each of the
work items described above have a set of common tabs. If, on the other hand, you are applying the
EssentialSAFe package to an existing schema, some of these tabs will not be present. You can add them
by enabling the work items with the respective package they come from.

8.4.1 History

These fields are read-only and track who submitted, closed, and last modified the record along with a
date and time stamp. There is also a standard history control showing the entire work item history. This
tab is included with the EssentialSAFe package.

8.4.2 Notes

The notes tab is a place to keep ongoing notes about the progress of the work item and communicate
any questions with the team or stakeholders. The Notes tab can be added to existing schemas using the
Notes package.

8.4.3 Subscriber List

The Subscribers List tab comes from the EmailPlus package. The EmailPlus package has enhanced email
notification capabilities. We recommend using this email notification package for the best user
experience. A Compass admin must enable and configure EmailPlus before it starts sending
notifications. Refer to the EmailPlus documentation for how to do this.

8.4.4 Attachments
Attachments is a place to store files related to the record. This tab is added by the Attachments
package.

Figure 68 dddd

9 Queries

HCL Compass EssentialSAFe ships with a number of generic queries out-of-the-box, and it is also possible
to generate more specific queries running the CreateBacklogsAndKanbans action on the ReleaseTrain.
The following sections describe these queries and suggest how you can use them in SAFe workflow.

9.1 Public Queries

The EssentialSAFe package includes some queries to make it easy to find things. These queries are
generic in scope and return many more records than you may initially need, but they can helpful to
someone just getting started to find their data. The queries be modified to add display columns and
filters. You can then save the modified (and therefore more useful) queries to your personal or public
workspace.

A few common use cases for these queries are described below.

9.1.1 Viewing Scrum Notes
A common use case is looking at your team’s scrum notes. We describe two methods for finding your
team’s scrum notes, by running the All Release Trains query.

https://help.hcltechsw.com/compass/2.0.0/com.hcl.compass.doc/webhelp/oxy_ex-1/com.ibm.rational.clearquest.schema.ec.doc/topics/c_ex_nts_att_ema_pkg.html
https://help.hcltechsw.com/compass/2.0.0/com.hcl.compass.doc/webhelp/oxy_ex-1/com.ibm.rational.clearquest.schema.ec.doc/topics/sch_pkgs/c_emp_package.html
https://help.hcltechsw.com/compass/2.0.0/com.hcl.compass.doc/webhelp/oxy_ex-1/com.ibm.rational.clearquest.schema.ec.doc/topics/sch_pkgs/c_emp_package.html
https://help.hcltechsw.com/compass/2.0.0/com.hcl.compass.doc/webhelp/oxy_ex-1/com.ibm.rational.clearquest.schema.ec.doc/topics/c_ex_nts_att_ema_pkg.html

9.1.1.1 Using Forms.
Run the “All Release Trains” query and find your release train in the result set. Click on it to open its
form.

&« L Compass

New Query ~ ‘ Edit Named List

. il welcome X | B All Release Trains X
~ Navigator —

All Release Trains

e

I Personal Queries

Name

Descripti Vision Statement
~ [l Public Queries ; scription ision em

> [EmailPlusAdmin > PIZZA A fast and green pizza delivery service. We aim to provide a high quality pizza delivered on

~ [l SAFe Queries
ER All Features
Ef All Features in Funnel
B All Release Trains
B All Stories
B All Tasks
ER All Unplanned Stories

B Program Increments by Release Train 4

Figure 69 All Release Trains Query

On the Program Increments tab, find the one you want the scrum notes for and open it (e.g. double
click).

ReleaseTrain-PIZZA -
Main = Solutions Teams Program Increments Stakeholders Personas Roles MFRs = Configure

Program Increments

Name . StartDate EndDate
Pl October 1, 2020 at 12:00:00 AM Eastern December 31, 2020 at 12:00:00 AM Eastern
Daylight Time Standard Time
January 1, 2021 at 12:00:00 AM Eastern March 31, 2021 at 12:00:00 AM Eastern Daylight
PI2 :
Standard Time Time

Figure 70 Choose Pl from ReleaseTrain

Find your Team in the Teams tab and double click on it.

il welcome % T All Release Trains X E PIZZA X

ReleaseTrain:PIZZA «

Main Solutions = Teams Program increments = Stakeholders Personas = Roles NFRs

Configure

Program Increments PIZZAPI1

| Programincrement-PIZZAPI1 «

Name
ik Main = Releases Objectives Teams Iterations = Features
P12 Program Increment Status for Teams

Team

APITeam

DriverApp Team

MobileApp Team

Figure 71 Choose Team from PI

i
*»
[

(]

Motes

- Product Owner

On the TeamPI form that opens, switch to the Notes tab. Here are the daily scrum notes your team.

-1 ReleaseTrain:PIZZA]
APlTeam PIZZA Pl 1

TeamPl-APITeam PIZZAPI1 ~

Main = Objectives @ NFRs = MNotes

New Note:
My Scrum notes!

Notes Log:
==== py: admin on 12 November 2020 21:29:43 ====

My Scrum notes!

Figure 72 Scrum Notes on TeamPI

To add more scrum notes, run the Modify action on the TeamPIl and add a new note. Only the product

owner for the team can do this.

9.1.1.2 Using Tree View

The second method of finding the same information uses the Tree View feature in the resultset. Run
the same query and expand the twisty controls, as in the figure below, to get to right TeamPI.

New Query ¥ | Edit Named List
“ Navigator w# Welcome X | I All Release Trains X | [Pizza X
All Release Trains
[Personal Queries
~ B Public Queries e Name Description Vision Statement
> B EmailPlusAdmin — 1 ~ PIZZA A fast and green pizza delivery service. We aim to provide a high quality pizza delive
~ [l SAFe Queries L1l > Features
B All Features 1.2 > Personas
B All Features in Funnel 13 v Programincrements
£M All Release Trains 131 v Pl
EF All Stories 1311 > Features
ER All Tasks 1.3.1.2 » lterations
EF All Unplanned Stories 1313 > Releases
B Program Increments by Release Train 1314 > Stories
1.3.1.5 ~ TeamPls
Vv Favorites 13151 - APITeam PIZZA PI1
1.3.1.5.2 > DriverApp Team PIZZAPI 1
% MahilaAnn Taam DI77A DI

Figure 73 Choose Correct TeamPI from Tree View
Click on the TeamPI corresponding to your team and the same form as in Figure 72 appears.

9.1.2 Triaging Work Items

Another common use case is to perform triage on new work items such as new features and stories.
New features begin in the Funnel state (see Figure 46). Business owners and architects may meet to
assign new features to subject matter experts for analysis. To find features that are in the funnel state
you can run the All Features in Funnel.

Similarly, new stories will begin in the submitted state. The Plan action takes it to the Backlog state. If
the story was split from a Feature or created as part of a retrospective, it may already have been placed
in the backlog during Pl planning. In some cases, you may create a story that has not been planned yet.
You can find them with the All Unplanned Stories query.

The following queries are included with the tool

9.1.2.1 All Features
This is a query that lists all features in the database.

9.1.2.2 All Features in Funnel
This is a query that lists all features in the Funnel state in the database.

9.1.2.3 All Release Trains
This is a query that lists all ReleaseTrain records in the database.

9.1.2.4 All Stories
This is a query that lists all stories in the database.

9.1.2.5 All Tasks
This is a query that lists all tasks in the database.

9.1.2.6 All Unplanned Stories
This is a query that lists all stories in the Submitted state in the database.

https://www.scaledagileframework.com/features-and-capabilities/

9.1.2.7 Program Increments by Release Train

The is a dynamic query. When you run it, it will ask you to choose a ReleaseTrain. The query return all of
the Programincrement records within that ReleaseTrain. This can be helpful in planning. If no
ReleaseTrain is chosen, all Programincrement records for every ReleaseTrain will be returned.

New Query ~ ‘ Edit Named List

Search

'l Welcome X = [Program Increments by Release Train X

Full Text By ID

v Navigator

[Personal Queries
~ [l Public Queries

> I EmailPlusAdmin

~ [l SAFe Queries
ER All Features
ER All Features in Funnel
EF All Release Trains
ER All Stories
B All Tasks
BF All Unplanned Stories

B Program Increments by Release Train

v Favorites

9.2 Personal Queries

| Fields | ‘ The current field is set to: ‘

’/‘ ReleaseTrain "Equals™ ™ ReleaseTrain "Equals™ ™

Input

Valid Operator:

Equals -

Enter. ReleaseTrain

Value(s):

Figure 74 Running Program Increments by Release Train

HCL Compass EssentialSAFE allows users to create backlog and Kanban queries in their own personal
workspace. This can save you the time and hassle of creating the queries yourself, which can be tedious.
To create these queries, open the ReleaseTrain record which you want to create the queries for. You can
use the All Release Trains public query, or you can just type in the name of the ReleaseTrain in the
search box. After opening the Release train run the Utilities->CreateBacklogsAndKanbans action.

il Welcome X = EF All Release Trains X E PIZZA X

ReleaseTrainPIZZA «

Main Solutions Teams Program Increments = Stakeholders Personas ~ Roles NFRs = Configure

Name
PIZZA

Description

A fast and green pizza delivery service.

Vision Statement

We aim to provide a high quality pizza delivered on the greenest possible route.

2T AUIIISUAUUI | FIGICICIGES | e

) W K~ B~ | Modify | Utilities ¥

T Delete

CreatePl
CreatePersona

CreateBacklogsAndKanbans

Figure 75 Running CreateBacklogsAndKanbans Action

In your Personal Queries workspace, there will now exist a folder “SAFE Queries for <rt>” where <rt> is

the name of your Release Train.

NN« K. Compass

New Query ~ | Edit Named List

~ Navigator

~ [l Personal Queries

> [New Folder

~ |l SAFE Queries for PIZZA
B APITeam Team Backlog
BR APITeam Team Kanban
B DriverApp Team Team Backlog
B DriverApp Team Team Kanban
B MobileApp Team Team Backlog
ER MobileApp Team Team Kanban
B PIZZA Program Backlog
EF PIZZA Program Kanban

' |l Public Queries
> Il EmailPlusAdmin
[l SAFe Queries
B All Features

EF All Features in Funnel

gl Welcome ¥ ERAIR

ReleaseTrain:-PIZZA -

Main = Solutions = Teams

Mame
PIZZA

Description
A fast and green pizza

Vision Statement

We aim to provide a hig

Figure 76 New Folder Created in Personal Queries

In that folder, you'll see a series of queries — a backlog and Kanban pair for every team on the
ReleaseTrain and a Program level backlog and Kanban named after the release train. If the queries don’t
show up after running the action, refresh the workspace or logout and back in again to refresh the

workspace.

9.2.1 Kanban

This query shows all the records of a given type, regardless of the states, and timebox. In the case of a
“Program Kanban” it is for all the features of the Release Train. In the case of the “Team Kanban” it is

for all the stories for a specific team in the Release Train.

The Program Kanban is first sorted by State (starting with Funnel), then by Priority within the States.

PIZZA Program Kanban [1-12 of12 | [

e id Type State Priority Headline Solution

1 > SAMPL0O0000010 Business Funnel 1 - High generate delivery list for driver app based on envionmental impact PizzaApp

2 > SAMPLO0000012 Business Funnel 2 - Medium customer and driver can communcate with each other without exchanging phone DriverApp

numbers
3 > SAMPL0O0000011 Business Funnel 3-Low show user facts about environment while waiting for pizza PizzaDash
> SAMPL0O0000007 Business Analyzing 3-Low ability to call pizza shop back about order from dashboard PizzaDash

5 > SAMPL0O0000002 Business Backlog 1 -High calculates status of pizza between pizza and driver apps PizzaDash

6 > SAMPLO0000005 Business Backlog 1 - High conveyer belt shows pizza being made, baked, boxed, and driven PizzaDash

7 > SAMPL0O0000003 Business Backlog 2-Medium driver alerted to pick up delivery through driver app DriverApp

8 > SAMPL0O0000006 Business Backlog 3-Low customer saves frequent order info into profile PizzaApp

9 > SAMPLO0000009 Business Backlog 3-Low recalculates order of deliveries based of envrionmental condition changes DriverApp

10 > SAMPLO0000008 Business Implementing 1 - High driver given greenest possible route DriverApp

11 > SAMPLO00000001T Business Releasing 1 - High Can order a pizza on the mobile app Ul PizzaApp

12 > SAMPL0O0000004 Business Releasing 1 - High process credit card payment PizzaApp

Figure 77 Program Kanban Result Set
The Team Kanban is a result set sorted by State, Class of Service, and Priority.
APITeam Team Kanban 1-10 of 10 | (N B~

o id Type State Priority Headline Owner ClassOfService FixedDate Solution StoryPoints

1 > SAMPLO0000027 Enabler Submitted 1 -High Efznz‘l"me to dash from drive app when driver gets PizzaDash

2 > SAMPLO0000032 Enabler Submitted 2-Medium need a way for cooking log data to get to dash PizzaDash

3 > SAMPL0O0000036 User Submitted 3 -Low random fact generator PizzaDash

4 > SAMPLO00000013 User Backlog 1-High pull order from pizza app system PizzaDash

5 > SAMPL00000020 Enabler Backlog 3-Low design windows for facts PizzaDash

6 > SAMPLO0000021 User Backlog 3-Low as a user i would like the app to remember my PizzaApp 3

favorite pizza
7 > SAMPLO00D0026 User Backlog 3-Low as a user ineed to allow app to have access to PizzaDash 8
phone dialer

8 > SAMPL00000014 Enabler Demo 1-High establish connection to payment gateway PizzaApp 5

2) > SAMPLO0000015 Enabler Demo 1-High transmit payment info over secure connection PizzaApp 5

10 > SAMPLO0000016 User Demo 3-Low payment confirmation is sent over email PizzaApp 3

Figure 78 Team Kanban Result Set

Inline editing can be used to update work items directly in the Kanban using Right Click->Inline Edit.

Open In New Window

Bl copy
. * Add to Compass Favorites
= il welcome X E PIzza X Ef AllRelease Trains X [E PIZZA Pra I Bookmark Backlog X = [Eff] APITeam Team K.
PIZZA Program Kanban Email P
e i Type State Priority | Print Solution
1 > SAMPLO0000010 Business Funnel 1 - High Create Query from Selection pp based on PizzaApp
Multi-Record Update .
2 > SAMPL0O0000012 Business Funnel 2 - Medium :_ﬁ::\eb:;h each DriverApp
* Inline Create
3 > SAMPLO0000011 Business Funnel 3-Low E“ Inline Clone nt while waiting PizzaDash
B" Inline Create Related Record »
4 > SAMPLO0000007 Business Analyzing 3-low | putorder flom _ p;;,2Dagh
‘l‘ Inline Editing 3 Modify
5 > SAMPL00000002 Business Backlog 1-High Save Selected Record izzaDash
Implement
Cancel Selected Record
6 > SAMPLO0000005 Business Backlog 1 -High boxed. and driven Validate izzaDash
7 > SAMPLO0000003 Business Backlog 2 - Medium ::;‘“ alerted to pick up delivery Deploy riverApp
Release
8 > SAMPLO0000006 Business Backlog 3-Low customer saves frequent order in izzaApp
. recalculates order of deliveries b Close)
9 > SAMPLO0000009 Business Backlog 3-Low . tal condition ch | riverApp
envrionmental condition change! ReSubmit
10 > SAMPLO0000008 Business Implementing 1 -High driver given greenest possible ro riverApp
ReAnalyze
11 > SAMPLO0000001 Business Releasing 1-High Can order a pizza on the mobile & izzaApp
12 > SAMPL00000004 Business Releasing 1-High process credit card payment CreateStory izzaApp
Figure 79 Inline-Edit in Kanban
PIZZA Program Kanban Inline Mode Action: Modify
O id Type State Priority Headline Solution
1 » SAMPLO00000T0 Business Funnel 1- High generate delivery list for driver app based on PizzaApp

envionmental impact

2 » SAMPLO0000012 Business Funnel 2-Medium CuStomer and driver can communcate with each 5,
other without exchanging phone numbers

show user facts about environment while waiting

3 » SAMPLO0000011 Business Funnel 3-Low - PizzaDash
for pizza
+ B > SAMPLO0D00007 Busines ™ Analyzing 3-low ¥ ability to call pizza shop back about order from da PizzaDash
5 > SAMPLOO000002 Business Backlog 1 - High ca_lculates status of pizza between pizza and PizzaDash
. driver apps
2 - Medium
] n > SAMPLO0000005 Busines ¥ Backlog 3- Low shows pizza being made, baked, boxed, and driven PizzaDash
T > SAMPLO0000003 Business Backlog 2 - Medium :;;er alerted to pick up delivery through driver DriverApp
8 B > SAMPLO0000006 Busines ¥ Backlog 1-High ~ customer saves frequent order infa into profile PizzaApp

9 » SAMPL0O0000009 Business Backlog 3-Low reca!culates order of deliveries based of DriverApp
envrionmental condition changes

10 > SAMPLO0000008 Business Implementing 1 -High driver given greenest possible route DriverApp
11 » SAMPLO000000T Business Releasing 1 - High Can order a pizza on the mobile app Ul PizzaApp
12 > SAMPL00000004 Business Releasing 1 -High process credit card payment PizzaApp

Figure 80 Editing Features Directly in Program Kanban

You’ll notice there’s a lot of other features available to you from the result. For example, you can change
record states, which can be useful in a Kanban. With some tweaking of the query you would also be able
to create new Stories and Tasks, clone records. Consult Compass documentation for more information.

9.2.2 Backlog

In HCL Compass EssentialSAFe, the backlog is a record state. Any work item in the backlog is in the
Backlog state. The backlog queries show records that are in that state. For a Program Backlog, these are
features that are ready to be pulled into a Program Increment. For a Team Backlog, these are stories just
waiting to be worked on in an iteration. As with the Kanban queries, we can use inline-editing to size,
prioritize and assign backlog items.

APITeam Team Backlog Inline Mode Action: Modify New (1) » Save All| Save All and Bxit | Exit
0 id Type Priority Headline Priority Owner I i Soluti yPoi
1 > SAMPL0O0000013 User 1-High pull order from pizza app system 1-High PIZZAPI1 PIZZAPI1lter1 PizzaDash
A o | > SAMPL00000020 Enabh~ 3-Llo~ design windows for facts 3-Low ¥ PIZZAPI2 M v PizzaDas ¥ M
3 > SAMPLO00000Z1 User ~ 3-Low o & useriwouldlike the app to remember my 3-Low PIZZAPI 1 PIZZAPI1 lter3 PizzaApp
favorite pizza
4 > SAMPLO0000026 User ~ 3-Low o8 userineedtoallowapp fohave access to 3-Low PIZZAPI 2 PizzaDash

phone dialer

w v oW oo o=

20
40
100

A Product Manager would manage a Program Backlog and a Product Owner would manage the Team
Backlog. These are activities that would occur in planning sessions. While many of the record types
reviewed in this document do have access control on them (see section 1), anyone can modify work
items.

Because these queries are created in the Personal workspace, someone with Public Folder privileges
would need to move them to a public team workspace so that the team-based queries are in a public
location for easy access. A Product Owner might like to create a folder for their team to access team-
specific information. To obtain Public Folder permissions, please reach out to your HCL Compass
Administrator.

v Navigator

v [l Personal Queries

> [SAFE Queries for PIZZA

~ [l Public Quer?
[

> [l EmailPI

+

> [SAFeQ EE New Query
]

Mew Folder

Mew Report

v Favorites
Bl copy

(" Refresh

~ Recent Iten

EH Permissions

Figure 81 Creating a Folder in the Public Queries Workspace

https://www.scaledagileframework.com/program-and-solution-backlogs/
https://www.scaledagileframework.com/team-backlog/

10 EssentialSAFe — Schema or Package?
HCL Compass EssentialSAFe is available as either a schema or a package. Which method you use
depends on your situation.

10.1 EssentialSAFe as a Schema

If you are starting with a new schema repository, this is the method you should use. Any new schema
repository created with HCL Compass 2.0.1 will include the EssentialSAFe schema. To use the schemain
that new schema repository, simply create a new user database. You can create a sample database with
some example data in it when you create a new repository.

10.2 EssentialSAFe as a package

There are three situations in which you would use the EssentialSAFe package. In the first two instances
you are trying to use EssentialSAFe in an existing Compass repository. In the third situation you may
want to use different supporting packages. These cases are described below

10.2.1 Enabling a New Database

If you have a repository created with an older version of Compass, it does not already have the
EssentialSAFe schema in it. If you would like to create a new user database for the EssentialSAFe
schema, you would need to clone an existing schema, such as the Blank schema, and apply the
EssentialSAFe and supplementary packages to it (see section 10.2.5). You can clone schemas and apply
packages in the Compass Designer.

10.2.2 Enabling an Existing Schema

If you have an existing user database and you want to add EssentialSAFe capabilities to it, you can follow
this approach. As a package, EssentialSAFe can be applied to an existing schema. We commend also
applying the supplementary packages to it as described in section 10.2.5. Once the schema is enabled
with these packages, upgrade the user database with the new version of the schema.

10.2.3 Using a Different Email, Notes or Attachment Solution

The EssentialSAFe schema comes pre-enabled with certain packages. These are described in section 8.4
and with more detail in section 10.2.5. You may choose to different solutions for these three
capabilities. Perhaps you have developed your own in-house solution for notes, emails or attachments
and want to use those instead. In this case you can apply the EssentialSAFe package, but then instead of
applying the supplementary packages as described in section 10.2.5, you can apply your own solutions.

10.2.4 Dealing with Conflicts

An existing schema would already have record types defined and potentially other packages applied.
During package application, the system will check for conflicts in record type names. It will not allow the
package to be installed if any conflicts are found. If your existing schema is using any of the following
record type names, they will need to be renamed prior to installation of the EssentialSAFe package:

- Component
- Feature

- Goal

- lteration

- NFR

- Objective

- Persona

- Programincrement
- Ranking

- Release

- ReleaseTrain

- Solution

- Stakeholder

- Story

- Task

- Team

- Teamiteration
- TeamPI

Note: when renaming record types, consider that your hooks may also need to be changed if they also
reference these record types.

10.2.5 Supplementary Packages

When EssentialSAFe is applied as a package, you’ll notice that some tabs you see in the EssentialSAFe
schema are missing. This is because some of those tabs are package-owned themselves. Those packages
may have been applied to the schema already or the Compass Administrator may prefer a different
package or customization in its place.

The packages applied and enabled in the EssentialSAFe schema as seen in this document are:

- Notes 5.1 applied to Feature, Story, and Task record types
- EmailPlus 2.3 applied to Feature, Story and Task record types
- Attachments 1.0 applied to Feature, Story and Task record types

11 Permissions

The permissions model for the HCL Compass EssentialSAFe schema can be summarized in the table
below. Anyone can create a ReleaseTrain and create the related records for it. But only an RTE or PM
can create, modify or delete structural records associated with the release train. Structural records
describe any record other than work items. Work items, such as Feature, Story, and Task can be created,
modified, or deleted by anyone regardless of what ReleaseTrain they belong to.

Team, TeamPI, and Teamlteration records cannot be deleted, but they do have Delete actions. While
only RTEs and PMs can create TeamPIs and Teamlterations, the PO for the associated Team can also
modify these records.

All these permissions can be customized using optional global hooks described below.

RecordType Create Modify Delete MoveToRT+
ReleaseTrain Anyone RTE, PM RTE, PM RTE, PM*
Programlncrement |RTE, PM RTE, PM RTE, PM RTE, PM*
Iteration RTE, PM RTE, PM RTE, PM RTE, PM*
Team RTE, PM RTE, PM None RTE, PM*

https://help.hcltechsw.com/compass/2.0.1/com.hcl.compass.doc/webhelp/oxy_ex-1/com.ibm.rational.clearquest.schema.ec.doc/topics/t_chk_pkg_app_schema.html
https://help.hcltechsw.com/compass/2.0.1/com.hcl.compass.doc/webhelp/oxy_ex-1/com.ibm.rational.clearquest.schema.ec.doc/topics/t_chk_pkg_app_schema.html
https://help.hcltechsw.com/compass/2.0.1/com.hcl.compass.doc/webhelp/oxy_ex-1/com.ibm.rational.clearquest.schema.ec.doc/topics/t_apply_package.html
https://help.hcltechsw.com/compass/2.0.1/com.hcl.compass.doc/webhelp/oxy_ex-1/com.ibm.rational.clearquest.schema.ec.doc/topics/t_enable_rectypes.html

TeamPlI RTE, PM RTE, PM, PO None RTE, PM*
Teamlteration RTE, PM RTE, PM, PO None RTE, PM*
Solution RTE, PM RTE, PM RTE, PM RTE, PM*
Component RTE, PM RTE, PM RTE, PM RTE, PM*
Release RTE, PM RTE, PM RTE, PM RTE, PM*
Persona RTE, PM RTE, PM RTE, PM RTE, PM*
Objective Anyone Anyone IAnyone Anyone
Feature Anyone Anyone Anyone Anyone
Story Anyone Anyone Anyone Anyone
Task Anyone Anyone Anyone Anyone

+MoveToRT defines an operation where you are moving a record into another ReleaseTrain. How this is
done depends on the record type. For example, on a Programincrement you set a
different ReleaseTrain. For a Component, this would be choosing a different Solution.

* Must be RTE or PM for both the source and destination Release Train.

12 Customization

The schema workflow can be customized to some extent. This can be done by defining some optional
Perl subroutines in a custom global script. Each record type provided by HCL Compass EssentialSAFe has
a base action with placeholders defined for all hooks. The hooks on these base actions will run any time
an action is run on a record. The placeholders will look to see if certain Perl subroutines are defined and
if they are it will call those subroutines.

121 Permission
If you would like to customize who can run which actions, you can define this subroutine:

SPermission = SAFeCustomActionPermission ($entity, S$SPermission,
Sactioname, Sactiontype)

The arguments passed are the same as what a regular ACCESS_CONTROL hook would receive, Sentity,
Sactioname, and Sactiontype. The HCL Compass Essential SAFe already has some built-in access control
restrictions, for example who can modify a TeamPI record. The $SPermission variable passed in

to SAFeCustomActionPermission is the value calculating by built-in restrictions. You can choose to
override this and grant or deny access. The custom permission subroutine should return the new
permission value.

For example, the following subroutine would override all built-in access control and always allow the
action to be run.

sub SAFeCustomActionPermission ($$SS) {
my (Sentity, S$perm, Sactioname, Sactiontype) = @ ;
return 1;

122 Initialization
If you would like to add some initialization logic when actions are run, you can define this subroutine:

SAFeCustomActionInitialization($Sentity, S$actioname, S$Sactiontype);

The arguments passed are the same as what a regular INITIALIZATION hook would receive.

For example, the following subroutine calls a log statement every time an action is run on any record
type (which may be useful for auditing or diagnostics).

sub SAFeCustomActionInitialization ($$3) {

my (S$entity, Sactioname, Sactiontype) = @ ;
my Ss = Sentity->GetSession();
my S$msg = "Running $actioname on ".S$entity->GetDisplayName () ;

$s->OutputDebugString (Smsqg) ;

123 Validation
If you would like to add some validation logic, you can define this subroutine:

S$Validation = SAFeCustomActionValidation (
$entity, $Validation,
Sactioname, S$Sactiontype);

The arguments passed are the same as what a regular VALIDATION hook would receive, with the
addition of the $Validation parameter. The HCL Compass Essential SAFe already has some built-

in validation logic, for example what ReleaseTrain you can set on Programincrement record (you must
be the RTE or PM for that ReleaseTrain). The SValidation variable passed in

to SAFeCustomActionValidation is the value calculating by built-in validation. You can choose to override

this and perform different validation. The custom validation subroutine should return the
new validation value. It should either be a string explaining why the validation failed, or an empty string
to indicate successful validation. There are certain validation failures you cannot override. For
example, if a value is not value because it isn’t in a choice list, you cannot override it. The only validation
failures this subroutine might see, and override, are ones described in the last column of the permission
table above.

For example, the following subroutine essentially allows anyone to perform the MoveToRT described in
the table above, e.g. move a Pl to a different ReleaseTrain, even if they are not an RTE or PM for
that ReleaseTrain.

sub SAFeCustomActionValidation (5S) {

my ($entity, $validation, $actioname, Sactiontype) = @ ;
return "";

}

Commit

If you would like to add some Commit logic, you can define this subroutine:

SAFeCustomActionCommit (Sentity, Sactioname, S$actiontype);

The arguments passed are the same as what a regular COMMIT hook would receive. In this subroutine
you could add code to modify related records and they would be in the same database transaction as
the current record being modified. You could also choose to cancel the commit using a ‘die’ statement.

For example, the following subroutine lets you add custom commit logic for all actions.

sub SAFeCustomActionCommit ($$$) {
my (Sentity, S$Sactioname, S$actiontype) = Q@ ;
custom commit logic goes here...

Notification
If you would like to add some Notification logic, you can define this subroutine:

SAFeCustomActionNotification ($entity, S$actioname, Sactiontype):;

The arguments passed are the same as what a regular NOTIFICATION hook would receive. Notification
hooks run after the database has been successfully updated. If you want to add integration
to third party tool you could add notification hooks for that purpose.

For example, the following subroutine lets you add logic to update a third party integration for all
actions.

sub SAFeCustomActionNotification ($$$) {
my (Sentity, S$Sactioname, S$actiontype) = Q@ ;
UpdateMyThirdPartyTool ($Sentity, S$Sactioname, S$Sactiontype);

RecordScriptAlias Actions

The above mention optional Perl subroutines allow you to customize to the workflow of the HCL
Compass EssentialSAFe schema to your liking. The exception to this, the RecordScriptAlias actions. These
are special actions that do not trigger any base action hooks. The Utility menu actions are examples

of RecordScriptAlias actions. The CreatePl action on the ReleaseTrain is one example of such an

action that cannot be customized.

13 Best Practices

What follows are few recommendations for the best user experience when using HCL Compass
EssentialSAFe.

e HCL Compass EmailPlus package is enabled and configured on the user database

e HCL Compass Full Text Search is enabled for a richer user experience

https://help.hcltechsw.com/compass/2.0.1/com.hcl.compass.doc/webhelp/oxy_ex-1/com.ibm.rational.clearquest.schema.ec.doc/topics/sch_pkgs/c_emp_record_types.html
https://help.hcltechsw.com/compass/2.0.1/com.hcl.compass.doc/webhelp/oxy_ex-1/com.ibm.rational.clearquest.webadmin.doc/topics/t_fts_scn_prod_db_enable.html?hl=full%2Ctext%2Csearch

